US 2004/0237384 A1 Orr (43) Pub

Total Page:16

File Type:pdf, Size:1020Kb

US 2004/0237384 A1 Orr (43) Pub US 2004O237384A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2004/0237384 A1 Orr (43) Pub. Date: Dec. 2, 2004 (54) FUEL COMPOSITIONS EXHIBITING (52) U.S. Cl. ................. 44/314; 44/320; 44/358; 44/359; IMPROVED FUEL STABILITY 44/360; 44/444 (76) Inventor: William C. Orr, Denver, CO (US) Correspondence Address: (57)57 ABSTRACT HOGAN & HARTSON LLP ONE TABOR CENTER, SUITE 1500 A fuel composition of the present invention exhibits mini 1200 SEVENTEENTH ST mized hydrolysis and increased fuel Stability, even after DENVER, CO 80202 (US) extended storage at 65 F. for 6–9 months. The composition, which is preferably not strongly alkaline (3.0 to 10.5), is (21) Appl. No.: 10/722,063 more preferably weakly alkaline to mildly acidic (4.5 to 8.5) (22) Filed: Nov. 24, 2003 and most preferably slightly acidic (6.3 to 6.8), includes a e ars lower dialkyl carbonate, a combustion improving amount of Related U.S. Application Data at least one high heating combustible compound containing at least one element Selected from the group consisting of (63) Continuation-in-part of application No. 08/986,891, aluminum, boron, bromine, bismuth, beryllium, calcium, filed on Dec. 8, 1997, now Pat. No. 6,652,608. cesium, chromium, cobalt, copper, francium, gallium, ger manium, iodine, iron, indium, lithium, magnesium, manga Publication Classification nese, molybdenum, nickel, niobium, nitrogen, phosphorus, potassium, palladium, rubidium, Sodium, tin, Zinc, (51) Int. Cl." ........ C10L 1/12; C1OL 1/30; C1OL 1/28; praseodymium, rhenium, Silicon, Vanadium, or mixture, and C1OL 1/18 a hydrocarbon base fuel. US 2004/0237384 A1 Dec. 2, 2004 FUEL COMPOSITIONS EXHIBITING IMPROVED Viscous base fuel hydrocarbons. The longer chain or more FUEL STABILITY complex hydrocarbons, e.g., heavy oils, heavy fuel oils, diesels, etc., are typically not preferred as fuels due to FIELD OF THE INVENTION handling, emission and combustion concerns. 0001. The present invention relates to enhanced struc tured fuel compositions for use in jet, turbine, diesel, gaso SUMMARY OF THE INVENTION line, and other combustion Systems. More particularly, the 0006 A primary object of the present invention is the present invention relates to fuel compositions using Viscous development and utilization of fuels having enhanced com hydrocarbons, which are Substantially neutral pH, and bustion structure which have increased stability. A further which employ a Silicon based combustion catalyst. object of the present invention is the development of enhanced combustion. Structured in which the base fuel may BACKGROUND OF THE INVENTION be more Viscous, or not as highly refined, as now required to 0002 International patent application Nos. PCT/US95/ meet minimum fuel Standards. A further object is the 02691, PCT/US95/06758, and PCT/US96/09653, are incor employment of a co-metallic catalyst, which further porated in their entirety herein by reference, and disclose enhances the combustion structure of the DMC and metal/ fuel compositions and combustion techniques for achieving non-metals component, further improving thermal effi Vapor phase combustion based on an enhanced combustion ciency, fuel economy, power and emissions. structure (“ECS”). This enhanced combustion structure includes a combustible metallic and free radical generating 0007. In accordance therewith, the substantially non oxygenated compound. It has been found that Such free alkaline fuel compositions of the present invention exhibits radical generating oxygenates include C2-C12 aldehydes, improved Stability, with no apparent hydrolysis after Storage aldehydic acids, C2-C12 ethers, C1-C15 alcohols, C2-C12 for six months or more. In addition, the presence of lower oxides, C3-C15 ketones, ketonic acids, C3-C15 esters, oth dialkyl carbonates and metals in the fuel compositions of the roesters, C3-C12 diesters, C5-C12 phenols, C5-C20 glycol present invention allows for the use of-highly viscous base ethers, C2-C12 glycols, C3-C20 alkyl carbonates, C3-C20 fuels. dialkyl carbonates, C3-C20 di-carbonates, C1 to C20 0008. The improved fuels described herein contain a base organic and inorganic peroxides, hydroperoxides, carboxy hydrocarbon fuel or propellant (including hydrogen) co-fuel, lic acids, amines, nitrates, di-nitrates, oxalates, phenols, as provided in the PCT applications referenced above. Such acetic acids, boric acids, orthoborates, hydroxyacids, co-fuels may be viscous, moderately viscous, or highly orthoacids, anhydrides, acetates, acetyls, formic acids, Viscous (e.g. having Viscosities outside industry standards). nitrates, di-nitrates, nitro-ethers, which can meet minimum Said Viscous fuels are combined with high energy non-lead burning velocity (BV) and latent heats of vaporization metallic or non-metallics (presented below), together with (LHV) requirements of aforementioned PCT Applications. Symmetrical dialkyl carbonates, e.g., dimethyl or diethyl Specific compounds can be found in detail in Organic carbonate, and preferably a Silicon co-metallic combustion Chemistry 6th Ed, T. W. G. Solomons, John Wiley & Sons, catalyst. When the fuel compositions of the present inven N.Y., (1995), Physical Chemistry, 5th Ed, P. W. Atkins, tion are then constructed to a weakly alkaline (7.5 to 11.0 Oxford University Press, U.K. (1994), Physical Organic pH), substantially neutral (6.5 to 7.5 pH), or acidic (4.5 to Chemistry, 2 Ed, N. S. Issacs, John Wiley & Sons, N.Y. 6.5 pH),iwhether or not water is present, they exhibit (1995) and Lange's Handbook of Chemistry, 14th Ed, J. A. improved Stability with no Substantial hydrolytic propensity. Dean, McGraw-Hill, N.Y. (1992), and their minimum BV/LHV requirements in aforementioned PCT Applica DETAILED DESCRIPTION OF THE PRESENT tions, which are herein by incorporated by reference. INVENTION 0009. The improved fuel composition of the present 0.003 Said enhanced combustion structure oxygenates, invention includes an alkyl carbonate (dimethyl and/or when in combination with a combustible non-lead metal or diethyl carbonate) a metal or non-metallic compound, more non-metal (as set forth below), exhibit high heats of enthalpy fully described below, and optionally a Silicon catalyst, capable, improved combustion, thermal efficiency, fuel co-fuel(propellant), and/or oxidizer. So long as the compo economy, and power. Of particularly interest to this inven Sition is not strongly alkaline, i.e., has a pH of from 3.0 to tion are the enhanced combustion Struture oxygenates of about 10.5, hydrolysis of the fuel composition is avoided. A Symmetrical dialkyl carbonates, especially dimethyl and desirable pH range of the fuel composition of the present diethyl carbonates. invention is from approximately 4.5 to approximately 10.5, 0004. However, it has been reported symrrietrical dialkyl with a more desirable pH range of from approximately 4.5 carbonates, Such as dimethyl carbonate can be problematical to approximately 9.5. An even more desireable pH range is fuel additives due to their potential instability in fuel com from approximately 4.5 to 9.0. Another highly preferred pH positions, which can result in undesired hydrolysis in acidic range is from approximately 5.5 to 8.0. A preferred pH range and aqueous environments. See EPO Application is from approximately 4.5 to approximately 6.5. The most #91306278.2 Karas. Thus, it would be reasonable to expect preferred pH range for the fuel composition of the present fuels containing lower dialkyl carbonates to Store and per invention is from approximately 6.3 to approximately 6.8. form optimally only when in moderately Strong or Strongly 0010 When the pH of the fuel composition of the present alkaline environments, i.e., pHs exceeding 11 or more. invention is less than 11.0, preferably 10.5 or below, 9.5 or Fuels-having pHs lower than 11, e.g. moderately alkaline, below, and more preferably 8.5 or below, the fuel, whether nuetral and acidic would be expected to be problematic. anhydrous or hydrous, may be Stored at ambient temperature 0005. In addition, conventional thinking and regulatory for up to 6 Six months without Substantial apparent hydroly Standards encourage the utilization of more refined leSS SS. US 2004/0237384 A1 Dec. 2, 2004 0.011 For example, Fuel A containing 5% by volume acid, diphenylboronic acid, dibenzylboronic acid, dicylo dimethyl carbonate, 95% by volume unleaded regular grade hexylboronic acid, dicylohexenylboronic acid, dicyclopen commercially available 87 octane (R+M)/2, 1/8 gram tylboronic acid, mgethyldiphenylboronic acid, bis(methyl Mn/gal of methylcyclopentadienyl manganese tricarbonyl, a )cylohexylboronic acid, bis(methyl)cyclopentylboronic pH of 7.0, and 5% by volume of water, was stored for six acid, bis(methyl)benzylboronic acid, bis(dimethyl)phe months, the fuel exhibited no apparent hydrolysis. nylboronic acid, bis(dimethyl)-cylohexylboronic acid, bis 0012. When such fuel composition was titrated with (dimethyl)cyclopentylboronic acid, or bis(dimethyl)ben acetic acid to a pH of 6.4, still containing 5% by volume of Zylboronic acid. Many other acidic metallics are set forth water (Fuel B) and was then stored for six months, the fuel below and contemplated. exhibited no apparent hydrolysis. 0017. If an additive acid is employed, it is preferred it be 0013 However, when a fuel composition containing dim compatible with the base fuel and have low toxicity, low ethyl carbonate and cyclopentadienyl manganese tricarbonyl corrosivity, and be as envirnomentally friendly as possible. was prepared with a
Recommended publications
  • Inventory Size (Ml Or G) 103220 Dimethyl Sulfate 77-78-1 500 Ml
    Inventory Bottle Size Number Name CAS# (mL or g) Room # Location 103220 Dimethyl sulfate 77-78-1 500 ml 3222 A-1 Benzonitrile 100-47-0 100ml 3222 A-1 Tin(IV)chloride 1.0 M in DCM 7676-78-8 100ml 3222 A-1 103713 Acetic Anhydride 108-24-7 500ml 3222 A2 103714 Sulfuric acid, fuming 9014-95-7 500g 3222 A2 103723 Phosphorus tribromide 7789-60-8 100g 3222 A2 103724 Trifluoroacetic acid 76-05-1 100g 3222 A2 101342 Succinyl chloride 543-20-4 3222 A2 100069 Chloroacetyl chloride 79-04-9 100ml 3222 A2 10002 Chloroacetyl chloride 79-04-9 100ml 3222 A2 101134 Acetyl chloride 75-36-5 500g 3222 A2 103721 Ethyl chlorooxoacetate 4755-77-5 100g 3222 A2 100423 Titanium(IV) chloride solution 7550-45-0 100ml 3222 A2 103877 Acetic Anhydride 108-24-7 1L 3222 A3 103874 Polyphosphoric acid 8017-16-1 1kg 3222 A3 103695 Chlorosulfonic acid 7790-94-5 100g 3222 A3 103694 Chlorosulfonic acid 7790-94-5 100g 3222 A3 103880 Methanesulfonic acid 75-75-2 500ml 3222 A3 103883 Oxalyl chloride 79-37-8 100ml 3222 A3 103889 Thiodiglycolic acid 123-93-3 500g 3222 A3 103888 Tetrafluoroboric acid 50% 16872-11-0 1L 3222 A3 103886 Tetrafluoroboric acid 50% 16872-11-0 1L 3222 A3 102969 sulfuric acid 7664-93-9 500 mL 2428 A7 102970 hydrochloric acid (37%) 7647-01-0 500 mL 2428 A7 102971 hydrochloric acid (37%) 7647-01-0 500 mL 2428 A7 102973 formic acid (88%) 64-18-6 500 mL 2428 A7 102974 hydrofloric acid (49%) 7664-39-3 500 mL 2428 A7 103320 Ammonium Hydroxide conc.
    [Show full text]
  • Sulfonyl-Containing Nucleoside Phosphotriesters And
    Sulfonyl-Containing Nucleoside Phosphotriesters and Phosphoramidates as Novel Anticancer Prodrugs of 5-Fluoro-2´-Deoxyuridine-5´- Monophosphate (FdUMP) Yuan-Wan Sun, Kun-Ming Chen, and Chul-Hoon Kwon†,* †Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, St. John’s University, Jamaica, New York 11439 * To whom correspondence should be addressed. Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, St. John’s University, 8000 Utopia parkway, Jamaica, NY 11439. Tel: (718)-990-5214, fax: (718)-990-6551, e-mail: [email protected]. Abstract A series of sulfonyl-containing 5-fluoro-2´-deoxyuridine (FdU) phosphotriester and phosphoramidate analogues were designed and synthesized as anticancer prodrugs of FdUMP. Stability studies have demonstrated that these compounds underwent pH dependent β-elimination to liberate the corresponding nucleotide species with half-lives in the range of 0.33 to 12.23 h under model physiological conditions in 0.1M phosphate buffer at pH 7.4 and 37 °C. Acceleration of the elimination was observed in the presence of human plasma. Compounds with FdUMP moiety (4-9) were considerably more potent than those without (1-3) as well as 5-fluorouracil (5-FU) against Chinese hamster lung fibroblasts (V-79 cells) in vitro. Addition of thymidine (10 µM) reversed the growth inhibition activities of only 5-FU and the compounds with FdUMP moiety, but had no effect on those without. These results suggested a mechanism of action of the prodrugs involving the intracellular release of FdUMP. Introduction 5-Fluoro-2´-deoxyuridine-5´-monophosphate (FdUMP) is the major metabolite responsible for the anticancer activity of 5-FU (Chart 1).
    [Show full text]
  • "Phosphorus-Containing Polymers and Oligomers"
    Vol. 3 PHOSPHORUS-CONTAINING POLYMERS AND OLIGOMERS 447 PHOSPHORUS-CONTAINING POLYMERS AND OLIGOMERS Introduction The only valid generalization about phosphorus polymers is that they tend to be flame retardant (1,2). The flame-retardant effect depends heavily on the phos- phorus content. Red (polymeric) phosphorus, despite its combustibility, is a com- mercial flame-retardant additive. Other features of many phosphorus polymers are adhesion to metals, metal ion-binding characteristics, and increased polarity (2). The flexible P O C linkages tend to impart lower glass-transition temper- atures. Phosphorus polymers with acid groups are used industrially for ion ex- change, adhesion, and scale inhibition. Some form water-soluble coatings used as primers in metal protection and for photolithographic plates. The binding proper- ties have led to dental applications. Cellulose phosphates have found some drug and ion-exchange uses. Academic interest has been stimulated by the relationship of certain phosphate polymers to natural products, such as the nucleic acids (see POLYNUCLEOTIDES). This review gives most attention to those phosphorus polymers which have attained commercial use or which have been (or currently are) the subject of seri- ous development efforts. Other reviews encompass phosphorus polymers of mainly academic interest (3,4). The commercial examples tend to be specialty polymers and none have attained large volume usage. One reason is cost. In addition, those polymers having P O links are usually more hydrolyzable than corresponding C O bonded polymers, and moreover the phosphorus acids which are liber- ated tend to catalyze further hydrolysis. Hydrolytically stable phosphine oxide Encyclopedia of Polymer Science and Technology. Copyright John Wiley & Sons, Inc.
    [Show full text]
  • The Stereochemistry of Sulfonium Salts
    University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Spring 1974 THE STEREOCHEMISTRY OF SULFONIUM SALTS ROBERT L. CARET Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation CARET, ROBERT L., "THE STEREOCHEMISTRY OF SULFONIUM SALTS" (1974). Doctoral Dissertations. 1044. https://scholars.unh.edu/dissertation/1044 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. INFORMATION TO USERS This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image.
    [Show full text]
  • Aldrich Organometallic, Inorganic, Silanes, Boranes, and Deuterated Compounds
    Aldrich Organometallic, Inorganic, Silanes, Boranes, and Deuterated Compounds Library Listing – 1,523 spectra Subset of Aldrich FT-IR Library related to organometallic, inorganic, boron and deueterium compounds. The Aldrich Material-Specific FT-IR Library collection represents a wide variety of the Aldrich Handbook of Fine Chemicals' most common chemicals divided by similar functional groups. These spectra were assembled from the Aldrich Collections of FT-IR Spectra Editions I or II, and the data has been carefully examined and processed by Thermo Fisher Scientific. Aldrich Organometallic, Inorganic, Silanes, Boranes, and Deuterated Compounds Index Compound Name Index Compound Name 1066 ((R)-(+)-2,2'- 1193 (1,2- BIS(DIPHENYLPHOSPHINO)-1,1'- BIS(DIPHENYLPHOSPHINO)ETHAN BINAPH)(1,5-CYCLOOCTADIENE) E)TUNGSTEN TETRACARBONYL, 1068 ((R)-(+)-2,2'- 97% BIS(DIPHENYLPHOSPHINO)-1,1'- 1062 (1,3- BINAPHTHYL)PALLADIUM(II) CH BIS(DIPHENYLPHOSPHINO)PROPA 1067 ((S)-(-)-2,2'- NE)DICHLORONICKEL(II) BIS(DIPHENYLPHOSPHINO)-1,1'- 598 (1,3-DIOXAN-2- BINAPH)(1,5-CYCLOOCTADIENE) YLETHYNYL)TRIMETHYLSILANE, 1140 (+)-(S)-1-((R)-2- 96% (DIPHENYLPHOSPHINO)FERROCE 1063 (1,4- NYL)ETHYL METHYL ETHER, 98 BIS(DIPHENYLPHOSPHINO)BUTAN 1146 (+)-(S)-N,N-DIMETHYL-1-((R)-1',2- E)(1,5- BIS(DI- CYCLOOCTADIENE)RHODIUM(I) PHENYLPHOSPHINO)FERROCENY TET L)E 951 (1,5-CYCLOOCTADIENE)(2,4- 1142 (+)-(S)-N,N-DIMETHYL-1-((R)-2- PENTANEDIONATO)RHODIUM(I), (DIPHENYLPHOSPHINO)FERROCE 99% NYL)ETHYLAMIN 1033 (1,5- 407 (+)-3',5'-O-(1,1,3,3- CYCLOOCTADIENE)BIS(METHYLD TETRAISOPROPYL-1,3- IPHENYLPHOSPHINE)IRIDIUM(I)
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2005/0044778A1 Orr (43) Pub
    US 20050044778A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2005/0044778A1 Orr (43) Pub. Date: Mar. 3, 2005 (54) FUEL COMPOSITIONS EMPLOYING Publication Classification CATALYST COMBUSTION STRUCTURE (51) Int. CI.' ........ C10L 1/28; C1OL 1/24; C1OL 1/18; (76) Inventor: William C. Orr, Denver, CO (US) C1OL 1/12; C1OL 1/26 Correspondence Address: (52) U.S. Cl. ................. 44/320; 44/435; 44/378; 44/388; HOGAN & HARTSON LLP 44/385; 44/444; 44/443 ONE TABOR CENTER, SUITE 1500 1200 SEVENTEENTH ST DENVER, CO 80202 (US) (57) ABSTRACT (21) Appl. No.: 10/722,127 Metallic vapor phase fuel compositions relating to a broad (22) Filed: Nov. 24, 2003 Spectrum of pollution reducing, improved combustion per Related U.S. Application Data formance, and enhanced Stability fuel compositions for use in jet, aviation, turbine, diesel, gasoline, and other combus (63) Continuation-in-part of application No. 08/986,891, tion applications include co-combustion agents preferably filed on Dec. 8, 1997, now Pat. No. 6,652,608. including trimethoxymethylsilane. Patent Application Publication Mar. 3, 2005 US 2005/0044778A1 FIGURE 1 CALCULATING BUNSEN BURNER LAMINAR FLAME VELOCITY (LFV) OR BURNING VELOCITY (BV) CONVENTIONAL FLAME LUMINOUS FLAME Method For Calculating Bunsen Burner Laminar Flame Velocity (LHV) or Burning Velocity Requires Inside Laminar Cone Angle (0) and The Gas Velocity (Vg). LFV = A, SIN 2 x VG US 2005/0044778A1 Mar. 3, 2005 FUEL COMPOSITIONS EMPLOYING CATALYST Chart of Elements (CAS version), and mixture, wherein said COMBUSTION STRUCTURE element or derivative compound, is combustible, and option 0001) The present invention is a CIP of my U.S.
    [Show full text]
  • Zinnwald Lithium Project
    Zinnwald Lithium Project Report on the Mineral Resource Prepared for Deutsche Lithium GmbH Am St. Niclas Schacht 13 09599 Freiberg Germany Effective date: 2018-09-30 Issue date: 2018-09-30 Zinnwald Lithium Project Report on the Mineral Resource Date and signature page According to NI 43-101 requirements the „Qualified Persons“ for this report are EurGeol. Dr. Wolf-Dietrich Bock and EurGeol. Kersten Kühn. The effective date of this report is 30 September 2018. ……………………………….. Signed on 30 September 2018 EurGeol. Dr. Wolf-Dietrich Bock Consulting Geologist ……………………………….. Signed on 30 September 2018 EurGeol. Kersten Kühn Mining Geologist Date: Page: 2018-09-30 2/219 Zinnwald Lithium Project Report on the Mineral Resource TABLE OF CONTENTS Page Date and signature page .............................................................................................................. 2 1 Summary .......................................................................................................................... 14 1.1 Property Description and Ownership ........................................................................ 14 1.2 Geology and mineralization ...................................................................................... 14 1.3 Exploration status .................................................................................................... 15 1.4 Resource estimates ................................................................................................. 16 1.5 Conclusions and Recommendations .......................................................................
    [Show full text]
  • A Novel Series of Titanocene Dichloride Derivatives: Synthesis, Characterization and Assessment of Their
    A novel series of titanocene dichloride derivatives: synthesis, characterization and assessment of their cytotoxic properties by Gregory David Potter A thesis submitted to the Department of Chemistry in conformity with the requirements for the degree of Doctor of Philosophy Queen’s University Kingston, Ontario, Canada May, 2008 Copyright © Gregory David Potter, 2008 Abstract Although cis-PtCl2(NH3)2 (cisplatin) has been widely used as a chemotherapeutic agent, its use can be accompanied by toxic side effects and the development of drug resistance. Consequently, much research has been focused on the discovery of novel transition metal compounds which elicit elevated cytotoxicities coupled with reduced toxic side effects and non-cross resistance. Recently, research in this lab has focused on preparing derivatives of titanocene dichloride (TDC), a highly active chemotherapeutic agent, with pendant alkylammonium groups on one or both rings. Earlier results have demonstrated that derivatives containing either cyclic or chiral alkylammonium groups had increased cytotoxic activities. This research therefore investigated a new series of TDC complexes focusing specifically on derivatives bearing cyclic and chiral alkylammonium groups. A library of ten cyclic derivatives and six chiral derivatives were synthesized and fully characterized. These derivatives have undergone in vitro testing as anti-tumour agents using human lung, ovarian, and cervical carcinoma cell lines (A549, H209, H69, H69/CP, A2780, A2780/CP and HeLa). These standard cell lines represent solid tumour types for which new drugs are urgently needed. The potencies of all of the Ti (IV) derivatives varied greatly (range from 10.8 μM - >1000 μM), although some trends were observed. In general, the dicationic analogues exhibited greater potency than the corresponding monocationic derivatives.
    [Show full text]
  • Ecodesign of Large-Scale Photovoltaic (PV) Systems with Multi-Objective Optimization and Life-Cycle Assessment (LCA)
    %NVUEDELOBTENTIONDU %0$503"5%&-6/*7&34*5² %&506-064& $ÏLIVRÏPAR Institut National Polytechnique de Toulouse (INP Toulouse) $ISCIPLINEOUSPÏCIALITÏ Génie des procédés et de l'Environnement 0RÏSENTÏEETSOUTENUEPAR Jorge RaÞl PEREZ GALLARDO LE vendredi 25 octobre 2013 4ITRE Ecodesign of large-scale photovoltaic (PV) systems with multi-objective optimization and Life-Cycle Assessment (LCA) Écoconception de systèmes photovoltaïques (PV) à grande échelle par optimisation multi-objectif et Analyse du Cycle de Vie (ACV) %COLEDOCTORALE Mécanique, Energétique, Génie civil et Procédés (MEGeP) 5NITÏDERECHERCHE Laboratoire de Génie Chimique - UMR 5503 $IRECTEURS DE4HÒSE Mme Catherine AZZARO-PANTEL (INP-Toulouse, France ) M. Stéphan ASTIER (INP-Toulouse, France) 2APPORTEURS Mme Valérie LAFOREST (ENSM-Saint-Etienne, France) M. Moises GRAELLS (UPC-Barcelone, Espagne) MEMBRES DUJURY: Mme Corinne ALONSO (LAAS CNRS-Toulouse, France ) M. Pascal ESCRIBE (EDF EN France Région Sud, France ) M. Serge DOMENECH (INP-Toulouse, France ) M. Xavier ROBOAM (INP-Toulouse, France ) M. Pascal MAUSSION (INP-Toulouse, France ) Abstract . Ecodesign of large-scale photovoltaic (PV) systems with multi-objective optimization and Life-Cycle Assessment (LCA) Because of the increasing demand for the provision of energy worldwide and the numerous damages caused by a major use of fossil sources, the contribution of renewable energies has been increasing significantly in the global energy mix with the aim at moving towards a more sustainable development. In this context, this work aims at the development of a general methodology for designing PV systems based on ecodesign principles and taking into account simultaneously both techno-economic and environmental considerations. In order to evaluate the environmental performance of PV systems, an environmental assessment technique was used based on Life Cycle Assessment (LCA).
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 6,169,208 B1 Lee (45) Date of Patent: Jan
    USOO6169208B1 (12) United States Patent (10) Patent No.: US 6,169,208 B1 Lee (45) Date of Patent: Jan. 2, 2001 (54) PROCESS FOR PRODUCING A MAGNESIUM Goldberg et al., “Synthesis of Sodium Tetrakis(3,5-DI(Tri DITETRAKIS(ARYL)BORATE AND fluoromethyl)Phenyl Borate”, Zhurnal organicheskoi PRODUCTS THEREFROM Khimi, 1989, vol. 25, No. 5, pp. 1099–1102 (translation thereof), pp. 989-991. (75) Inventor: John Y. Lee, Baton Rouge, LA (US) Golden et al., “Lithium-Mediated Organofluorine Hydrogen Bonding: Structure of Lithium Tetreakis(3,5-bis(trifluorom (73) Assignee: Albemarle Corporation, Richmond, ethyl)phenyl)borate Tetrahydrate”, Inorg. Chem. vol. 33, VA (US) 1994, pp. 5374–5375. Hayashi et al., “A Novel Chiral Super-Lewis Acidic Cata (*) Notice: Under 35 U.S.C. 154(b), the term of this lyst for Enantioselective Synthesis”, J. Am. Chem. Soc., patent shall be extended for 0 days. 1996, vol. 118, No. 23, pp. 5502–5503. Hughes et al., “Synthesis and Structure of the Thallium(I) (21) Appl. No.: 09/453,606 Salt of the Tetrakis {3,5-bis(trifluoromethyl)phenylborate Anion”, Inorg. Chem. vol. 36, 1997, pp. 1726–1727. (22) Filed: Dec. 3, 1999 Jia et al., “Cationic Metallocene Polymerization Catalysts (51) Int. Cl." ........................................................ C07F 5/02 Based on Tetrakis(pentafluorophenyl)borate and Its Deriva (52) U.S. Cl. ...................................................... 568/6; 568/1 tives. Probing the Limits of Anion “Noncoordination” via a (58) Field of Search ............................................... 568/1, 6 Synthetic, Solution Dynamic, Structural, and Catalytic Ole fin Polymerization Study', Organometallics, 1997, vol. 16, (56) References Cited p. 842-857. Jia et al., “Protected (Fluoroaryl)borates as Effective Coun U.S.
    [Show full text]
  • Asymmetric Synthesis of Organophosphates and Their
    ASYMMETRIC SYNTHESIS OF ORGANOPHOSPHATES AND THEIR DERIVATIVES Thesis Submitted to The College of Arts and Sciences of the UNIVERSITY OF DAYTON In Partial Fulfillment of the Requirements for The Degree of Master of Science in Chemistry By Batool J. Murtadha Dayton, Ohio May 2020 ASYMMETRIC SYNTHESIS OF ORGANOPHOSPHATES AND THEIR DERIVATIVES Name: Murtadha, Batool J. APPROVED BY: __________________________________ Jeremy Erb, Ph.D. Research Advisor Assistant Professor Department of Chemistry University of Dayton ___________________________________ Vladimir Benin, Ph.D. Professor of Chemistry Department of Chemistry University of Dayton ___________________________________ Justin C. Biffinger, Ph.D. Committee Member Assistant Professor Department of Chemistry University of Dayton ii © Copyright by Batool J. Murtadha All rights reserved 2020 iii ABSTRACT ASYMMETRIC SYNTHESIS OF ORGANOPHOSPHATES AND THEIR DERIVATIVES Name: Murtadha, Batool J. University of Dayton Advisor: Dr. Jeremy Erb Organophosphorus compounds (OPs) are widely used in the agricultural industry especially in the pesticide market. Phosphates play a huge role as biological compounds in the form of energy carrier compounds like ATP, and medicine as antivirals. OPs have become increasingly important as evidenced by the publication of new methods devoted to their uses and synthesis. These well-established studies lay the basis for industrial organic derivatives of phosphorus preparations. The current work explored methods of synthesizing chiral organophosphate triesters. We experimented with different processes roughly divided into either an electrophilic or nucleophilic strategy using chiral Lewis acids, organocatalysts (HyperBTM), activating agents, and chiral auxiliaries with the goal of control stereoselectivity. These methods were explored through the use of different starting materials like POCl3, triethyl phosphate, methyl phosphordichloradate, and PSCl3.
    [Show full text]
  • Accepted Version
    Citation for published version: Hamilton, JA, Pugh, T, Johnson, AL, Kingsley, AJ & Richards, SP 2016, 'Cobalt(I) olefin complexes: precursors for metal-organic chemical vapor deposition of high purity cobalt metal thin films', Inorganic Chemistry, vol. 55, no. 14, pp. 7141-7151. https://doi.org/10.1021/acs.inorgchem.6b01146, https://doi.org/10.1021/acs.inorgchem.6b01146 DOI: 10.1021/acs.inorgchem.6b01146 http://dx.doi.org/10.1021/acs.inorgchem.6b01146 Publication date: 2016 Document Version Peer reviewed version Link to publication This document is the Accepted Manuscript version of a Published Work that appeared in final form in Inorganic Chemistry, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see DOI: 10.1021/acs.inorgchem.6b01146. University of Bath Alternative formats If you require this document in an alternative format, please contact: [email protected] General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 06. Oct. 2021 Table of Content Abstract and Graphic We report the synthesis and characterization of a family of eleven cobalt (I) metal precursors based around cyclopentadienyl and diene ligands. Low pressure metal-organic chemical vapor deposition (AP-MOCVD) was employed using the precursor cyclopentadienyl-cobalt(I)(isoprene) 1, to synthesis thin films of metallic cobalt on silicon substrates under an atmosphere (760 Torr) of hydrogen (H2) .
    [Show full text]