Reconstructing the Basal Angiosperm Phylogeny: Evaluating Information Content of Mitochondrial Genes

Total Page:16

File Type:pdf, Size:1020Kb

Reconstructing the Basal Angiosperm Phylogeny: Evaluating Information Content of Mitochondrial Genes 55 (4) • November 2006: 837–856 Qiu & al. • Basal angiosperm phylogeny Reconstructing the basal angiosperm phylogeny: evaluating information content of mitochondrial genes Yin-Long Qiu1, Libo Li, Tory A. Hendry, Ruiqi Li, David W. Taylor, Michael J. Issa, Alexander J. Ronen, Mona L. Vekaria & Adam M. White 1Department of Ecology & Evolutionary Biology, The University Herbarium, University of Michigan, Ann Arbor, Michigan 48109-1048, U.S.A. [email protected] (author for correspondence). Three mitochondrial (atp1, matR, nad5), four chloroplast (atpB, matK, rbcL, rpoC2), and one nuclear (18S) genes from 162 seed plants, representing all major lineages of gymnosperms and angiosperms, were analyzed together in a supermatrix or in various partitions using likelihood and parsimony methods. The results show that Amborella + Nymphaeales together constitute the first diverging lineage of angiosperms, and that the topology of Amborella alone being sister to all other angiosperms likely represents a local long branch attrac- tion artifact. The monophyly of magnoliids, as well as sister relationships between Magnoliales and Laurales, and between Canellales and Piperales, are all strongly supported. The sister relationship to eudicots of Ceratophyllum is not strongly supported by this study; instead a placement of the genus with Chloranthaceae receives moderate support in the mitochondrial gene analyses. Relationships among magnoliids, monocots, and eudicots remain unresolved. Direct comparisons of analytic results from several data partitions with or without RNA editing sites show that in multigene analyses, RNA editing has no effect on well supported rela- tionships, but minor effect on weakly supported ones. Finally, comparisons of results from separate analyses of mitochondrial and chloroplast genes demonstrate that mitochondrial genes, with overall slower rates of sub- stitution than chloroplast genes, are informative phylogenetic markers, and are particularly suitable for resolv- ing deep relationships. KEYWORDS: Amborella, basal angiosperms, magnoliids, mitochondrial genes, Nymphaeales, RNA editing. lowed by Austrobaileyales (Mathews & Donoghue, 1999, INTRODUCTION 2000; Parkinson & al., 1999; Qiu & al., 1999, 2000, 2001, The basal angiosperms have been subject to some of 2005; P. Soltis & al., 1999; Barkman & al., 2000; Graham the most intensive phylogenetic analyses ever conducted & Olmstead, 2000; D. Soltis & al., 2000; Zanis & al., on any group of organisms using numerous methods on a 2002; Borsch & al., 2003, 2005; Hilu & al., 2003; Aoki & large number of molecular markers over the last fifteen al., 2004; Kim & al., 2004; Stefanovic & al., 2004; years (Martin & Dowd, 1991; Hamby & Zimmer, 1992; Goremykin & al., 2005; Leebens-Mack & al., 2005; Chase & al., 1993; Qiu & al., 1993, 1999, 2000, 2001, Löhne & Borsch, 2005). The remaining angiosperms 2005; D. Soltis & al., 1997, 2000; Hoot & al., 1999; (euangiosperms, cf. Qiu & al., 1999) are divided into five Mathews & Donoghue, 1999, 2000; Parkinson & al., lineages: Chloranthaceae, Ceratophyllum, monocots, 1999; Renner, 1999; P. Soltis & al., 1999; Barkman & al., magnoliids, and eudicots (Qiu & al., 1999, 2000, 2005; 2000; Graham & Olmstead, 2000; Savolainen & al., 2000; Zanis & al., 2002; Hilu & al., 2003). There is no strongly Nickrent & al., 2002; Zanis & al., 2002, 2003; Borsch & supported, generally agreed resolution on relationships al., 2003; Goremykin & al., 2003, 2005; Hilu & al., 2003; among these five lineages, except that Ceratophyllum has Sauquet & al., 2003; Aoki & al., 2004; Kim & al., 2004; been accepted to be sister to eudicots by The Angiosperm Stefanovic & al., 2004; Leebens-Mack & al., 2005; Löhne Phylogeny Group (2003). The magnoliids are composed & Borsch, 2005). As a result, this abominably mysterious of four well-defined taxa, Magnoliales, Laurales, group of plants are among the best known for their long- Canellales, and Piperales, which form two pairs of sister thought unknowable evolutionary history among many groups. The monophyly of magnoliids and relationships similarly difficult groups of organisms on the tree of life. among the four member lineages have received steady At present, the following consensus is emerging. increase of bootstrap support as more data are added in Amborella or Amborella + Nymphaeales represent the the analysis (Mathews & Donoghue, 1999; Qiu & al., earliest-diverging lineage of extant angiosperms, fol- 1999, 2005; Zanis & al., 2002). 837 Qiu & al. • Basal angiosperm phylogeny 55 (4) • November 2006: 837–856 Exploration in several dimensions have been pursued tion rates can yield less homoplasious characters and in this exemplar case of phylogenetic reconstruction. intron presence/absence can be used as informative char- Increasing taxon sampling represents one of the earliest acters), while others may not be as problematic as previ- and main assaults on this long-standing problem (Chase ously thought, such as the lineage-specific rate hetero- & al., 1993; D. Soltis & al., 1997, 2000; Savolainen & al., geneity, horizontal gene transfer, and RNA editing, as 2000; Hilu & al., 2003). Selection of markers from dif- long as the care is taken to deal with these problems. A ferent genomes, encoding different functions, and evolv- large number of studies that have employed mitochondri- ing at different rates was also attempted right from the al genes and introns for phylogenetic reconstruction beginning and received a major boost after automated across land plants support this evaluation (Hiesel & al., sequencing became available (Martin & Dowd, 1991; 1994; Malek & al., 1996; J. Davis & al., 1998, 2004; Qiu Hamby & Zimmer, 1992; Qiu & al., 1993, 1999, 2005; D. & al., 1998, 1999, 2005, in press; Beckert & al., 1999, Soltis & al., 1997; Mathews & Donoghue, 1999; Graham 2001; Duff & Nickrent, 1999; Vangerow & al., 1999; & Olmstead, 2000; Savolainen & al., 2000; Borsch & al., Barkman & al., 2000, 2004; Bowe & al., 2000; Chaw & 2003, 2005; Hilu & al., 2003; Aoki & al., 2004; Kim & al., 2000; Wang & al., 2000; Gugerli & al., 2001; al., 2004; Löhne & Borsch, 2005). Relative merits of Anderberg & al., 2002; Nickrent & al., 2002; Sanjur & character versus taxon sampling on influencing tree al., 2002; Cox & al., 2004; Dombrovska & Qiu, 2004; topology stability have been investigated in several recent Qiu & Palmer, 2004; Groth-Malonek & al., 2005; Guo & studies (Graham & Olmstead, 2000; Goremykin & al., Ge, 2005; Wikström & Pryer, 2005). At a time when 2003, 2005; Stefanovic & al., 2004, Leebens-Mack & al., many problems in the angiosperm and land plant phylo- 2005). Finally, experimentation with different methods of genies are still unresolved and suitable markers from the data analysis (e.g., constraint analysis/alternative topolo- nuclear genome that can be used on wide taxonomic gy testing, noise reduction, compartmentalization, and scales without the problem of paralogy are limited in synapomorphic sites identification) and rooting tech- number, the mitochondrial genome remains the only other niques (e.g., duplicated gene rooting and random viable choice and a fertile ground for exploration outside sequence outgroup rooting), besides regular application the chloroplast genome. Furthermore, for many deep rela- of parsimony, likelihood, and distance methods as well as tionships in the angiosperm and land plant phylogenies, bootstrapping, jackknifing, and decay analyses, have because of their controversial nature and volatility, it is been performed to specifically address the rooting issue imperative to use information from a different genome to and robustness of parts of the internal topology (Qiu & evaluate independently the results that are derived largely al., 1993, 2000, 2001, 2005; Mathews & Donoghue, from chloroplast genes (Qiu & Palmer, 1999). Therefore, 1999; Parkinson & al., 1999; Barkman & al., 2000; Zanis the potential for mining historical signals from the mito- & al., 2002, 2003). These efforts have undoubtedly con- chondrial genome to understand the evolutionary history tributed to the progress on our understanding of relation- of plants deserves a serious and careful assessment. ships among basal angiosperms. To solve remaining prob- In this study, we analyze eight mitochondrial, chloro- lems, more data sources and analytic methods need to be plast, and nuclear genes from all major lineages of gym- explored. nosperms and angiosperms using both maximum likeli- Among three genomes within the plant cell, the mito- hood and maximum parsimony methods, aiming to chondrial genome was the last to be utilized for phyloge- achieve two goals. We first want to use these data (1) to netic reconstruction. This situation might have been determine whether the earliest-diverging lineages of caused by the perception that several features of mito- extant angiosperms consists of Amborella alone or chondrial genes were undesirable. These include low sub- Amborella + Nymphaeales, (2) to evaluate the monophy- stitution rates, the dramatic lineage-specific rate hetero- ly of magnoliids and sister relationships between geneity, abundant occurrence of introns (many of which Magnoliales and Laurales, and between Canellales and are trans-spliced, making PCR difficult), idiosyncratic Piperales, and (3) to resolve relationships among RNA editing patterns across genes and lineages, some- Chloranthaceae, Ceratophyllum, magnoliids, monocots, times frequent losses from the genome, and horizontal and eudicots. We then want to use this case of recon- transfers
Recommended publications
  • An Environmental History of the Middle Rio Grande Basin
    United States Department of From the Rio to the Sierra: Agriculture Forest Service An Environmental History of Rocky Mountain Research Station the Middle Rio Grande Basin Fort Collins, Colorado 80526 General Technical Report RMRS-GTR-5 Dan Scurlock i Scurlock, Dan. 1998. From the rio to the sierra: An environmental history of the Middle Rio Grande Basin. General Technical Report RMRS-GTR-5. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 440 p. Abstract Various human groups have greatly affected the processes and evolution of Middle Rio Grande Basin ecosystems, especially riparian zones, from A.D. 1540 to the present. Overgrazing, clear-cutting, irrigation farming, fire suppression, intensive hunting, and introduction of exotic plants have combined with droughts and floods to bring about environmental and associated cultural changes in the Basin. As a result of these changes, public laws were passed and agencies created to rectify or mitigate various environmental problems in the region. Although restoration and remedial programs have improved the overall “health” of Basin ecosystems, most old and new environmental problems persist. Keywords: environmental impact, environmental history, historic climate, historic fauna, historic flora, Rio Grande Publisher’s Note The opinions and recommendations expressed in this report are those of the author and do not necessarily reflect the views of the USDA Forest Service. Mention of trade names does not constitute endorsement or recommendation for use by the Federal Government. The author withheld diacritical marks from the Spanish words in text for consistency with English punctuation. Publisher Rocky Mountain Research Station Fort Collins, Colorado May 1998 You may order additional copies of this publication by sending your mailing information in label form through one of the following media.
    [Show full text]
  • The Vascular Plants of Massachusetts
    The Vascular Plants of Massachusetts: The Vascular Plants of Massachusetts: A County Checklist • First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Somers Bruce Sorrie and Paul Connolly, Bryan Cullina, Melissa Dow Revision • First A County Checklist Plants of Massachusetts: Vascular The A County Checklist First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Massachusetts Natural Heritage & Endangered Species Program Massachusetts Division of Fisheries and Wildlife Natural Heritage & Endangered Species Program The Natural Heritage & Endangered Species Program (NHESP), part of the Massachusetts Division of Fisheries and Wildlife, is one of the programs forming the Natural Heritage network. NHESP is responsible for the conservation and protection of hundreds of species that are not hunted, fished, trapped, or commercially harvested in the state. The Program's highest priority is protecting the 176 species of vertebrate and invertebrate animals and 259 species of native plants that are officially listed as Endangered, Threatened or of Special Concern in Massachusetts. Endangered species conservation in Massachusetts depends on you! A major source of funding for the protection of rare and endangered species comes from voluntary donations on state income tax forms. Contributions go to the Natural Heritage & Endangered Species Fund, which provides a portion of the operating budget for the Natural Heritage & Endangered Species Program. NHESP protects rare species through biological inventory,
    [Show full text]
  • Appendix Color Plates of Solanales Species
    Appendix Color Plates of Solanales Species The first half of the color plates (Plates 1–8) shows a selection of phytochemically prominent solanaceous species, the second half (Plates 9–16) a selection of convol- vulaceous counterparts. The scientific name of the species in bold (for authorities see text and tables) may be followed (in brackets) by a frequently used though invalid synonym and/or a common name if existent. The next information refers to the habitus, origin/natural distribution, and – if applicable – cultivation. If more than one photograph is shown for a certain species there will be explanations for each of them. Finally, section numbers of the phytochemical Chapters 3–8 are given, where the respective species are discussed. The individually combined occurrence of sec- ondary metabolites from different structural classes characterizes every species. However, it has to be remembered that a small number of citations does not neces- sarily indicate a poorer secondary metabolism in a respective species compared with others; this may just be due to less studies being carried out. Solanaceae Plate 1a Anthocercis littorea (yellow tailflower): erect or rarely sprawling shrub (to 3 m); W- and SW-Australia; Sects. 3.1 / 3.4 Plate 1b, c Atropa belladonna (deadly nightshade): erect herbaceous perennial plant (to 1.5 m); Europe to central Asia (naturalized: N-USA; cultivated as a medicinal plant); b fruiting twig; c flowers, unripe (green) and ripe (black) berries; Sects. 3.1 / 3.3.2 / 3.4 / 3.5 / 6.5.2 / 7.5.1 / 7.7.2 / 7.7.4.3 Plate 1d Brugmansia versicolor (angel’s trumpet): shrub or small tree (to 5 m); tropical parts of Ecuador west of the Andes (cultivated as an ornamental in tropical and subtropical regions); Sect.
    [Show full text]
  • Medicinal Uses and Biological Activities of Argyreia Speciosa
    Indian Journal of Natural Products and Resources Vol. 2(3), September 2011, pp. 286-291 Medicinal uses and biological activities of Argyreia speciosa Sweet (Hawaiian Baby Woodrose) An Overview Ancy Joseph*, Samuel Mathew, Baby P Skaria and E C Sheeja Aromatic and Medicinal Plants Research Station (Kerala Agricultural University), Odakkali, Asamannoor Post-683 549 Ernakulam District, Kerala, India Received 2 June 2010; Accepted 16 November 2010 Argyreia speciosa Sweet (Family Convolvulaceae) is an important ‘rasayana’ herb used extensively as an adaptogen in the Ayurvedic system of medicine. It is commonly known as Hawaiian Baby Woodrose, Elephant creeper or Woolly morning glow in English and in Sanskrit, it is called as Vridhadaraka meaning ‘anti-aging’. It is a large climber growing throughout India. It has been assigned various medicinal properties by Ayurvedic Materia Medica. The root is regarded as an alternative tonic and used in cases of rheumatism and neurological disorders. A wide range of phytochemicals has been isolated from the plant and possesses various traditional and tribal uses for cure of human ailments. Pharmacological activities such as anti-oxidant, anti-inflammatory, anti-rheumatic, immunomodulatory, adaptogenic and hepatoprotective have also been reported. Adverse side effects have made the use of many modern medicines limited and it is worthwhile to explore the possibility of this drug for the treatment of liver, rhueumatic and neurological complaints. This article reviews studies on medicinal uses on this important herb. Keywords: Argyreia speciosa, Argyreia nervosa, Antimicrobial, Antioxidant, Adaptogenic, Elephant creeper, Hawaiian Baby Woodrose; Immunomodulation, Woolly morning glow, Vridhadaraka. IPC code; Int. cl. (2011.01) A61K 36/39 Introduction with white pubescence.
    [Show full text]
  • Well-Known Plants in Each Angiosperm Order
    Well-known plants in each angiosperm order This list is generally from least evolved (most ancient) to most evolved (most modern). (I’m not sure if this applies for Eudicots; I’m listing them in the same order as APG II.) The first few plants are mostly primitive pond and aquarium plants. Next is Illicium (anise tree) from Austrobaileyales, then the magnoliids (Canellales thru Piperales), then monocots (Acorales through Zingiberales), and finally eudicots (Buxales through Dipsacales). The plants before the eudicots in this list are considered basal angiosperms. This list focuses only on angiosperms and does not look at earlier plants such as mosses, ferns, and conifers. Basal angiosperms – mostly aquatic plants Unplaced in order, placed in Amborellaceae family • Amborella trichopoda – one of the most ancient flowering plants Unplaced in order, placed in Nymphaeaceae family • Water lily • Cabomba (fanwort) • Brasenia (watershield) Ceratophyllales • Hornwort Austrobaileyales • Illicium (anise tree, star anise) Basal angiosperms - magnoliids Canellales • Drimys (winter's bark) • Tasmanian pepper Laurales • Bay laurel • Cinnamon • Avocado • Sassafras • Camphor tree • Calycanthus (sweetshrub, spicebush) • Lindera (spicebush, Benjamin bush) Magnoliales • Custard-apple • Pawpaw • guanábana (soursop) • Sugar-apple or sweetsop • Cherimoya • Magnolia • Tuliptree • Michelia • Nutmeg • Clove Piperales • Black pepper • Kava • Lizard’s tail • Aristolochia (birthwort, pipevine, Dutchman's pipe) • Asarum (wild ginger) Basal angiosperms - monocots Acorales
    [Show full text]
  • Volume 12 - Number 1 March 2005
    Utah Lepidopterist Bulletin of the Utah Lepidopterists' Society Volume 12 - Number 1 March 2005 Extreme Southwest Utah Could See Iridescent Greenish-blue Flashes A Little Bit More Frequently by Col. Clyde F. Gillette Battus philenor (blue pipevine swallowtail) flies in the southern two- thirds of Arizona; in the Grand Canyon (especially at such places as Phantom Ranch 8/25 and Indian Gardens 12/38) and at its rims [(N) 23/75 and (S) 21/69]; in the low valleys of Clark Co., Nevada; and infrequently along the Meadow Valley Wash 7/23 which parallels the Utah/Nevada border in Lincoln Co., Nevada. Since this beautiful butterfly occasionally flies to the west, southwest, and south of Utah's southwest corner, one might expect it to turn up now and then in Utah's Mojave Desert physiographic subsection of the Basin and Range province on the lower southwest slopes of the Beaver Dam Mountains, Battus philenor Blue Pipevine Swallowtail Photo courtesy of Randy L. Emmitt www.rlephoto.com or sporadically fly up the "Dixie Corridor" along the lower Virgin River Valley. Even though both of these Lower Sonoran life zone areas reasons why philenor is not a habitual pipevine species.) Arizona's of Utah offer potentially suitable, resident of Utah's Dixie. But I think interesting plant is Aristolochia "nearby" living conditions for Bat. there is basically only one, and that is watsonii (indianroot pipevine), which phi. philenor, such movements have a complete lack of its larval has alternate leaves shaped like a not often taken place. Or, more foodplants in the region.
    [Show full text]
  • Human-Mediated Introductions of Australian Acacias
    Diversity and Distributions, (Diversity Distrib.) (2011) 17, 771–787 S EDITORIAL Human-mediated introductions of PECIAL ISSUE Australian acacias – a global experiment in biogeography 1 2 1 3,4 David M. Richardson *, Jane Carruthers , Cang Hui , Fiona A. C. Impson , :H Joseph T. Miller5, Mark P. Robertson1,6, Mathieu Rouget7, Johannes J. Le Roux1 and John R. U. Wilson1,8 UMAN 1 Centre for Invasion Biology, Department of ABSTRACT - Botany and Zoology, Stellenbosch University, MEDIATED INTRODUCTIONS OF Aim Australian acacias (1012 recognized species native to Australia, which were Matieland 7602, South Africa, 2Department of History, University of South Africa, PO Box previously grouped in Acacia subgenus Phyllodineae) have been moved extensively 392, Unisa 0003, South Africa, 3Department around the world by humans over the past 250 years. This has created the of Zoology, University of Cape Town, opportunity to explore how evolutionary, ecological, historical and sociological Rondebosch 7701, South Africa, 4Plant factors interact to affect the distribution, usage, invasiveness and perceptions of a Protection Research Institute, Private Bag globally important group of plants. This editorial provides the background for the X5017, Stellenbosch 7599, South Africa, 20 papers in this special issue of Diversity and Distributions that focusses on the 5Centre for Australian National Biodiversity global cross-disciplinary experiment of introduced Australian acacias. A Journal of Conservation Biogeography Research, CSIRO Plant Industry, GPO Box Location Australia and global. 1600, Canberra, ACT, Australia, 6Department of Zoology and Entomology, University of Methods The papers of the special issue are discussed in the context of a unified Pretoria, Pretoria 0002, South Africa, framework for biological invasions.
    [Show full text]
  • Outline of Angiosperm Phylogeny
    Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese
    [Show full text]
  • Phylogenetic Definitions in the Pre-Phylocode Era; Implications for Naming Clades Under the Phylocode
    PaleoBios 27(1):1–6, April 30, 2007 © 2006 University of California Museum of Paleontology Phylogenetic definitions in the pre-PhyloCode era; implications for naming clades under the PhyloCode MiChAel P. TAylor Palaeobiology research Group, School of earth and environmental Sciences, University of Portsmouth, Portsmouth Po1 3Ql, UK; [email protected] The last twenty years of work on phylogenetic nomenclature have given rise to many names and definitions that are now considered suboptimal. in formulating permanent definitions under the PhyloCode when it is implemented, it will be necessary to evaluate the corpus of existing names and make judgements about which to establish and which to discard. This is not straightforward, because early definitions are often inexplicit and ambiguous, generally do not meet the requirements of the PhyloCode, and in some cases may not be easily recognizable as phylogenetic definitions at all. recognition of synonyms is also complicated by the use of different kinds of specifiers (species, specimens, clades, genera, suprageneric rank-based names, and vernacular names) and by definitions whose content changes under different phylogenetic hypotheses. in light of these difficulties, five principles are suggested to guide the interpreta- tion of pre-PhyloCode clade-names and to inform the process of naming clades under the PhyloCode: (1) do not recognize “accidental” definitions; (2) malformed definitions should be interpreted according to the intention of the author when and where this is obvious; (3) apomorphy-based and other definitions must be recognized as well as node-based and stem-based definitions; (4) definitions using any kind of specifier taxon should be recognized; and (5) priority of synonyms and homonyms should guide but not prescribe.
    [Show full text]
  • Complete Chloroplast Genomes Shed Light on Phylogenetic
    www.nature.com/scientificreports OPEN Complete chloroplast genomes shed light on phylogenetic relationships, divergence time, and biogeography of Allioideae (Amaryllidaceae) Ju Namgung1,4, Hoang Dang Khoa Do1,2,4, Changkyun Kim1, Hyeok Jae Choi3 & Joo‑Hwan Kim1* Allioideae includes economically important bulb crops such as garlic, onion, leeks, and some ornamental plants in Amaryllidaceae. Here, we reported the complete chloroplast genome (cpDNA) sequences of 17 species of Allioideae, fve of Amaryllidoideae, and one of Agapanthoideae. These cpDNA sequences represent 80 protein‑coding, 30 tRNA, and four rRNA genes, and range from 151,808 to 159,998 bp in length. Loss and pseudogenization of multiple genes (i.e., rps2, infA, and rpl22) appear to have occurred multiple times during the evolution of Alloideae. Additionally, eight mutation hotspots, including rps15-ycf1, rps16-trnQ-UUG, petG-trnW-CCA , psbA upstream, rpl32- trnL-UAG , ycf1, rpl22, matK, and ndhF, were identifed in the studied Allium species. Additionally, we present the frst phylogenomic analysis among the four tribes of Allioideae based on 74 cpDNA coding regions of 21 species of Allioideae, fve species of Amaryllidoideae, one species of Agapanthoideae, and fve species representing selected members of Asparagales. Our molecular phylogenomic results strongly support the monophyly of Allioideae, which is sister to Amaryllioideae. Within Allioideae, Tulbaghieae was sister to Gilliesieae‑Leucocoryneae whereas Allieae was sister to the clade of Tulbaghieae‑ Gilliesieae‑Leucocoryneae. Molecular dating analyses revealed the crown age of Allioideae in the Eocene (40.1 mya) followed by diferentiation of Allieae in the early Miocene (21.3 mya). The split of Gilliesieae from Leucocoryneae was estimated at 16.5 mya.
    [Show full text]
  • Diversity-Dependent Cladogenesis Throughout Western Mexico: Evolutionary Biogeography of Rattlesnakes (Viperidae: Crotalinae: Crotalus and Sistrurus)
    City University of New York (CUNY) CUNY Academic Works Publications and Research New York City College of Technology 2016 Diversity-dependent cladogenesis throughout western Mexico: Evolutionary biogeography of rattlesnakes (Viperidae: Crotalinae: Crotalus and Sistrurus) Christopher Blair CUNY New York City College of Technology Santiago Sánchez-Ramírez University of Toronto How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/ny_pubs/344 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] 1Blair, C., Sánchez-Ramírez, S., 2016. Diversity-dependent cladogenesis throughout 2 western Mexico: Evolutionary biogeography of rattlesnakes (Viperidae: Crotalinae: 3 Crotalus and Sistrurus ). Molecular Phylogenetics and Evolution 97, 145–154. 4 https://doi.org/10.1016/j.ympev.2015.12.020. © 2016. This manuscript version is made 5 available under the CC-BY-NC-ND 4.0 license. 6 7 8 Diversity-dependent cladogenesis throughout western Mexico: evolutionary 9 biogeography of rattlesnakes (Viperidae: Crotalinae: Crotalus and Sistrurus) 10 11 12 CHRISTOPHER BLAIR1*, SANTIAGO SÁNCHEZ-RAMÍREZ2,3,4 13 14 15 1Department of Biological Sciences, New York City College of Technology, Biology PhD 16 Program, Graduate Center, The City University of New York, 300 Jay Street, Brooklyn, 17 NY 11201, USA. 18 2Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks 19 Street, Toronto, ON, M5S 3B2, Canada. 20 3Department of Natural History, Royal Ontario Museum, 100 Queen’s Park, Toronto, 21 ON, M5S 2C6, Canada. 22 4Present address: Environmental Genomics Group, Max Planck Institute for 23 Evolutionary Biology, August-Thienemann-Str.
    [Show full text]
  • Bio 308-Course Guide
    COURSE GUIDE BIO 308 BIOGEOGRAPHY Course Team Dr. Kelechi L. Njoku (Course Developer/Writer) Professor A. Adebanjo (Programme Leader)- NOUN Abiodun E. Adams (Course Coordinator)-NOUN NATIONAL OPEN UNIVERSITY OF NIGERIA BIO 308 COURSE GUIDE National Open University of Nigeria Headquarters 14/16 Ahmadu Bello Way Victoria Island Lagos Abuja Office No. 5 Dar es Salaam Street Off Aminu Kano Crescent Wuse II, Abuja e-mail: [email protected] URL: www.nou.edu.ng Published by National Open University of Nigeria Printed 2013 ISBN: 978-058-434-X All Rights Reserved Printed by: ii BIO 308 COURSE GUIDE CONTENTS PAGE Introduction ……………………………………......................... iv What you will Learn from this Course …………………............ iv Course Aims ……………………………………………............ iv Course Objectives …………………………………………....... iv Working through this Course …………………………….......... v Course Materials ………………………………………….......... v Study Units ………………………………………………......... v Textbooks and References ………………………………........... vi Assessment ……………………………………………….......... vi End of Course Examination and Grading..................................... vi Course Marking Scheme................................................................ vii Presentation Schedule.................................................................... vii Tutor-Marked Assignment ……………………………….......... vii Tutors and Tutorials....................................................................... viii iii BIO 308 COURSE GUIDE INTRODUCTION BIO 308: Biogeography is a one-semester, 2 credit- hour course in Biology. It is a 300 level, second semester undergraduate course offered to students admitted in the School of Science and Technology, School of Education who are offering Biology or related programmes. The course guide tells you briefly what the course is all about, what course materials you will be using and how you can work your way through these materials. It gives you some guidance on your Tutor- Marked Assignments. There are Self-Assessment Exercises within the body of a unit and/or at the end of each unit.
    [Show full text]