Phytochemistry and Biological Properties of Drimys Winteri JR Et G. Forster Var Chilensis (DC) A

Total Page:16

File Type:pdf, Size:1020Kb

Phytochemistry and Biological Properties of Drimys Winteri JR Et G. Forster Var Chilensis (DC) A BOLETIN LATINOAMERICANO Y DEL CARIBE DE PLANTAS MEDICINALES Y AROMÁTICAS © / ISSN 0717 7917 / www.blacpma.ms-editions.cl Revisión / Review Phytochemistry and biological properties of Drimys winteri JR et G. Forster var chilensis (DC) A. [Fitoquímica y propiedades biológicas de Drimys winteri JR et G. Forster var chilensis (DC) A.] Orlando Muñoz1, Jorge Tapia-Merino2, Wolf Nevermann, & Aurelio San-Martín3 1Departamento de Quimica, Facultad de Ciencias, Universidad de Chile, Ñuñoa, Santiago, Chile 2Departamento de Ciencias Químicas y Biológicas, Facultad de Salud, Universidad Bernardo OHiggins, Santiago, Chile 3Departamento de Ciencias y Recursos Naturales, Facultad de Ciencias, Universidad de Magallanes, Punta Arenas, Chile Abstract: Drimys winteri JR et G. Forster var chilensis (DC) A. is a tree native to central and southern Chile. Also it found in part of Argentina. It is abundant in wet swampy localities from sea level to an altitude of 1700 m. This tree is sacred for the Mapuche culture; it is used in folk medicine in such as Reviewed by: inflammatory and painful processes. Phytochemical studies have demonstrated that this plant contains Arnaldo Bandoni Universidad de Buenos Aires mainly sesquiterpenes of the drimane type, flavonoids, essential oils, phytosterols and some lignans. Argentina These drimanes have attracted interest because of their antifeedant, plant growth regulation, cytotoxic, antimicrobial and insecticidal properties. The objective of this review is to establish clearly the Ali Parlar phytochemistry and biological activity of Drimys winteri JR et G. Forster var chilensis (DC) A. Articles Adiyaman University based on other varieties are not considered. Turkey Keywords: Drimys winteri; Sesquiterpenes; Essential oils; Lignans; Flavonoids; Biological properties. Correspondence: Aurelio SAN MARTIN [email protected] Section Review Received: 25 May 2020 Accepted: 25 January 2021 Accepted corrected: 29 January 2021 Resumen: Drimys winteri JR et G. Forster var chilensis (DC) A. es un árbol nativo del centro y sur de Published: 30 September 2021 Chile. Tambien se encuentra en parte de Argentina. Es abundante en localidades pantanosas y húmedas desde el nivel del mar hasta una altitud de 1700 m. Este árbol es sagrado para la cultura mapuche. Se utiliza en la medicina popular para tratar enfermedades como procesos inflamatorios y dolorosos. Los estudios fitoquímicos han demostrado que esta planta contiene principalmente sesquiterpenos del tipo Citation: drimano, flavonoides, aceites esenciales, fitoesteroles y algunos lignanos. Estos drimanos han despertado Muñoz O, Tapia-Merino J, interés debido a sus propiedades antialimentarias, regulación del crecimiento de las plantas, propiedades Nevermann W, San-Martín A. citotóxicas, antimicrobianas e insecticidas. El objetivo de este examen es establecer claramente la Phytochemistry and biological properties of fitoquímica y la actividad biológica de Drimys winteri JR et G. Forster var chilensis (DC) A. No se Drimys winteri JR et G. Forster var chilensis (DC) A. Bol Latinoam Caribe Plant Med Aromat consideran los artículos basados en otras variedades D. winteri var winteri. 20 (5): 443 - 462 (2021). https://doi.org/10.37360/blacpma.21.20.5.33 Palabras clave: Drimys winteri; Sesquiterpenos; Aceites esenciales; Lignanos; Flavonoides; Propiedades biologicas. 443 Muñoz et al. Properties of Drimys winteri JR et G. Forster var chilensis INTRODUCTION (24 ft) by 6 m (19ft) at a medium rate. It is hardy to Plants of the genus Drimys, (Winteraceae) are widely zone. It is in leaf all year, in flower from January to distribute all over the America (from Mexico until June. The species is hermaphrodite. Suitable for: light Chile and part of Argentina). The species, descrited (sandy) and medium (loamy) soils and prefers well- for this continent are: Drimys angustifolia Miers drained soil. Suitable pH: acid and neutral soils. It (south of Brasil), Drimys brasiliensis Miers (Brasil can grow in semi-shade (light woodland). It prefers until south of México), Drimys confertifolia Phil. moist soil. The plant can tolerate strong winds but not (endemic plant of Juan Fernandez Island, Chile), maritime exposure (Jordan, 2005). There are three Drimys andina (Reiche) R. A. Rodr. & Quez. (syn D. species of Drimys in Chile: D. winteri (two varieties winteri var. andina) endemic of Chile, Drimys have been described) and D. andina Reiche granadensis L.f. south México until south of Perú), (Rodriguez & Quezada, 1991). The most abundant is Drimys winteri J. R. Forst. & G. Forster var chilensis the tree Dwch, whereas D. andina is a shrub and less (DC) A. (Chile, and south Argentina), and Drimys common (Marticorena & Quezada, 1985; Muñoz- winteri var winteri occurring in Southwestern Concha et al., 2007). Currently two arbnorescent Patagonia (45º44’- 55º58’S) (Rodriguez & Quezada, species are recognized in Chile: D. winteri JR Forst et 1991; Ruiz et al., 2008). Most of these species, are G. Forst with two varieties, D. winteri var. winteri traditionally used as wild vegetables and as a occurring in Southwestern Patagonia (45°44¨- therapeutic agent. 55°58´S) and D. winteri var. chilensis (DC.) A. Gray The genus Drimys includes approximately being widespread in Chile and Argentina (30°20¨-46° between six and eight Central and South American 25¨S) (Ruiz et al., 2008). According to the literature, species that are distributed from Mexico to Navarin the variety chilensis it is not found in Brazil (Santos Island (Molina et al., 2016). One species (Drimys et al., 2017) confertifolia Phil. is endemic to the Juan Fernandez The objective of this review is to establish Islands (Silva et al., 1992). Of these species, only clearly the phytochemistry and biological activity of Drimys winteri JR et G. Forster var chilensis Drimys winteri JR et G. Forster var chilensis (DC) A. (DC) A. (Dwch) (Figure No. 1) commonly called As in many studies the variety analyzed is not canelo is well known in cultivation (Hernandez et al., specified but in its totality corresponds to samples 1996; Jordan, 2005). It is found up to 1200 m above collected in Chile (except from Patagonia), we have sea level and between latitude 32° south and Cape assumed that the samples are from Dwch. Articles Horn at latitude 56° south in Patagonia. Drimys based on others varieties, are not considered. winteri JR is an evergreen shrub growing to 7.5 m Figure No. 1 Drimys winteri JR et G. Forster var chilensis (DC) A. (Vogel et al., 2008) (Photo S. Teillier) Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas / 444 Muñoz et al. Properties of Drimys winteri JR et G. Forster var chilensis D. winteri JR et G. Forster var chilensis (DC) A. is a harvested in autumn and winter and is dried for later sacred plant to the indigenous Mapuche people, who use. Another important use of bark infusion is in the use its aerial parts for the treatment of dermatitis, treatment of rheumatic illnesses (Muñoz et al., 2015). stomach pain, toothache, tumors, and other illnesses (Muñoz & Barrera, 1981; Muñoz et al., 2001; Phytochemical Analysis Estomba et al., 2006). Extracts of the stem bark have Phytochemical studies of the extracts of aerial parts long been used to treat human (Muñoz & Barrera, of Dwch performed several decades ago in Chile 1981) and bovine diseases: gastrointestinal (Appel et al., 1964; Appel et al., 1960; Brown, 1994) nematodes, (Rodriguez et al., 2005). In the past, the reported phytonutrients and pest repellent agents stem bark of Dwch was exported to Europe as an (Jansen & de Groot, 2004; Zapata et al., 2009; antiscorbutic medicine (Muñoz et al., 2001; Jordan, Monsálvez et al., 2010). Phytochemical reports on 2005). The tree is also used for commercial purposes, the chemical composition of continental Dwch in wood production, crafts, manufacturing and the indicated the presence of tannins, flavonoids, pulp industry, due to the high quality of its fibers. Its essential oils, drimane-type sesquiterpenes, architectural characteristics and natural resistance to sesquiterpene lactones (Muñoz et al., 2001), lignans insects and microorganisms are advantageous for and phytosterols (Muñoz et al., 2015). playgrounds in parks and gardens in a wide range of climatic conditions. The wood of this species is Drimane-type sesquiterpenes highly valued and used to manufacture furniture and The name drimane was proposed for the saturated musical instruments as well as to protect crops hydrocarbon with the structure and absolute (Rodriguez, 1998; Franco et al., 2006; Monsálvez et configuration depicted in Figure No. 2 (Jansen & de al., 2010). Furthermore, extracts of aerial parts of Groot, 1991; Jansen & de Groot, 2004). This Dwch have shown industrial applications in products structure is related to the sesquiterpene drimenol, such as cosmetics (Rodriguez, 1998; MINSAL, isolated from the bark of Dwch Forst. reported by 2010), phytonutrients and pest repellent agents Appel (Appel, 1948). The structures of the (Jansen & de Groot, 2004; Zapata et al., 2009; sesquiterpenes isolated up to now from Dwch (Figure Monsálvez et al., 2010); the bark produces a pungent No. 2), and the numbering of the carbon skeleton bitter herb tonic that relieves indigestion. It is follows the system established by Djerassi (Djerassi antiscorbutic, aromatic, febrifuge, and also used as a et al., 1954). parasiticide (Moya & Escudero, 2015). The bark is Compound R1 R2 References Confertifolin CH2 H Appel et al., 1960 Valiviolide CH2OH H Appel et al., 1963 Fueguin CH2OH OH Appel
Recommended publications
  • The Vegetation of Robinson Crusoe Island (Isla Masatierra), Juan
    The Vegetation ofRobinson Crusoe Island (Isla Masatierra), Juan Fernandez Archipelago, Chile1 Josef Greimler,2,3 Patricio Lopez 5., 4 Tod F. Stuessy, 2and Thomas Dirnbiick5 Abstract: Robinson Crusoe Island of the Juan Fernandez Archipelago, as is the case with many oceanic islands, has experienced strong human disturbances through exploitation ofresources and introduction of alien biota. To understand these impacts and for purposes of diversity and resource management, an accu­ rate assessment of the composition and structure of plant communities was made. We analyzed the vegetation with 106 releves (vegetation records) and subsequent Twinspan ordination and produced a detailed colored map at 1: 30,000. The resultant map units are (1) endemic upper montane forest, (2) endemic lower montane forest, (3) Ugni molinae shrubland, (4) Rubus ulmifolius­ Aristotelia chilensis shrubland, (5) fern assemblages, (6) Libertia chilensis assem­ blage, (7) Acaena argentea assemblage, (8) native grassland, (9) weed assemblages, (10) tall ruderals, and (11) cultivated Eucalyptus, Cupressus, and Pinus. Mosaic patterns consisting of several communities are recognized as mixed units: (12) combined upper and lower montane endemic forest with aliens, (13) scattered native vegetation among rocks at higher elevations, (14) scattered grassland and weeds among rocks at lower elevations, and (15) grassland with Acaena argentea. Two categories are included that are not vegetation units: (16) rocks and eroded areas, and (17) settlement and airfield. Endemic forests at lower elevations and in drier zones of the island are under strong pressure from three woody species, Aristotelia chilensis, Rubus ulmifolius, and Ugni molinae. The latter invades native forests by ascending dry slopes and ridges.
    [Show full text]
  • Phytophthora Ramorum Sudden Oak Death Pathogen
    NAME OF SPECIES: Phytophthora ramorum Sudden Oak Death pathogen Synonyms: Common Name: Sudden Oak Death pathogen A. CURRENT STATUS AND DISTRIBUTION I. In Wisconsin? 1. YES NO X 2. Abundance: 3. Geographic Range: 4. Habitat Invaded: 5. Historical Status and Rate of Spread in Wisconsin: 6. Proportion of potential range occupied: II. Invasive in Similar Climate YES NO X Zones United States: In 14 coastal California Counties and in Curry County, Oregon. In nursery in Washington. Canada: Nursery in British Columbia. Europe: Germany, the Netherlands, the United Kingdom, Poland, Spain, France, Belgium, and Sweden. III. Invasive in Similar Habitat YES X NO Types IV. Habitat Affected 1. Habitat affected: this disease thrives in cool, wet climates including areas in coastal California within the fog belt or in low- lying forested areas along stream beds and other bodies of water. Oaks associated with understory species that are susceptible to foliar infections are at higher risk of becoming infected. 2. Host plants: Forty-five hosts are regulated for this disease. These hosts have been found naturally infected by P. ramorum and have had Koch’s postulates completed, reviewed and accepted. Approximately fifty-nine species are associated with Phytophthora ramorum. These species are found naturally infected; P. ramorum has been cultured or detected with PCR but Koch’s postulates have not been completed or documented and reviewed. Northern red oak (Quercus rubra) is considered an associated host. See end of document for complete list of plant hosts. National Risk Model and Map shows susceptible forest types in the mid-Atlantic region of the United States.
    [Show full text]
  • Tasmannia Lanceolata
    ASPECTS OF LEAF AND EXTRACT PRODUCTION from Tasmannia lanceolata by Chris Read, B. Agr.Sc. Tas. Submitted in fulfillment of the requirements for the Degree of Doctor of Philosophy University of Tasmania, Hobart December 1995 ' s~, ... ~~ \ ·'(11 a_C\14 \t\J. \I ' This thesis contains no material which has been accepted for the award of any other degree or diploma in any University, and to the best of my knowledge, contains no copy or paraphrase of material previously written or published by any other person except where due reference is given in the text. University of Tasmania HOBART March 1996 This thesis may be made available for loan and limited copying in accordance with the Copyright Act 1968 University of Tasmania HOBART March 1996 Abstract This thesis examines several aspects of the preparation, extraction and analysis of solvent soluble compounds from leaf material of Tasmannia lanceolata and reports a preliminary survey of extracts of some members of the natural population of the species in Tasmania. A major constituent of these extracts, polygodial, was shown to be stored within specialised idioblastic structures scattered throughout the mesophyll, and characterised by distinctive size and shape, and a thickened wall. The contents of these cells were sampled directly, analysed and compared with the composition of extracts derived from ground, dry whole leaf. This result was supported by spectroscopic analysis of undisturbed oil cells in whole leaf tissue. In a two year field trial, the progressive accumulation of a number of leaf extract constituents (linalool, cubebene, caryophyllene, germacrene D, bicyclogermacrene, cadina-1,4 - diene, aristolone and polygodial) during the growth flush was followed by a slow decline during the subsequent dormant season.
    [Show full text]
  • Systematic Studies of the South African Campanulaceae Sensu Stricto with an Emphasis on Generic Delimitations
    Town The copyright of this thesis rests with the University of Cape Town. No quotation from it or information derivedCape from it is to be published without full acknowledgement of theof source. The thesis is to be used for private study or non-commercial research purposes only. University Systematic studies of the South African Campanulaceae sensu stricto with an emphasis on generic delimitations Christopher Nelson Cupido Thesis presented for the degree of DOCTOR OF PHILOSOPHY in the Department of Botany Town UNIVERSITY OF CAPECape TOWN of September 2009 University Roella incurva Merciera eckloniana Microcodon glomeratus Prismatocarpus diffusus Town Wahlenbergia rubioides Cape of Wahlenbergia paniculata (blue), W. annularis (white) Siphocodon spartioides University Rhigiophyllum squarrosum Wahlenbergia procumbens Representatives of Campanulaceae diversity in South Africa ii Town Dedicated to Ursula, Denroy, Danielle and my parents Cape of University iii Town DECLARATION Cape I confirm that this is my ownof work and the use of all material from other sources has been properly and fully acknowledged. University Christopher N Cupido Cape Town, September 2009 iv Systematic studies of the South African Campanulaceae sensu stricto with an emphasis on generic delimitations Christopher Nelson Cupido September 2009 ABSTRACT The South African Campanulaceae sensu stricto, comprising 10 genera, represent the most diverse lineage of the family in the southern hemisphere. In this study two phylogenies are reconstructed using parsimony and Bayesian methods. A family-level phylogeny was estimated to test the monophyly and time of divergence of the South African lineage. This analysis, based on a published ITS phylogeny and an additional ten South African taxa, showed a strongly supported South African clade sister to the campanuloids.
    [Show full text]
  • Well-Known Plants in Each Angiosperm Order
    Well-known plants in each angiosperm order This list is generally from least evolved (most ancient) to most evolved (most modern). (I’m not sure if this applies for Eudicots; I’m listing them in the same order as APG II.) The first few plants are mostly primitive pond and aquarium plants. Next is Illicium (anise tree) from Austrobaileyales, then the magnoliids (Canellales thru Piperales), then monocots (Acorales through Zingiberales), and finally eudicots (Buxales through Dipsacales). The plants before the eudicots in this list are considered basal angiosperms. This list focuses only on angiosperms and does not look at earlier plants such as mosses, ferns, and conifers. Basal angiosperms – mostly aquatic plants Unplaced in order, placed in Amborellaceae family • Amborella trichopoda – one of the most ancient flowering plants Unplaced in order, placed in Nymphaeaceae family • Water lily • Cabomba (fanwort) • Brasenia (watershield) Ceratophyllales • Hornwort Austrobaileyales • Illicium (anise tree, star anise) Basal angiosperms - magnoliids Canellales • Drimys (winter's bark) • Tasmanian pepper Laurales • Bay laurel • Cinnamon • Avocado • Sassafras • Camphor tree • Calycanthus (sweetshrub, spicebush) • Lindera (spicebush, Benjamin bush) Magnoliales • Custard-apple • Pawpaw • guanábana (soursop) • Sugar-apple or sweetsop • Cherimoya • Magnolia • Tuliptree • Michelia • Nutmeg • Clove Piperales • Black pepper • Kava • Lizard’s tail • Aristolochia (birthwort, pipevine, Dutchman's pipe) • Asarum (wild ginger) Basal angiosperms - monocots Acorales
    [Show full text]
  • Outline of Angiosperm Phylogeny
    Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese
    [Show full text]
  • Chromosome Numbers of the East African Giant Senecios and Giant Lobelias and Their Evolutionary Significancei
    American Journal of Botany 80(7): 847-853. 1993. CHROMOSOME NUMBERS OF THE EAST AFRICAN GIANT SENECIOS AND GIANT LOBELIAS AND THEIR EVOLUTIONARY SIGNIFICANCEI ERIC B. KNox2 AND ROBERT R, KOWAL Herbarium and Department of Biology, University of Michigan, Ann Arbor, Michigan 48109-1048; and Department of Botany, University of Wisconsin, Madison, Wisconsin 53706-1981 The gametophytic chromosome number for the giant senecios (Asteraceae, Senecioneae, Dendrosenecio) is n = 50, and for the giant lobelias (Lobeliaceae, Lobelia subgenus Tupa section Rhynchopetalumi it is n = 14. Previous sporophytic counts are generally verified, but earlier reports for the giant senecios of2n = 20 and ca. 80, the bases for claims ofintraspecific polyploidy, are unsubstantiated. The 14 new counts for the giant senecios and the ten new counts for the giant lobelias are the first garnetophytic records for these plants and include the first reports for six and four taxa, respectively, for the two groups. Only five of the II species of giant senecio and three of the 21 species of giant lobelia from eastern Africa remain uncounted. Although both groups are polyploid, the former presumably decaploid and the latter more certainly tetraploid, their adaptive radiations involved no further change in chromosome number. The cytological uniformity within each group, while providing circumstantial evidence ofmonophyly and simplifying interpretations ofcladistic analyses, provides neither positive nor negative support for a possible role of polyploidy in evolving the giant-rosette growth-form. Since their discovery last century, the giant senecios MATERIALS AND METHODS (Dendrosenecio; Nordenstam, 1978) and giant lobelias (Lobelia subgenus Tupa section Rhynchopetalum; Mab­ Excised anthers or very young flower buds of Lobelia berley, 1974b) of eastern Africa have attracted consid­ and immature heads of Dendrosenecio were fixed in the erable attention from taxonomists and evolutionary bi­ field in Carnoy's solution (3 chloroform: 2 absolute eth­ ologists (cf.
    [Show full text]
  • Nhs Fall Plant Sale Friday, September 18, Noon to 6:30 Pm Saturday, September 19, 9:00 Am to 3:00 Pm
    ardennotes northwestG horticultural society fall 2009 nhs fall plant sale friday, september 18, noon to 6:30 pm saturday, september 19, 9:00 am to 3:00 pm L ISA IRWIN CLEAR THE DE C KS ! CLEAR THE BEDS ! Throw out those under-performers (your plants, not your spouses) and join us for the Fall Plant Sale on September 18 and 19 at Magnuson Park in Seattle. Even if you don’t think you have room for another plant, come see what’s new that you can’t do without. This year we will have more than 30 outstanding specialty growers from around the Puget Sound area to dazzle you with their wide variety of plants. Fall is a great time for planting. As the temperatures lessen and the rains begin, plants have a much easier time developing root growth. When spring finally comes the plants will be well on their way. We expect a good selection Oh la la! Ciscoe Morris is all ready for the NHS fall plant sale. of plants that will not only benefit from See related articles on pages 1-4. (Nita-Jo Rountree) fall planting, but many that will provide an awesome fall display. Far Reaches include Melianthus villosa, of my favorite vendors for fabulous Kelly and Sue of Far Reaches and Bergenia ‘Eric Smith’. epimedium, cyclamen, hosta, and Farm will be bringing some exotic Laine McLauglin of Steamboat polygonatum are Naylor Creek plants from Yunnan. Salvia bulleyana Island Nursery has recently stopped Nursery, Bouquet Banque Nursery, has large broadly deltoid two-tone her retail sales at the nursery to Botanica, and Overland Enterprises.
    [Show full text]
  • Effects of Essential Oils from 24 Plant Species on Sitophilus Zeamais Motsch (Coleoptera, Curculionidae)
    insects Article Effects of Essential Oils from 24 Plant Species on Sitophilus zeamais Motsch (Coleoptera, Curculionidae) William R. Patiño-Bayona 1, Leidy J. Nagles Galeano 1 , Jenifer J. Bustos Cortes 1 , Wilman A. Delgado Ávila 1, Eddy Herrera Daza 2, Luis E. Cuca Suárez 1, Juliet A. Prieto-Rodríguez 3 and Oscar J. Patiño-Ladino 1,* 1 Department of Chemistry, Faculty of Sciences, Universidad Nacional de Colombia-Sede Bogotá, Bogotá 111321, Colombia; [email protected] (W.R.P.-B.); [email protected] (L.J.N.G.); [email protected] (J.J.B.C.); [email protected] (W.A.D.Á.); [email protected] (L.E.C.S.) 2 Department of Mathematics, Faculty of Engineering, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; [email protected] 3 Department of Chemistry, Faculty of Sciences, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; [email protected] * Correspondence: [email protected] Simple Summary: The maize weevil (Sitophilus zeamais Motsch) is a major pest in stored grain, responsible for significant economic losses and having a negative impact on food security. Due to the harmful effects of traditional chemical controls, it has become necessary to find new insecticides that are both effective and safe. In this sense, plant-derived products such as essential oils (EOs) appear to be appropriate alternatives. Therefore, laboratory assays were carried out to determine the Citation: Patiño-Bayona, W.R.; chemical compositions, as well as the bioactivities, of various EOs extracted from aromatic plants on Nagles Galeano, L.J.; Bustos Cortes, the maize weevil. The results showed that the tested EOs were toxic by contact and/or fumigance, J.J.; Delgado Ávila, W.A.; Herrera and many of them had a strong repellent effect.
    [Show full text]
  • Name Group Description Biennial Biennial These Are
    Name Group Description Price Pot Size Nursery Biennial Biennial These are short lived plants that overwinter and flower in their 2.95 9cm SEND second or third year, and should then self seed around the garden in a suitable location..normally several plants per pot for 'pricking out'. Cacti/Succulents Cacti/Succulents We have a collection of varieties in small quantities. For hardy 8.95 1ltr SEND sedums and semperviviums , see 'Rock Plants' , Overwinter in dry frost free shed or greenhouse. House Plants Tender Plants SEND This section includes many half hardy plants for the house, conservervatory , or sheltered position outside in mild areas. We grow these in Kent, but can supply them in Staffs to order. We try and grow many of the old favorites that can now be hard to find. See Annual/biennial for 'patio plants' and 'cacti and succulents' section. Rock Plants Rock Plants Low growing perennials and dwarf shrubs, suited to the front of SEND borders, shady corners etc, where they will not get smothered or hidden by larger perennials and shrubs. Water Plants Water Plants A range of plants that require to grow in wet soil or shallow SEND water. Other moisture loving plants are listed under perennials , ferns and grasses. ABELIA Chinensis Shrub A small shrub with fragrant white rose tinted fls July - Aug 8.95 3 lt MMuc ABELIA gr. "Edward Goucher" Shrub Small semi-evergreen shrub, lilac pink flowers in late 8.95 3lt SEND summer.PF ABELIA Grandiflora (white) Shrub syn 'Lake Maggiore' AGM Evergreen shrub with white flws. 8.95 3lt SEND Likes shelter from winter wind,sun or pt shade Fls.
    [Show full text]
  • And According to Bailey & (1943)
    BLUMEA 24 (1978) 521—525 The Winteraceae pf the Old World. III. Notes on the ovary of Takhtajania W. Vink Rijksherbarium, Leiden, Netherlands INTRODUCTION Very recently Baranova & Leroy (Leroy, 1978) published a new genus Takhta- jania to accomodate the aberrant Bubbia perrieri Capuron. The outstanding characters of this genus are the anomocytic stomatal apparatus (Baranova, 1972; Bongers, 1973) and the unilocular bicarpellate ovary (Leroy, 1977, 1978). work the Winteraceae, also studied the of Bub- During my on I single specimen bia perrieri in existence. The late Capuron told me that he had tried to collect additional specimens but that he had not succeeded in doing so; according to him the type locality was completely deforested. In view of the scarcity of the material it was considered relevant to publish some additional notes without delay. MATERIAL AND METHODS I studied three ovaries of the type specimen (Perrier de la Bdthie 10158). One was cut longitudinally, slightly outside the plane of symmetry; another was cut and its half These drawn transversally upper again longitudinally. parts were (figs. 2 and 3) and then cleared according to Bailey & Nast (1943) (figs 5 and third boiled and then sectioned 6). The ovary was serially (fig. 4). OBSERVATIONS One of the ovaries was taken from a flowerbud of which the closed petals were 57 mm high. The diagram of this flowerbud is drawn in fig. 1. The 2 slightly ruptured calyx showed three putative original apices ± alternating with the three bracteoles at the base of the pedicel. The petals are all free. The ovary is its and the flattened, has a longitudinal groove on narrow sides, highest sta- mens are inserted adjoining its broadest sides.
    [Show full text]
  • Reconstructing the Basal Angiosperm Phylogeny: Evaluating Information Content of Mitochondrial Genes
    55 (4) • November 2006: 837–856 Qiu & al. • Basal angiosperm phylogeny Reconstructing the basal angiosperm phylogeny: evaluating information content of mitochondrial genes Yin-Long Qiu1, Libo Li, Tory A. Hendry, Ruiqi Li, David W. Taylor, Michael J. Issa, Alexander J. Ronen, Mona L. Vekaria & Adam M. White 1Department of Ecology & Evolutionary Biology, The University Herbarium, University of Michigan, Ann Arbor, Michigan 48109-1048, U.S.A. [email protected] (author for correspondence). Three mitochondrial (atp1, matR, nad5), four chloroplast (atpB, matK, rbcL, rpoC2), and one nuclear (18S) genes from 162 seed plants, representing all major lineages of gymnosperms and angiosperms, were analyzed together in a supermatrix or in various partitions using likelihood and parsimony methods. The results show that Amborella + Nymphaeales together constitute the first diverging lineage of angiosperms, and that the topology of Amborella alone being sister to all other angiosperms likely represents a local long branch attrac- tion artifact. The monophyly of magnoliids, as well as sister relationships between Magnoliales and Laurales, and between Canellales and Piperales, are all strongly supported. The sister relationship to eudicots of Ceratophyllum is not strongly supported by this study; instead a placement of the genus with Chloranthaceae receives moderate support in the mitochondrial gene analyses. Relationships among magnoliids, monocots, and eudicots remain unresolved. Direct comparisons of analytic results from several data partitions with or without RNA editing sites show that in multigene analyses, RNA editing has no effect on well supported rela- tionships, but minor effect on weakly supported ones. Finally, comparisons of results from separate analyses of mitochondrial and chloroplast genes demonstrate that mitochondrial genes, with overall slower rates of sub- stitution than chloroplast genes, are informative phylogenetic markers, and are particularly suitable for resolv- ing deep relationships.
    [Show full text]