Volume 12 - Number 1 March 2005

Total Page:16

File Type:pdf, Size:1020Kb

Volume 12 - Number 1 March 2005 Utah Lepidopterist Bulletin of the Utah Lepidopterists' Society Volume 12 - Number 1 March 2005 Extreme Southwest Utah Could See Iridescent Greenish-blue Flashes A Little Bit More Frequently by Col. Clyde F. Gillette Battus philenor (blue pipevine swallowtail) flies in the southern two- thirds of Arizona; in the Grand Canyon (especially at such places as Phantom Ranch 8/25 and Indian Gardens 12/38) and at its rims [(N) 23/75 and (S) 21/69]; in the low valleys of Clark Co., Nevada; and infrequently along the Meadow Valley Wash 7/23 which parallels the Utah/Nevada border in Lincoln Co., Nevada. Since this beautiful butterfly occasionally flies to the west, southwest, and south of Utah's southwest corner, one might expect it to turn up now and then in Utah's Mojave Desert physiographic subsection of the Basin and Range province on the lower southwest slopes of the Beaver Dam Mountains, Battus philenor Blue Pipevine Swallowtail Photo courtesy of Randy L. Emmitt www.rlephoto.com or sporadically fly up the "Dixie Corridor" along the lower Virgin River Valley. Even though both of these Lower Sonoran life zone areas reasons why philenor is not a habitual pipevine species.) Arizona's of Utah offer potentially suitable, resident of Utah's Dixie. But I think interesting plant is Aristolochia "nearby" living conditions for Bat. there is basically only one, and that is watsonii (indianroot pipevine), which phi. philenor, such movements have a complete lack of its larval has alternate leaves shaped like a not often taken place. Or, more foodplants in the region. slightly curved, long-pointed accurately, there has been only arrowhead, and has a thick root The blue pipevine swallowtail minimal proof that such sporadic, supposedly used by Indians and white absolutely requires Aristolochiaceae transient probing has occurred. settlers as a remedy for snake bites. (pipevine family) plants for its larval Presently, there are only two reliable This plant is the larval foodplant (LF) foodplants, and there are no known records of proof that Bat. phi. for philenor in the greater Southwest occurrences of native pipevine in philenor has been taken in Utah [first wherever they occur together. Utah. Cultivation of pipevines as established by Kilian Roever 2 May ornamentals in Utah is practically Aristolochia californica (california 1981, with a follow up record by nonexistent. Even in Arizona where pipevine/california dutchmans pipe) is seven year old (at the time) Scott W. Bat. philenor is fairly prevalent, there the LF for Bat. phi. hirsuta in the Wardrop 30 June 1988. Both records is only one indigenous species of great Central Valley of California, as were of males.]. There could be many pipevine. (In Texas, there are several proven by Emily C. Dial and myself in Placer Co., California June 1979. places as the Lytle Ranch Nature corner of Arizona. But, that is Aristolochia macrophylla (dutchmans Preserve (along the Beaver Dam usually where all the serious trouble pipevine) is often used as an Wash, Washington Co., Utah) and at comes from in those cases which go introduced ornamental in areas where the old Beaver Dam Lodge area south wrong. The full biological effects of it does not occur naturally, and of the Utah/Arizona line and new introductions are often not philenor takes advantage of this Littlefield, Mohave Co., Arizona, that recognized at the outset. Therefore, species and other pipevine Battus philenor would be able to pipevine-plant introductions may not introductions in some instances. maintain viable populations of itself be so completely innocuous as I in Utah. Local garden clubs could believe they are. Nevertheless, I am in An interesting side note is the help in the establishment of the favor of the purposeful introduction meaning of the generic plant name plants. Hopefully, these adventive of pipevines into southwest Utah. Aristolochia. It is Greek derived pipevines would be able to survive in Beyond that, I would not personally from: aristos-best + locheia- the more mild "Dixie" winters. It bring in ova, larvae, or gravid females, childbirth, named for its legendary would be necessary, of course, to but I would be most pleased if these effectiveness in aiding human caution participating gardeners wonderful butterflies were able to childbirth. Aristolochia is one of ten against spraying the plants or make it on their own. It would be genera of the mostly tropical squashing the black and red larvae greatly satisfying to more frequently Aristolochiaceae (pipevine/birthwort (which some people incorrectly and see their iridescent greenish-blue family) containing approximately 600 annoyingly call "worms") with their flashes throughout the southwestern species in both the Eastern and prominent 9 mm pair of anterior corner of Utah. Western hemispheres, nearly 500 of filaments. For promoting repeated which are in Aristolochia. Definitions: life cycles of this very beautiful Aristolochiaceae is quite an isolated indigenous - [L. indigena-native] native species greenish-blue, tailed pipevine family of plants, not very closely originating, developing, or living naturally in a butterfly would be one of the primary particular region or environment. (Indigenous is related to any other family of dicots. reasons for growing the pipevines in nearly synonymous with endemic derived from Its nearest relatives are probably in the Greek word endmia.) the first place. the complex of orders Magnoliales adventive - nonnative, inadvertent or purposeful and Ranunculales. A curious feature All of the three Aristolochia species introductions of species from other places which of Aristolochiaceae is that its floral mentioned - watsonii, californica and have not become fully naturalized. parts are trimerous (occurring in macrophylla would be suitable for threes or multiples of threes), which is transplant into southwestern Utah. Battus philenor hirsuta a common feature of the class With Ari. californica, however, care Larvae Are Very Cannibalistic Monocotyledoneae (monocots) rather must be taken not to bring in the early In June 1979, when Emily C. Dial and than the Dicotyledoneae (dicots) of stages of Bat. phi. hirsuta when Bat. I discovered Bat. phi. hirsuta larvae which it is a part. Many bizarre or phi. philenor would be the subspecies crawling all over Ari. californica exotic species of this family are which might take hold naturally. This near Roseville, ½ Placer Co., cultivated as greenhouse curiosities. brings up the important issue of California, we brought back a good The showy tropical Ari. grandiflora complete biological naturalism vs. number of them to Salt Lake City for (pelicanflower pipevine), for example, biological intervention by human rearing. Unfortunately, we has flowers with diameters of 51 beings. Nearly everyone agrees that underestimated the voracity of our cm/20 in which have a tail-like there have been numerous cases of charges and by the time our rearing appendage 89 cm/ 35 in long! biological disasters which have neared completion, our refrigerated occurred by man's intervention, I have long conceived of a plan to LF stocks were precariously low. whether unintended or purposeful. encourage and aid people in Utah's Most of our potted plants took hold The direct cause of some of these Dixie to cultivate various species of and were growing, but the last larvae biological disasters is the introduction Aristolochia in their gardens. (I once devoured the new tender leaves before of new species of viruses, bacteria, gathered seeds of a species of the leaves could grow to a fourth of plants and animals into new regions Aristolochia from Guadalupe Co., their normal size. Then the ravenous or areas where they had not existed Texas for the purpose of transplanting larvae ate the stems. When the stems previously. them into Utah.) The hope would be were consumed, to our surprise the that once enough growing pipevine My thinking in this situation is this: remaining rapacious larvae turned on plants are scattered around in such I cannot see any negative biological each other. It seemed the first by- potential sites as Leeds, La Verkin, effects from the introduction of chance bite taken out of a larva Hurricane, Washington, Gunlock, Aristolochia watsonii and automatically designated that larva as Santa Clara, St George 8/27, macrophylla plants into southwest a cannibalistic victim. The victim Bloomington, and especially such Utah and the extreme northwest see Larvae p 3 2 Fundamental differences between the California Sister and the Arizona Sister (Adelpha bredowi californica vs. Adelpha bredowi eulalia) by Todd L. Stout Adelpha bredowi californica Adelpha bredowi eulalia California Sister Arizona Sister Photo courtesy of Todd L. Stout Over the years, there have been illustrates that one has to be cautious Also, if you take a look at the ventral several butterfly enthusiasts who and not bring back more ova and/or hindwing cream-white bands of both have inquired about the differences larvae than can be supported by your taxa, the arizona sister clearly shows between the california sister and the readily available food supply.) We do a continuous slim blue line on the arizona sister. The purpose of this not know if these "hyper" Bat. phi. outer edge of the band. If you look at article is to discuss as well as to hirsuta larvae would occasionally be the same area of the california sister, illustrate their most basic, consistent cannibalistic in their natural setting, you will see that the same lavender differences. but we wouldn't be too surprised if it line is only intermittent. After proved to be so. These larvae were As shown on the images above, the studying long series of both taxa, these very active and strongly aggressive! It ventral hindwing of the california sister differences appear to be diagnostic as could well be they had a heightened (Adelpha bredowi californica) has a opposed to being individual variation. sense of LF shortage which made them lavender background as opposed to the noticeably more so.
Recommended publications
  • Survey for Special-Status Vascular Plant Species
    SURVEY FOR SPECIAL-STATUS VASCULAR PLANT SPECIES For the proposed Eagle Canyon Fish Passage Project Tehama and Shasta Counties, California Prepared for: Tehama Environmental Solutions 910 Main Street, Suite D Red Bluff, California 96080 Prepared by: Dittes & Guardino Consulting P.O. Box 6 Los Molinos, California 96055 (530) 384-1774 [email protected] Eagle Canyon Fish Passage Improvement Project - Botany Report Sept. 12, 2018 Prepared by: Dittes & Guardino Consulting 1 SURVEY FOR SPECIAL-STATUS VASCULAR PLANT SPECIES Eagle Canyon Fish Passage Project Shasta & Tehama Counties, California T30N, R1W, SE 1/4 Sec. 25, SE1/4 Sec. 24, NE ¼ Sec. 36 of the Shingletown 7.5’ USGS Topographic Quadrangle TABLE OF CONTENTS I. Executive Summary ................................................................................................................................................. 4 II. Introduction ............................................................................................................................................................ 4 III. Project Description ............................................................................................................................................... 4 IV. Location .................................................................................................................................................................. 5 V. Methods ..................................................................................................................................................................
    [Show full text]
  • The Vascular Plants of Massachusetts
    The Vascular Plants of Massachusetts: The Vascular Plants of Massachusetts: A County Checklist • First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Somers Bruce Sorrie and Paul Connolly, Bryan Cullina, Melissa Dow Revision • First A County Checklist Plants of Massachusetts: Vascular The A County Checklist First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Massachusetts Natural Heritage & Endangered Species Program Massachusetts Division of Fisheries and Wildlife Natural Heritage & Endangered Species Program The Natural Heritage & Endangered Species Program (NHESP), part of the Massachusetts Division of Fisheries and Wildlife, is one of the programs forming the Natural Heritage network. NHESP is responsible for the conservation and protection of hundreds of species that are not hunted, fished, trapped, or commercially harvested in the state. The Program's highest priority is protecting the 176 species of vertebrate and invertebrate animals and 259 species of native plants that are officially listed as Endangered, Threatened or of Special Concern in Massachusetts. Endangered species conservation in Massachusetts depends on you! A major source of funding for the protection of rare and endangered species comes from voluntary donations on state income tax forms. Contributions go to the Natural Heritage & Endangered Species Fund, which provides a portion of the operating budget for the Natural Heritage & Endangered Species Program. NHESP protects rare species through biological inventory,
    [Show full text]
  • Placer Vineyards Specific Plan Placer County, California
    Placer Vineyards Specific Plan Placer County, California Appendix B: Recommended Plant List Amended January 2015 Approved July 2007 R mECOm ENDED PlANt liSt APPENDIX B: RECOMMENDED PLANT LIST The list of plants below are recommended for use in Placer Vineyards within the design of its open space areas, landscape buffer corridors, streetscapes, gateways and parks. Plants similar to those listed in the table may also be substituted at the discretion of the County. OPEN SPACE Botanical Name Common Name Distribution Percentage Upland-Savanna TREES Aesculus californica California Buckeye 15% Quercus douglasii Blue Oak 15% Quercus lobata Valley Oak 40% Quercus wislizenii Interior Live Oak 15% Umbellularia california California Laurel 15% 100% SHRUBS Arctostaphylos sp Manzanita 15% Artemisia californica California Sagebrush 10% Ceanothus gloriosus Point Reyes Creeper 30% Ceanothus sp. California Lilac 10% Heteromeles arbutifolia Toyon 20% Rhamnus ilicifolia Hollyleaf Redberry 15% 100% GROUNDCOVER Bromus carinatus California Brome 15% Hordeum brachyantherum Meadow Barley 15% Muhlenbergia rigens Deergrass 40% Nassella pulchra Purple Needlegrass 15% Lupinus polyphyllus Blue Lupine 15% 100% January 2015 Placer Vineyards Specific Plan B-1 R mECOm ENDED PlANt liSt OPEN SPACE Botanical Name Common Name Distribution Percentage Riparian Woodland (2- to 5-year event creek flow) TREES Acer negundo Boxelder 5% Alnus rhombifolia White Alder 5% Fraxinus latifolia Oregon Ash 10% Populus fremontii Fremont Cottonwood 25% Quercus lobata Valley Oak 5% Salix gooddingii
    [Show full text]
  • – the 2020 Horticulture Guide –
    – THE 2020 HORTICULTURE GUIDE – THE 2020 BULB & PLANT MART IS BEING HELD ONLINE ONLY AT WWW.GCHOUSTON.ORG THE DEADLINE FOR ORDERING YOUR FAVORITE BULBS AND SELECTED PLANTS IS OCTOBER 5, 2020 PICK UP YOUR ORDER OCTOBER 16-17 AT SILVER STREET STUDIOS AT SAWYER YARDS, 2000 EDWARDS STREET FRIDAY, OCTOBER 16, 2020 SATURDAY, OCTOBER 17, 2020 9:00am - 5:00pm 9:00am - 2:00pm The 2020 Horticulture Guide was generously underwritten by DEAR FELLOW GARDENERS, I am excited to welcome you to The Garden Club of Houston’s 78th Annual Bulb and Plant Mart. Although this year has thrown many obstacles our way, we feel that the “show must go on.” In response to the COVID-19 situation, this year will look a little different. For the safety of our members and our customers, this year will be an online pre-order only sale. Our mission stays the same: to support our community’s green spaces, and to educate our community in the areas of gardening, horticulture, conservation, and related topics. GCH members serve as volunteers, and our profits from the Bulb Mart are given back to WELCOME the community in support of our mission. In the last fifteen years, we have given back over $3.5 million in grants to the community! The Garden Club of Houston’s first Plant Sale was held in 1942, on the steps of The Museum of Fine Arts, Houston, with plants dug from members’ gardens. Plants propagated from our own members’ yards will be available again this year as well as plants and bulbs sourced from near and far that are unique, interesting, and well suited for area gardens.
    [Show full text]
  • Aristolochic Acids Affect the Feeding Behaviour and Development of Battus Polydamas Archidamas Larvae (Lepidoptera: Papilionidae: Troidini)
    Eur. J. Entomol. 106: 357–361, 2009 http://www.eje.cz/scripts/viewabstract.php?abstract=1462 ISSN 1210-5759 (print), 1802-8829 (online) Aristolochic acids affect the feeding behaviour and development of Battus polydamas archidamas larvae (Lepidoptera: Papilionidae: Troidini) CARLOS F. PINTO1, ALEJANDRA J. TRONCOSO1, ALEJANDRO URZÚA2 and HERMANN M. NIEMEYER1* 1 Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile 2 Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Santiago-33, Chile Key words. Lepidoptera, Papilionidae, Battus polydamas archidamas, Aristolochia chilensis, aristolochic acid content, foraging substrate, larval development Abstract. The feeding behaviour of specialist butterflies may be affected by the mechanical and chemical characteristics of the tis- sues of their host-plants. Larvae of the butterfly, Battus polydamas archidamas feed only on Aristolochia chilensis, which contains aristolochic acids. We studied the oviposition pattern of adults and the foraging of larvae of B. polydamas archidamas over time in relation to variations in hardness of the substrate and concentration of aristolochic acids in different plant tissues. We further tested the effect of two artificial diets containing different concentrations of aristolochic acids on larval performance. B. polydamas archi- damas oviposited mostly on young leaves and the larvae fed on this tissue until the second instar. Third instar larvae fed also on mature leaves and fourth and higher instars fed also on stems. Young leaves are softer and contain higher concentrations of aris- tolochic acids than mature leaves, and stems are both harder and contain a high concentration of aristolochic acids. Larvae reared on artificial diets containing a high concentration of aristolochic acids suffered less mortality and were heavier than those reared on a diet with a lower concentration of aristolochic acids, which suggests they are phagostimulatory.
    [Show full text]
  • Campbell Et Al. 2020 Peerj.Pdf
    A novel curation system to facilitate data integration across regional citizen science survey programs Dana L. Campbell1, Anne E. Thessen2,3 and Leslie Ries4 1 Division of Biological Sciences, School of STEM, University of Washington, Bothell, WA, USA 2 The Ronin Institute for Independent Scholarship, Montclair, NJ, USA 3 Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, USA 4 Department of Biology, Georgetown University, Washington, DC, USA ABSTRACT Integrative modeling methods can now enable macrosystem-level understandings of biodiversity patterns, such as range changes resulting from shifts in climate or land use, by aggregating species-level data across multiple monitoring sources. This requires ensuring that taxon interpretations match up across different sources. While encouraging checklist standardization is certainly an option, coercing programs to change species lists they have used consistently for decades is rarely successful. Here we demonstrate a novel approach for tracking equivalent names and concepts, applied to a network of 10 regional programs that use the same protocols (so-called “Pollard walks”) to monitor butterflies across America north of Mexico. Our system involves, for each monitoring program, associating the taxonomic authority (in this case one of three North American butterfly fauna treatments: Pelham, 2014; North American Butterfly Association, Inc., 2016; Opler & Warren, 2003) that shares the most similar overall taxonomic interpretation to the program’s working species list. This allows us to define each term on each program’s list in the context of the appropriate authority’s species concept and curate the term alongside its authoritative concept. We then aligned the names representing equivalent taxonomic Submitted 30 July 2019 concepts among the three authorities.
    [Show full text]
  • Background Document: Roc: Aristolochic Acids ; 2010
    FINAL Report on Carcinogens Background Document for Aristolochic Acids September 2, 2008 U.S. Department of Health and Human Services Public Health Services National Toxicology Program Research Triangle Park, NC 27709 This Page Intentionally Left Blank RoC Background Document for Aristolochic Acids FOREWORD 1 The Report on Carcinogens (RoC) is prepared in response to Section 301 of the Public 2 Health Service Act as amended. The RoC contains a list of identified substances (i) that 3 either are known to be human carcinogens or are reasonably be anticipated to be human 4 carcinogens and (ii) to which a significant number of persons residing in the United 5 States are exposed. The Secretary, Department of Health and Human Services (HHS), has 6 delegated responsibility for preparation of the RoC to the National Toxicology Program 7 (NTP), which prepares the report with assistance from other Federal health and 8 regulatory agencies and nongovernmental institutions. 9 Nominations for (1) listing a new substance, (2) reclassifying the listing status for a 10 substance already listed, or (3) removing a substance already listed in the RoC are 11 reviewed in a multi-step, scientific review process with multiple opportunities for public 12 comment. The scientific peer-review groups evaluate and make independent 13 recommendations for each nomination according to specific RoC listing criteria. This 14 background document was prepared to assist in the review of aristolochic acids. The 15 scientific information used to prepare Sections 3 through 5 of this document must come 16 from publicly available, peer-reviewed sources. Information in Sections 1 and 2, 17 including chemical and physical properties, analytical methods, production, use, and 18 occurrence may come from published and/or unpublished sources.
    [Show full text]
  • Impacts of Invasive Alliaria Petiolata on Two Native Pieridae Butterflies, Anthocharis Midea and Pieris Virginiensis
    Wright State University CORE Scholar Browse all Theses and Dissertations Theses and Dissertations 2017 Impacts of Invasive Alliaria Petiolata on Two Native Pieridae Butterflies, Anthocharis Midea and Pieris Virginiensis Danielle Marie Thiemann Wright State University Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all Part of the Biology Commons Repository Citation Thiemann, Danielle Marie, "Impacts of Invasive Alliaria Petiolata on Two Native Pieridae Butterflies, Anthocharis Midea and Pieris Virginiensis" (2017). Browse all Theses and Dissertations. 1849. https://corescholar.libraries.wright.edu/etd_all/1849 This Thesis is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It has been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE Scholar. For more information, please contact [email protected]. IMPACTS OF INVASIVE ALLIARIA PETIOLATA ON TWO NATIVE PERIDAE BUTTERFLIES, ANTHOCHARIS MIDEA AND PIERIS VIRGINIENSIS A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science By DANIELLE MARIE THIEMANN B.S., University of Dayton, 2014 2017 Wright State University WRIGHT STATE UNIVERSITY GRADUATE SCHOOL April 20, 2017 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY Danielle Marie Thiemann ENTITLED Impacts of Invasive Alliaria petiolata on Two Native Pieridae Butterflies, Anthocharis midea and Pieris virginiensis BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIRMENTS FOR THE DEGREE OF Master of Science. ____________________________________ Donald F. Cipollini, Ph.D. Thesis Director ____________________________________ David L. Goldstein, Ph.D., Chair Department of Biological Sciences Committee on Final Examination ___________________________________ Donald F. Cipollini, Ph.D.
    [Show full text]
  • An Addendum to Anthocharis Midea Dos Passos and Klots 1969
    Volume 1 1 October 1998 Number 1 The Taxonomic Report OF THE INTERNATIONAL LEPIDOPTERA SURVEY AN ADDENDUM TO ANTHOCHARIS MIDEA DOS PASSOS AND KLOTS 1969. (DESCRIPTION OF A NEW SUBSPECIES FROM TEXAS.) RONALD R. GATRELLE1 126 Wells Road, Goose Creek, South Carolina 29445 ABSTRACT. This paper verifies and expands upon the information presented by dos Passos and Klots in their 1969 systematic revision of Anthocharis midea. Their restriction of the range of A. midea midea to the coastal islands and immediate coast of Georgia and South Carolina is confirmed and expanded north into southern coastal North Carolina. Their range of A. m. annickae is expanded southward from Virginia to central Georgia. A new subspecies, A. midea texana, is described from Texas. Texana is annickae’s ancestor. It differs from annickae only in having greatly reduced black scaling at the base of the dorsal wings. Klots’ theory that midea midea is descended from an extinct Florida ancestor is confirmed. Midea (coastal) and annickae (Sandhills) occur within 40 km of each other in Georgia and South Carolina. Midea is confirmed to not only be characterized by expanded orange of the dorsal FW of males, but also by frequent orange on the dorsal HW apex of males, and by females with frequent orange scaling on the dorsal FW apex. Additional key words: Biogeographical evolution, convergent evolution. C. F. dos Passos and A. B. Klots (1969) surveyed the phenetic variation of Anthocharis midea (Hübner) throughout its range. This present article is an addendum to their research, and merely confirms and expands their original findings.
    [Show full text]
  • Arthropods of Elm Fork Preserve
    Arthropods of Elm Fork Preserve Arthropods are characterized by having jointed limbs and exoskeletons. They include a diverse assortment of creatures: Insects, spiders, crustaceans (crayfish, crabs, pill bugs), centipedes and millipedes among others. Column Headings Scientific Name: The phenomenal diversity of arthropods, creates numerous difficulties in the determination of species. Positive identification is often achieved only by specialists using obscure monographs to ‘key out’ a species by examining microscopic differences in anatomy. For our purposes in this survey of the fauna, classification at a lower level of resolution still yields valuable information. For instance, knowing that ant lions belong to the Family, Myrmeleontidae, allows us to quickly look them up on the Internet and be confident we are not being fooled by a common name that may also apply to some other, unrelated something. With the Family name firmly in hand, we may explore the natural history of ant lions without needing to know exactly which species we are viewing. In some instances identification is only readily available at an even higher ranking such as Class. Millipedes are in the Class Diplopoda. There are many Orders (O) of millipedes and they are not easily differentiated so this entry is best left at the rank of Class. A great deal of taxonomic reorganization has been occurring lately with advances in DNA analysis pointing out underlying connections and differences that were previously unrealized. For this reason, all other rankings aside from Family, Genus and Species have been omitted from the interior of the tables since many of these ranks are in a state of flux.
    [Show full text]
  • Butterflies and Moths of San Bernardino County, California
    Heliothis ononis Flax Bollworm Moth Coptotriche aenea Blackberry Leafminer Argyresthia canadensis Apyrrothrix araxes Dull Firetip Phocides pigmalion Mangrove Skipper Phocides belus Belus Skipper Phocides palemon Guava Skipper Phocides urania Urania skipper Proteides mercurius Mercurial Skipper Epargyreus zestos Zestos Skipper Epargyreus clarus Silver-spotted Skipper Epargyreus spanna Hispaniolan Silverdrop Epargyreus exadeus Broken Silverdrop Polygonus leo Hammock Skipper Polygonus savigny Manuel's Skipper Chioides albofasciatus White-striped Longtail Chioides zilpa Zilpa Longtail Chioides ixion Hispaniolan Longtail Aguna asander Gold-spotted Aguna Aguna claxon Emerald Aguna Aguna metophis Tailed Aguna Typhedanus undulatus Mottled Longtail Typhedanus ampyx Gold-tufted Skipper Polythrix octomaculata Eight-spotted Longtail Polythrix mexicanus Mexican Longtail Polythrix asine Asine Longtail Polythrix caunus (Herrich-Schäffer, 1869) Zestusa dorus Short-tailed Skipper Codatractus carlos Carlos' Mottled-Skipper Codatractus alcaeus White-crescent Longtail Codatractus yucatanus Yucatan Mottled-Skipper Codatractus arizonensis Arizona Skipper Codatractus valeriana Valeriana Skipper Urbanus proteus Long-tailed Skipper Urbanus viterboana Bluish Longtail Urbanus belli Double-striped Longtail Urbanus pronus Pronus Longtail Urbanus esmeraldus Esmeralda Longtail Urbanus evona Turquoise Longtail Urbanus dorantes Dorantes Longtail Urbanus teleus Teleus Longtail Urbanus tanna Tanna Longtail Urbanus simplicius Plain Longtail Urbanus procne Brown Longtail
    [Show full text]
  • The Taxonomic Report of the INTERNATIONAL LEPIDOPTERA SURVEY
    Volume 7 1 February 2010 Number 3 The Taxonomic Report OF THE INTERNATIONAL LEPIDOPTERA SURVEY TIPS ON COLLECTING AND REARING IMMATURES OF 375 BUTTERFLY AND SKIPPER TAXA JACQUE WOLFE 459 East 2700 South Apt 16, Salt Lake City, UT 84115 JACK HARRY 47 San Rafael Court, West Jordan, UT 84088 TODD STOUT 1 1456 North General Drive, Salt Lake City, UT 84116 ABSTRACT: Rearing techniques are discussed for 375 different butterfly and skipper taxa from Utah and beyond. Additional keywords: ova, larvae, pupae, over wintering, obtaining and caring for immatures INTRODUCTION The authors of this paper, Jacque Wolfe, Jack Harry, and Todd Stout, with contributions from Dale Nielson have over 100 years combined experience collecting and rearing butterflies. This publication includes natural and lab host plants. We hope that this information will help you avoid some of the mistakes and losses we have experienced. We also hope that this publication will encourage someone who has only collected adults to give rearing a try. For those new to rearing we encourage starting small. Not only can rearing provide perfect specimens but also provide knowledge regarding the life histories of butterflies, which includes how to find caterpillars or how to entice live females to lay eggs. The advantages justify the time and effort it requires. Another advantage of rearing is that some species, like Papilio indra and Megathymus species, are difficult to collect as adults. Therefor, rearing them can be much easier. For example, collecting larvae or netting a single live female can result in obtaining a nice series of perfect specimens.
    [Show full text]