Bailey & Although They Vary Considerably in External Form
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Supporting Information
Supporting Information Bachelier and Friedman 10.1073/pnas.1104697108 Table S1. Initiation of more than one female gametophyte per ovule in basal angiosperms Taxon Multiple female gametophytes References Amborellaceae No 1–4 Hydatellaceae Variable 5 and 6 Nymphaeaceae Variable 7–9 Cabombaceae Variable 8 and 10 Austrobaileyaceae No 11 Illiciaceae (incl. Schisandraceae) Variable 12–15 Trimeniaceae Variable 16–18 and this study Chloranthaceae Rare 4 and 18–22 Laurales Variable 18 and 23–27 Magnoliales No 27–31 Canellales Rare 30 and 32–37 Piperales Rare 38–44 Ceratophyllaceae Variable 45 Character states: No means that initiation of more than one female gametophyte per ovule has not been reported as yet, rare means that initiation of more than one female gametophyte per ovule has only been reported one time, and variable means that initiation of more than one female gametophyte per ovule has been reported to occur more than one time in some but not all studies. 1. Friedman WE, Ryerson KC (2009) Reconstructing the ancestral female gametophyte of angiosperms: Insights from Amborella and other ancient lineages of flowering plants. Am J Bot 96:129–143. 2. Friedman WE (2006) Embryological evidence for developmental lability during early angiosperm evolution. Nature 441:337–340. 3. Tobe H, Jaffré T, Raven PH (2000) Embryology of Amborella (Amborellaceae): Descriptions and polarity of character states. J Plant Res 113:271–280. 4. Yamada T, Tobe H, Imaichi R, Kato M (2001) Developmental morphology of the ovules of Amborella trichopoda (Amborellaceae) and Chloranthus serratus (Chloranthaceae). Bot J Linn Soc 137:277–290. 5. Rudall PJ, et al. -
Tasmannia Lanceolata
ASPECTS OF LEAF AND EXTRACT PRODUCTION from Tasmannia lanceolata by Chris Read, B. Agr.Sc. Tas. Submitted in fulfillment of the requirements for the Degree of Doctor of Philosophy University of Tasmania, Hobart December 1995 ' s~, ... ~~ \ ·'(11 a_C\14 \t\J. \I ' This thesis contains no material which has been accepted for the award of any other degree or diploma in any University, and to the best of my knowledge, contains no copy or paraphrase of material previously written or published by any other person except where due reference is given in the text. University of Tasmania HOBART March 1996 This thesis may be made available for loan and limited copying in accordance with the Copyright Act 1968 University of Tasmania HOBART March 1996 Abstract This thesis examines several aspects of the preparation, extraction and analysis of solvent soluble compounds from leaf material of Tasmannia lanceolata and reports a preliminary survey of extracts of some members of the natural population of the species in Tasmania. A major constituent of these extracts, polygodial, was shown to be stored within specialised idioblastic structures scattered throughout the mesophyll, and characterised by distinctive size and shape, and a thickened wall. The contents of these cells were sampled directly, analysed and compared with the composition of extracts derived from ground, dry whole leaf. This result was supported by spectroscopic analysis of undisturbed oil cells in whole leaf tissue. In a two year field trial, the progressive accumulation of a number of leaf extract constituents (linalool, cubebene, caryophyllene, germacrene D, bicyclogermacrene, cadina-1,4 - diene, aristolone and polygodial) during the growth flush was followed by a slow decline during the subsequent dormant season. -
Bio 308-Course Guide
COURSE GUIDE BIO 308 BIOGEOGRAPHY Course Team Dr. Kelechi L. Njoku (Course Developer/Writer) Professor A. Adebanjo (Programme Leader)- NOUN Abiodun E. Adams (Course Coordinator)-NOUN NATIONAL OPEN UNIVERSITY OF NIGERIA BIO 308 COURSE GUIDE National Open University of Nigeria Headquarters 14/16 Ahmadu Bello Way Victoria Island Lagos Abuja Office No. 5 Dar es Salaam Street Off Aminu Kano Crescent Wuse II, Abuja e-mail: [email protected] URL: www.nou.edu.ng Published by National Open University of Nigeria Printed 2013 ISBN: 978-058-434-X All Rights Reserved Printed by: ii BIO 308 COURSE GUIDE CONTENTS PAGE Introduction ……………………………………......................... iv What you will Learn from this Course …………………............ iv Course Aims ……………………………………………............ iv Course Objectives …………………………………………....... iv Working through this Course …………………………….......... v Course Materials ………………………………………….......... v Study Units ………………………………………………......... v Textbooks and References ………………………………........... vi Assessment ……………………………………………….......... vi End of Course Examination and Grading..................................... vi Course Marking Scheme................................................................ vii Presentation Schedule.................................................................... vii Tutor-Marked Assignment ……………………………….......... vii Tutors and Tutorials....................................................................... viii iii BIO 308 COURSE GUIDE INTRODUCTION BIO 308: Biogeography is a one-semester, 2 credit- hour course in Biology. It is a 300 level, second semester undergraduate course offered to students admitted in the School of Science and Technology, School of Education who are offering Biology or related programmes. The course guide tells you briefly what the course is all about, what course materials you will be using and how you can work your way through these materials. It gives you some guidance on your Tutor- Marked Assignments. There are Self-Assessment Exercises within the body of a unit and/or at the end of each unit. -
Primitive Angiosperm Flower – a Discussion*
Acta Bot. Neerl. 23(4), August 1974, p. 461-471. The structure and function of the primitive Angiosperm flower – a discussion* Gerhard Gottsberger Departamentode Botanica, Faculdade de Ciencias Medicas e Biologicas de Botucatu, Estado de Sao Paulo, Brazil SUMMARY Morphological and functional features of primitive entomophilous Angiosperm flowers are discussed and confronted with modem conceptions onearly Angiosperm differentiation. Evidence is put forward to show that large, solitary and terminally-borne flowers are not most primitive in the Angiosperms, but rather middle-sized ones, groupedinto lateral flower aggregates or inflorescences. It is believed that most primitive, still unspecialized Angiosperm flowers were pollinated casuallyby beetles. Only in a later phase did they graduallybecome adaptedto the more effective but more devastating type of beetle pollination. Together with this specialization, flower enlargment, reduction of inflorescences, numerical increase of stamens and carpels, and their more dense aggregationand flatteningmight have occurred. In have maintained the archaic condi- regard to pollination,many primitive Angiosperms tion of because beetles still dominant insect whereas in cantharophily, are a group, dispersal they have been largely forced to switch over from the archaic saurochory to the more modern modes of dispersal by birds and mammals,since duringthe later Mesozoic the dominance of reptiles had come to an end. The prevailing ideas regarding the primitiveness of Angiosperm flower struc- be somewhat Is the -
And According to Bailey & (1943)
BLUMEA 24 (1978) 521—525 The Winteraceae pf the Old World. III. Notes on the ovary of Takhtajania W. Vink Rijksherbarium, Leiden, Netherlands INTRODUCTION Very recently Baranova & Leroy (Leroy, 1978) published a new genus Takhta- jania to accomodate the aberrant Bubbia perrieri Capuron. The outstanding characters of this genus are the anomocytic stomatal apparatus (Baranova, 1972; Bongers, 1973) and the unilocular bicarpellate ovary (Leroy, 1977, 1978). work the Winteraceae, also studied the of Bub- During my on I single specimen bia perrieri in existence. The late Capuron told me that he had tried to collect additional specimens but that he had not succeeded in doing so; according to him the type locality was completely deforested. In view of the scarcity of the material it was considered relevant to publish some additional notes without delay. MATERIAL AND METHODS I studied three ovaries of the type specimen (Perrier de la Bdthie 10158). One was cut longitudinally, slightly outside the plane of symmetry; another was cut and its half These drawn transversally upper again longitudinally. parts were (figs. 2 and 3) and then cleared according to Bailey & Nast (1943) (figs 5 and third boiled and then sectioned 6). The ovary was serially (fig. 4). OBSERVATIONS One of the ovaries was taken from a flowerbud of which the closed petals were 57 mm high. The diagram of this flowerbud is drawn in fig. 1. The 2 slightly ruptured calyx showed three putative original apices ± alternating with the three bracteoles at the base of the pedicel. The petals are all free. The ovary is its and the flattened, has a longitudinal groove on narrow sides, highest sta- mens are inserted adjoining its broadest sides. -
Reconstructing the Basal Angiosperm Phylogeny: Evaluating Information Content of Mitochondrial Genes
55 (4) • November 2006: 837–856 Qiu & al. • Basal angiosperm phylogeny Reconstructing the basal angiosperm phylogeny: evaluating information content of mitochondrial genes Yin-Long Qiu1, Libo Li, Tory A. Hendry, Ruiqi Li, David W. Taylor, Michael J. Issa, Alexander J. Ronen, Mona L. Vekaria & Adam M. White 1Department of Ecology & Evolutionary Biology, The University Herbarium, University of Michigan, Ann Arbor, Michigan 48109-1048, U.S.A. [email protected] (author for correspondence). Three mitochondrial (atp1, matR, nad5), four chloroplast (atpB, matK, rbcL, rpoC2), and one nuclear (18S) genes from 162 seed plants, representing all major lineages of gymnosperms and angiosperms, were analyzed together in a supermatrix or in various partitions using likelihood and parsimony methods. The results show that Amborella + Nymphaeales together constitute the first diverging lineage of angiosperms, and that the topology of Amborella alone being sister to all other angiosperms likely represents a local long branch attrac- tion artifact. The monophyly of magnoliids, as well as sister relationships between Magnoliales and Laurales, and between Canellales and Piperales, are all strongly supported. The sister relationship to eudicots of Ceratophyllum is not strongly supported by this study; instead a placement of the genus with Chloranthaceae receives moderate support in the mitochondrial gene analyses. Relationships among magnoliids, monocots, and eudicots remain unresolved. Direct comparisons of analytic results from several data partitions with or without RNA editing sites show that in multigene analyses, RNA editing has no effect on well supported rela- tionships, but minor effect on weakly supported ones. Finally, comparisons of results from separate analyses of mitochondrial and chloroplast genes demonstrate that mitochondrial genes, with overall slower rates of sub- stitution than chloroplast genes, are informative phylogenetic markers, and are particularly suitable for resolv- ing deep relationships. -
<I>Winteraceae</I>
Blumea 59, 2014: 155–162 www.ingentaconnect.com/content/nhn/blumea RESEARCH ARTICLE http://dx.doi.org/10.3767/000651914X686022 The Winteraceae of the Old World. VII. Zygogynum in the Solomon Islands (incl. Bougainville) W. Vink1 Key words Abstract A review of the character distribution in the Zygogynum representatives from the Solomon Islands (and Bougainville) shows a rather wide variability in ranges of numbers and sizes, often with distinct differences between Solomon Islands islands or altitudinal ranges. However, the morphology is rather uniform. The four species recognised by A.C. Smith Winteraceae had to be synonymised, but a new taxon deserved recognition. The name Bubbia is explained. Zygogynum Published on 19 December 2014 INTRODUCTION CHARACTERS AND THEIR VARIABILITY The first Zygogynum species described from the Solomon Is- Leaves lands is Bubbia haplopus B.L.Burtt (1936). In his monumental Except for size, the leaves are very uniform with the blade works on the Papuasian plants, Smith (1942) transferred this chartaceous, the midrib impressed above and prominent below. species from Bubbia to the other Van Tieghem genus, Belliolum, On the lower side of the blade the grey to white alveolar mate- and described three more species from this area. The materials rial covers only the stomata or unites these into small strings available to Smith were, however, very incomplete, and several or clusters; the stomata are also present over the secondary characters could not be established; next to leaf size, minor nerves, or less dense to lacking over the thickest parts of the differences had to be used to define these taxa. -
Ancistrocladaceae
Soltis et al—American Journal of Botany 98(4):704-730. 2011. – Data Supplement S2 – page 1 Soltis, Douglas E., Stephen A. Smith, Nico Cellinese, Kenneth J. Wurdack, David C. Tank, Samuel F. Brockington, Nancy F. Refulio-Rodriguez, Jay B. Walker, Michael J. Moore, Barbara S. Carlsward, Charles D. Bell, Maribeth Latvis, Sunny Crawley, Chelsea Black, Diaga Diouf, Zhenxiang Xi, Catherine A. Rushworth, Matthew A. Gitzendanner, Kenneth J. Sytsma, Yin-Long Qiu, Khidir W. Hilu, Charles C. Davis, Michael J. Sanderson, Reed S. Beaman, Richard G. Olmstead, Walter S. Judd, Michael J. Donoghue, and Pamela S. Soltis. Angiosperm phylogeny: 17 genes, 640 taxa. American Journal of Botany 98(4): 704-730. Appendix S2. The maximum likelihood majority-rule consensus from the 17-gene analysis shown as a phylogram with mtDNA included for Polyosma. Names of the orders and families follow APG III (2009); other names follow Cantino et al. (2007). Numbers above branches are bootstrap percentages. 67 Acalypha Spathiostemon 100 Ricinus 97 100 Dalechampia Lasiocroton 100 100 Conceveiba Homalanthus 96 Hura Euphorbia 88 Pimelodendron 100 Trigonostemon Euphorbiaceae Codiaeum (incl. Peraceae) 100 Croton Hevea Manihot 10083 Moultonianthus Suregada 98 81 Tetrorchidium Omphalea 100 Endospermum Neoscortechinia 100 98 Pera Clutia Pogonophora 99 Cespedesia Sauvagesia 99 Luxemburgia Ochna Ochnaceae 100 100 53 Quiina Touroulia Medusagyne Caryocar Caryocaraceae 100 Chrysobalanus 100 Atuna Chrysobalananaceae 100 100 Licania Hirtella 100 Euphronia Euphroniaceae 100 Dichapetalum 100 -
Notification of Access Arrangement for MP 41279, Mt Te Kuha
Attachment C Draft Terrestrial Ecology Report 106 VEGETATION AND FAUNA OF THE PROPOSED TE KUHA MINE SITE Prepared for Te Kuha Limited Partnership October 2013 EXECUTIVE SUMMARY The Te Kuha mining permit is located predominantly within the Westport Water Conservation Reserve (1,825 ha), which is a local purpose reserve administered by the Buller District Council. The coal deposit is situated outside the water catchment within an area of approximately 490 ha of Brunner Coal Measures vegetation approximately 5 km southwest of Mt Rochfort. Access would be required across conservation land to reach the coal resource. The Te Kuha site was recommended as an area for protection by the Protected Natural Areas Programme surveys in the 1990s on the basis that in the event it was removed from the local purpose reserve for any reason, addition to the public conservation estate would increase the level of protection of coal measures habitats which, although found elsewhere (principally in the Mt Rochfort Conservation Area), were considered inadequately protected overall. The proposal to create an access road and an opencast mine at the site would affect twelve different vegetation types to varying degrees. The habitats present at the proposed mine site are overwhelmingly indigenous and have a very high degree of intactness reflecting their lack of human disturbance. Previous surveys have shown that some trees in the area are more than 500 years old. Habitats affected by the proposed access road are less intact and include exotic pasture as well as regenerating shrubland and forest. Te Kuha is not part of the Department of Conservation’s Buller Coal Plateaux priority site and is unlikely to receive management for that reason. -
Phytochemistry and Biological Properties of Drimys Winteri JR Et G. Forster Var Chilensis (DC) A
BOLETIN LATINOAMERICANO Y DEL CARIBE DE PLANTAS MEDICINALES Y AROMÁTICAS © / ISSN 0717 7917 / www.blacpma.ms-editions.cl Revisión / Review Phytochemistry and biological properties of Drimys winteri JR et G. Forster var chilensis (DC) A. [Fitoquímica y propiedades biológicas de Drimys winteri JR et G. Forster var chilensis (DC) A.] Orlando Muñoz1, Jorge Tapia-Merino2, Wolf Nevermann, & Aurelio San-Martín3 1Departamento de Quimica, Facultad de Ciencias, Universidad de Chile, Ñuñoa, Santiago, Chile 2Departamento de Ciencias Químicas y Biológicas, Facultad de Salud, Universidad Bernardo OHiggins, Santiago, Chile 3Departamento de Ciencias y Recursos Naturales, Facultad de Ciencias, Universidad de Magallanes, Punta Arenas, Chile Abstract: Drimys winteri JR et G. Forster var chilensis (DC) A. is a tree native to central and southern Chile. Also it found in part of Argentina. It is abundant in wet swampy localities from sea level to an altitude of 1700 m. This tree is sacred for the Mapuche culture; it is used in folk medicine in such as Reviewed by: inflammatory and painful processes. Phytochemical studies have demonstrated that this plant contains Arnaldo Bandoni Universidad de Buenos Aires mainly sesquiterpenes of the drimane type, flavonoids, essential oils, phytosterols and some lignans. Argentina These drimanes have attracted interest because of their antifeedant, plant growth regulation, cytotoxic, antimicrobial and insecticidal properties. The objective of this review is to establish clearly the Ali Parlar phytochemistry and biological activity of Drimys winteri JR et G. Forster var chilensis (DC) A. Articles Adiyaman University based on other varieties are not considered. Turkey Keywords: Drimys winteri; Sesquiterpenes; Essential oils; Lignans; Flavonoids; Biological properties. -
Value Island Biodiversity It’S Our Life!
VALUE ISLAND BIODivERSITY It’s Our Life! Secretariat of the Pacific Regional Environment Programme 1 CONTENTS Introduction Introduction David Sheppard, Director SPREP 3 VALUE ISLAND BIODIVERSITY Campaign Launch Kosi Latu, Deputy Director SPREP 5 It’s Our Life! Pacific getting ready to meet new targets 6 Emerald of the Isles 7 David Sheppard, Director, SPREP Rare giant box crab 7 he Pacific islands region swung into action The hive of activity across the region culmi- Micronesia’s Go Local 9 T with determination to observe 2010 as the nated at the 10th Conference of Parties to the Convention on Biological Diversity (CBD International Year of Biodiversity (IYOB). COP10) in Nagoya, Japan. The region’s COP10 Climate Change and Invasive Species 10 communication strategy, The Pacific Voyage, The Biodiversity Bus 11 In 2009 following discussions with participants a flower, was used to convey the over-arch- highlighted the unique biodiversity of the Pa- at the Nature Conservation Roundtable held in ing message that we are all intertwined with cific islands and showcased our PYOB activities Pacific Ocean for your Children 12 Solomon Islands, a draft framework for imple- nature. to the world. The Pacific Voyage also served to menting the International Year of Biodiversity enable the Pacific islands to be heard during The slogan, Value Island Biodiversity – it’s our life, (IYOB) in the Pacific was circulated regionally negotiations and discussions as one voice. And Island Wear Biodiversity and Fashion 13 resounded well with many of SPREP’s Pacific for comment and input. Member countries and we were successful! Issues of importance to island members and was used extensively in territories then endorsed the framework at the the region – invasive species, climate change, Polynesia, Micronesia Challenged 18 correspondence and other publications, and 20th SPREP Meeting held in Apia in 2009 and coastal and marine biodiversity and financing on stickers and posters. -
Republic of Fiji: the State of the World's Forest Genetic Resources
REPUBLIC OF FIJI This country report is prepared as a contribution to the FAO publication, The Report on the State of the World’s Forest Genetic Resources. The content and the structure are in accordance with the recommendations and guidelines given by FAO in the document Guidelines for Preparation of Country Reports for the State of the World’s Forest Genetic Resources (2010). These guidelines set out recommendations for the objective, scope and structure of the country reports. Countries were requested to consider the current state of knowledge of forest genetic diversity, including: Between and within species diversity List of priority species; their roles and values and importance List of threatened/endangered species Threats, opportunities and challenges for the conservation, use and development of forest genetic resources These reports were submitted to FAO as official government documents. The report is presented on www. fao.org/documents as supportive and contextual information to be used in conjunction with other documentation on world forest genetic resources. The content and the views expressed in this report are the responsibility of the entity submitting the report to FAO. FAO may not be held responsible for the use which may be made of the information contained in this report. STATE OF THE FOREST GENETIC RESOURCES IN FIJI Department of Forests Ministry of Fisheries and Forests for The Republic of Fiji Islands and the Secreatriat of Pacific Communities (SPC) State of the Forest Genetic Resources in Fiji _____________________________________________________________________________________________________________________ Table of Contents Executve Summary ………………………………………………………………………………………………………………………..…….. 5 Introduction ………………………………………………………………………………………………………………………………..…….. 6 Chapter 1: The Current State of the Forest Genetic Resources in Fiji ………………………………………………………………….…….