Tasmannia Lanceolata

Total Page:16

File Type:pdf, Size:1020Kb

Tasmannia Lanceolata ASPECTS OF LEAF AND EXTRACT PRODUCTION from Tasmannia lanceolata by Chris Read, B. Agr.Sc. Tas. Submitted in fulfillment of the requirements for the Degree of Doctor of Philosophy University of Tasmania, Hobart December 1995 ' s~, ... ~~ \ ·'(11 a_C\14 \t\J. \I ' This thesis contains no material which has been accepted for the award of any other degree or diploma in any University, and to the best of my knowledge, contains no copy or paraphrase of material previously written or published by any other person except where due reference is given in the text. University of Tasmania HOBART March 1996 This thesis may be made available for loan and limited copying in accordance with the Copyright Act 1968 University of Tasmania HOBART March 1996 Abstract This thesis examines several aspects of the preparation, extraction and analysis of solvent soluble compounds from leaf material of Tasmannia lanceolata and reports a preliminary survey of extracts of some members of the natural population of the species in Tasmania. A major constituent of these extracts, polygodial, was shown to be stored within specialised idioblastic structures scattered throughout the mesophyll, and characterised by distinctive size and shape, and a thickened wall. The contents of these cells were sampled directly, analysed and compared with the composition of extracts derived from ground, dry whole leaf. This result was supported by spectroscopic analysis of undisturbed oil cells in whole leaf tissue. In a two year field trial, the progressive accumulation of a number of leaf extract constituents (linalool, cubebene, caryophyllene, germacrene D, bicyclogermacrene, cadina-1,4 - diene, aristolone and polygodial) during the growth flush was followed by a slow decline during the subsequent dormant season. These results were interpreted in relation to leaf dry matter accumulation, in order to propose a harvest period within which leaf material will produce consistent composition of extract. Under four levels of irradiance in a growth cabinet experiment the plant exhibited many characteristics of a 'shade' species, in particular, a limited ability to acclimate to high light levels. Assimilation rates were highest at 150µmol m-2s-l while elevated respiration rates and a reduced quantum yield occurred at a higher light level. Maximum assimilation rates in leaves grown at 150µmol m-2s-l were obtained at around 250µmol m-2s-l. Optimum net assimilation rate was obtained from 18-25°C. The effect of level of irradiance on the proportion of extractable compounds in the leaf, chlorophyll levels, specific leaf area, leaf thickness and percentage dry matter in the leaf are reported and discussed in relation to a probable production system in which the new canopy is largely removed at the end of each growth cycle. The ontogenetic patterns determining canopy architecture were observed in the field, and used, with support from the results of a trial pruning of mature trees, to discuss the likely outcome of various harvest methods. These results are combined to suggest a production strategy for maximum yield of leaf extract of consistent composition. The strategy proposes harvesting in late summer, after new leaf has achieved full maturity and may enable full canopy recovery in the subsequent growing season. Acknowledeemen ts My supervisor, Professor Bob Menary has supported and advised me throughout the preparation of this thesis and provided me with guidance and encouragement in the years prior to its commencement. The project was part of a Rural Industry Research and Development Corporation sponsored investigation into the Tasmannia lanceolata as a new essential oil crop, supported by North Eucalypt Technologies and Essential Oils of Tasmania. I would like to thank Sandra Garland, Matthew Gregory and Irene Jacobs for technical assistance and Dr Noel Davies for his advice, and his work with the analytical equipment at the Central Science Laboratory, University of Tasmania. My best friend Sue, and our daughter Anna have shared the burden of this process and together with my parents, who instilled in me an enthusiasm for inquiry, they have my heartfelt thanks for their support and inspiration. Tony Read, my uncle, has shown me the benefits of patience and contemplation, both of which I found invaluable during the course of the project. CONTENTS Abstract Acknowledgements Contents 1 Introduction.................................................................................. 1 2 Literature Review 2.0 Introductory...................................................................... 3 2.1 General............................................................................ 3 2.1.l Distribution of the Winteraceae 2.1.2 Medicinal and culinary uses of Winteraceae 2.2 Morphological and anatomical studies of Tasmannia........................ 5 2.3 Extracts of Winteraceae......................................................... 9 2.3.1 Extraction methods 2.3.2 Polygodial - a bioactive sesquiterpene dialdehyde 2.4 Oil Cells as storage sites for secondary metabolites......................... 21 2.4.1 Oil cell development and structure 2.4.2 Oil cell content c/whole tissue extracts 2.4.3 Isolation of oil bearing organs/cells 2.4.4 Sampling the contents of secretory structures 2.4.5 Other methods of determining oil cell contents 2.5 Seasonal changes in oil composition........................................... 30 2.5.1 Commercial production of essential oils 2.5.2 Chemosystematic studies 2.5.3 Ecological and other studies 2.6 Canopy manipulation in tree species........................................... 40 2.6.1 Growth patterns in Tasmannia lanceolata 2.6.2 Classical canopy models 2.6.3 Pruning and canopy management in evergreen tree crops 2. 7 Light acclimation in understorey species ....................................... 46 2.7.1 Photosynthesis in Tasmannia and Drimys spp. 2.7.2 Ecological significance of acclimation 2.7.3 Light level and the accumulation of secondary compounds 2. 7 .4 Effects of light level on photosynthetic and morphological characters 2.8 Harvest strategies for yield and composition of secondary products....... 53 2.9 Conclusion ........................................................................ 54 3 General Materials, Methods and Preliminary Studies 3.1 Extractions ......................................................................... 55 3.2 Extract Analyses .................................................................. 56 3.3 Plant material, growing conditions............................................. 58 3.4 Microscopy....................................................................... 58 3.5 Preliminary investigations ....................................................... 59 3.6 Propagation of Tasmannia lanceolata ........................................... 66 3.7 Other ............................................................................... 71 4 Preparation, extraction and analysis of leaf extracts of Tasmannia lanceolata. 4.0 Introduction...................................................................... 73 4.1 Time and temperature of drying ................................................ 74 4.2 Comminution of leaf material................................................... 78 4.3 Pelletisation and extraction...................................................... 82 4.4 Ethanol degradation of extract components................................... 84 4.5 Effect of storage conditions on extract quality................................ 86 4.6 Quantitative analysis of small leaf samples .................................... 89 4.7 Identification of extract components ............................................ 93 4.8 Injection artefacts of polygodial.. ............................................... 98 4.9 Summary and Conclusions ...................................................... 99 5 Oil Cells in Tasmannia lanceolata. 5.0 Introduction....................................................................... 100 5.1 Oil cell contents: direct sampling and spectroscopic methods ............... 100 5.2 Oil cell ultrastructure: microscopy.............................................. 107 6 Seasonal changes in oil composition 6.0 Introduction...................................................................... 115 6.1 Changes in extract composition during annual cycle......................... 116 6.2 Discussion...................................................................... 132 7 Harvesting for extract yield and composition 7.0 Introduction....................................................................... 134 7.1 The effect of changing light levels on leaf physiology, oil production ..... 135 7.2 Canopy architecture and pruning strategies................................... 153 8 General discussion ..................................... : .................................... 167 9 Bibliography .................................................................................. 177 Appendices .......................................................................................... 192 I CHAPTER 1: INTRODUCTION Interest in 'wild' populations of plant species with a view to cultivation for human consumption has enjoyed a long history. It is of particular contemporary significance, as concerns are raised about the loss of 'non-commercial' species (flora and fauna) through the careless or deliberate activities of agriculture, forestry, mining and urban development. Support for measures to preserve 'biodiversity' hinge on two premises: the
Recommended publications
  • ON TAUNGURUNG LAND SHARING HISTORY and CULTURE Aboriginal History Incorporated Aboriginal History Inc
    ON TAUNGURUNG LAND SHARING HISTORY AND CULTURE Aboriginal History Incorporated Aboriginal History Inc. is a part of the Australian Centre for Indigenous History, Research School of Social Sciences, The Australian National University, and gratefully acknowledges the support of the School of History and the National Centre for Indigenous Studies, The Australian National University. Aboriginal History Inc. is administered by an Editorial Board which is responsible for all unsigned material. Views and opinions expressed by the author are not necessarily shared by Board members. Contacting Aboriginal History All correspondence should be addressed to the Editors, Aboriginal History Inc., ACIH, School of History, RSSS, 9 Fellows Road (Coombs Building), The Australian National University, Acton, ACT, 2601, or [email protected]. WARNING: Readers are notified that this publication may contain names or images of deceased persons. ON TAUNGURUNG LAND SHARING HISTORY AND CULTURE UNCLE ROY PATTERSON AND JENNIFER JONES Published by ANU Press and Aboriginal History Inc. The Australian National University Acton ACT 2601, Australia Email: [email protected] Available to download for free at press.anu.edu.au ISBN (print): 9781760464066 ISBN (online): 9781760464073 WorldCat (print): 1224453432 WorldCat (online): 1224452874 DOI: 10.22459/OTL.2020 This title is published under a Creative Commons Attribution-NonCommercial- NoDerivatives 4.0 International (CC BY-NC-ND 4.0). The full licence terms are available at creativecommons.org/licenses/by-nc-nd/4.0/legalcode Cover design and layout by ANU Press Cover photograph: Patterson family photograph, circa 1904 This edition © 2020 ANU Press and Aboriginal History Inc. Contents Acknowledgements ....................................... vii Note on terminology ......................................ix Preface .................................................xi Introduction: Meeting and working with Uncle Roy ..............1 Part 1: Sharing Taungurung history 1.
    [Show full text]
  • The Vegetation of Robinson Crusoe Island (Isla Masatierra), Juan
    The Vegetation ofRobinson Crusoe Island (Isla Masatierra), Juan Fernandez Archipelago, Chile1 Josef Greimler,2,3 Patricio Lopez 5., 4 Tod F. Stuessy, 2and Thomas Dirnbiick5 Abstract: Robinson Crusoe Island of the Juan Fernandez Archipelago, as is the case with many oceanic islands, has experienced strong human disturbances through exploitation ofresources and introduction of alien biota. To understand these impacts and for purposes of diversity and resource management, an accu­ rate assessment of the composition and structure of plant communities was made. We analyzed the vegetation with 106 releves (vegetation records) and subsequent Twinspan ordination and produced a detailed colored map at 1: 30,000. The resultant map units are (1) endemic upper montane forest, (2) endemic lower montane forest, (3) Ugni molinae shrubland, (4) Rubus ulmifolius­ Aristotelia chilensis shrubland, (5) fern assemblages, (6) Libertia chilensis assem­ blage, (7) Acaena argentea assemblage, (8) native grassland, (9) weed assemblages, (10) tall ruderals, and (11) cultivated Eucalyptus, Cupressus, and Pinus. Mosaic patterns consisting of several communities are recognized as mixed units: (12) combined upper and lower montane endemic forest with aliens, (13) scattered native vegetation among rocks at higher elevations, (14) scattered grassland and weeds among rocks at lower elevations, and (15) grassland with Acaena argentea. Two categories are included that are not vegetation units: (16) rocks and eroded areas, and (17) settlement and airfield. Endemic forests at lower elevations and in drier zones of the island are under strong pressure from three woody species, Aristotelia chilensis, Rubus ulmifolius, and Ugni molinae. The latter invades native forests by ascending dry slopes and ridges.
    [Show full text]
  • Phytophthora Ramorum Sudden Oak Death Pathogen
    NAME OF SPECIES: Phytophthora ramorum Sudden Oak Death pathogen Synonyms: Common Name: Sudden Oak Death pathogen A. CURRENT STATUS AND DISTRIBUTION I. In Wisconsin? 1. YES NO X 2. Abundance: 3. Geographic Range: 4. Habitat Invaded: 5. Historical Status and Rate of Spread in Wisconsin: 6. Proportion of potential range occupied: II. Invasive in Similar Climate YES NO X Zones United States: In 14 coastal California Counties and in Curry County, Oregon. In nursery in Washington. Canada: Nursery in British Columbia. Europe: Germany, the Netherlands, the United Kingdom, Poland, Spain, France, Belgium, and Sweden. III. Invasive in Similar Habitat YES X NO Types IV. Habitat Affected 1. Habitat affected: this disease thrives in cool, wet climates including areas in coastal California within the fog belt or in low- lying forested areas along stream beds and other bodies of water. Oaks associated with understory species that are susceptible to foliar infections are at higher risk of becoming infected. 2. Host plants: Forty-five hosts are regulated for this disease. These hosts have been found naturally infected by P. ramorum and have had Koch’s postulates completed, reviewed and accepted. Approximately fifty-nine species are associated with Phytophthora ramorum. These species are found naturally infected; P. ramorum has been cultured or detected with PCR but Koch’s postulates have not been completed or documented and reviewed. Northern red oak (Quercus rubra) is considered an associated host. See end of document for complete list of plant hosts. National Risk Model and Map shows susceptible forest types in the mid-Atlantic region of the United States.
    [Show full text]
  • Wild Mersey Mountain Bike Development
    Wild Mersey Mountain Bike Development Natural Values Report Warrawee Conservation Area through to Railton Prepared for : Kentish Council and Latrobe Council Report prepared by: Matt Rose Natural State PO Box 139, Ulverstone, TAS, 7315 www.naturalstate.com.au 1 | NATURAL STATE – PO Box 139, Ulverstone TAS 7315. Mobile: 0437 971 144 www.naturalstate.com.au Table of contents Executive Summary ......................................................................................................................................... 5 1 Introduction ................................................................................................................................................ 6 1.1 Background ........................................................................................................................................... 6 1.2 Description of the proposed development activities ...................................................................... 6 1.3 Description of the study areas ............................................................................................................ 8 1.4 The Warrawee Conservation Area ..................................................................................................... 8 1.5 Warrawee to Railton trail ..................................................................................................................... 8 2 Methodology ..............................................................................................................................................
    [Show full text]
  • Research Article the Potential of Tasmannia Lanceolata As a Natural
    The Potential of Tasmannia lanceolata as a Natural Preservative and Medicinal Agent: Antimicrobial Activity and Toxicity Author Winnett, Veronica, Boyer, H., P, Joseph, Cock, Ian Published 2014 Journal Title Pharmacognosy Communications DOI https://doi.org/10.5530/pc.2014.1.7 Copyright Statement © 2014 Phcog.net. The attached file is reproduced here in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version. Downloaded from http://hdl.handle.net/10072/62509 Griffith Research Online https://research-repository.griffith.edu.au Pharmacognosy Communications www.phcogcommn.org Volume 4 | Issue 1 | Jan–Mar 2014 Research Article The potential of tasmannia lanceolata as a natural preservative and medicinal agent: antimicrobial activity and toxicity V. Winnetta, H. Boyerb, J. Sirdaartaa,c and I. E. Cocka,c* aBiomolecular and Physical Sciences, Nathan Campus, Griffith University, 170 Kessels Rd, Nathan, Queensland 4111, Australia bEcole Supérieure d’Ingénieurs en Développement Agroalimentaire Intégré, Université de la Réunion, Parc Technologique, 2 rue Joseph Wetzell, 27490 Sainte Clotilde, Ile de La Réunion cEnvironmental Futures Centre, Nathan Campus, Griffith University, 170 Kessels Rd, Nathan, Queensland 4111, Australia ABSTRACT: Introduction: Tasmannia lanceolata is an endemic Australian plant with a history of use by indigenous Australians as a food and as a medicinal agent. Methods: T. lanceolata solvent extracts were investigated by disc diffusion assay against a panel of bacteria and fungi and their MIC values were determined to quantify and compare their efficacies. Toxicity was determined using the Artemia franciscana nauplii bioassay. Results: All T. lanceolata extracts displayed antibacterial activity in the disc diffusion assay.
    [Show full text]
  • NOTORNIS 27 1980 LAKES of NORTH KAIPARA 3 for Observation Were Far from Suitable
    NOTORNIS Journal of the Ornithological Society of New Zealand Volume 27 Part 1 March 1980 OFFICERS 1979 - 80 President - Mr. B. D. BELL, Wildlife Service, Dept. of Internal Affairs, Private Bag, Wellington Vice-president - Mr. M. L. FALCONER, 188 Miromiro Road, Normandale, Lower Hutt Editor - Mr. B. D. HEATHER, 10 Jocelyn Crescent, Silverstream Treasurer - Mr. H. W. M. HOGG, P.O. Box 3011, Dunedin Secretary - Mr R. S. SLACK, 31 Wyndham Road, Silverstream Council Members: Dr. BEN D. BELL, 45 Gurney Road, Belmont, Lower Hutt Mrs. B. BROWN, 39 Red Hill Road, Papakura Dr. P. C. BULL, 131A Waterloo Road, Lower Hutt Mr D. E. CROCKETT, 21 McMillan Avenue, Kamo, Whangarei Mr. F. C. KINSKY, 338 The Parade, Island Bay, Wellington 5 Mrs. S. M. REED, 4 Mamaku Street, Auckland 5 Mr. R. R. SUTTON, Lorneville, No. 4 R.D., Invercargill Conveners and Organisers: Rare Birds Committee (Acting): Mr. B. D. BELL Beach Patrol: Mr. C. R. VEITCH, Wildlife Service, Dept. of Internal Affairs, P.O. Box 2220, Auckland Card Committee: Mr. R. N. THOMAS, 25 Ravenswood Drive, Forest Hill, Auckland 10 Field Investigation Committee: Mr. B. D. BELL ~ibraria;: Miss A. J. GOODWIN, R.D. 1, Clevtdon Nest, Records: Mr. D. E. CROCKETT Recording (including material for Classified SU-arised Notes) : Mr. R. B. SIBSON, 26 Entrican Avenue, kemuera, Auckland Representative on Member Bodies' Committee of Royal Society of NX.: Mr. B. D. BELL Assistant Editor: Mr A. BLACKBURN, 10 Score Road, isb borne Editor of OSNZ ~ek:Mr'P. SAGAR, 38A Yardley St., Christchurch 4 .SUBSCRIPTIONS AND MEMBERSHIP Annual Subscription: Ordinary member $12; Husband & wife mem- bers $18; Junior'member (under 20) $9; Life mepber $240; Family member (one Notornis per household) ,bein other family of a member in.
    [Show full text]
  • Well-Known Plants in Each Angiosperm Order
    Well-known plants in each angiosperm order This list is generally from least evolved (most ancient) to most evolved (most modern). (I’m not sure if this applies for Eudicots; I’m listing them in the same order as APG II.) The first few plants are mostly primitive pond and aquarium plants. Next is Illicium (anise tree) from Austrobaileyales, then the magnoliids (Canellales thru Piperales), then monocots (Acorales through Zingiberales), and finally eudicots (Buxales through Dipsacales). The plants before the eudicots in this list are considered basal angiosperms. This list focuses only on angiosperms and does not look at earlier plants such as mosses, ferns, and conifers. Basal angiosperms – mostly aquatic plants Unplaced in order, placed in Amborellaceae family • Amborella trichopoda – one of the most ancient flowering plants Unplaced in order, placed in Nymphaeaceae family • Water lily • Cabomba (fanwort) • Brasenia (watershield) Ceratophyllales • Hornwort Austrobaileyales • Illicium (anise tree, star anise) Basal angiosperms - magnoliids Canellales • Drimys (winter's bark) • Tasmanian pepper Laurales • Bay laurel • Cinnamon • Avocado • Sassafras • Camphor tree • Calycanthus (sweetshrub, spicebush) • Lindera (spicebush, Benjamin bush) Magnoliales • Custard-apple • Pawpaw • guanábana (soursop) • Sugar-apple or sweetsop • Cherimoya • Magnolia • Tuliptree • Michelia • Nutmeg • Clove Piperales • Black pepper • Kava • Lizard’s tail • Aristolochia (birthwort, pipevine, Dutchman's pipe) • Asarum (wild ginger) Basal angiosperms - monocots Acorales
    [Show full text]
  • Outline of Angiosperm Phylogeny
    Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese
    [Show full text]
  • Aquatic Macroinvertebrates Were Surveyed According to The
    Site Site location description Zone Easting Northing Date Reach Sampling Length Method (m) FPR- Frying Pan Run downstream of proposed 55 525788 5919001 22/10/2015 N/A WQ DS1 Nordic Bowl altitude training center RVD Rocky Valley Dam reservoir 55 525959 5918863 21/10/2015 N/A WQ Table notes: EF (BP) - Backpack Electrofisher, BT - Bait Trap, DN – Dip Net, Aquatic macroinvertebrates were surveyed according to the techniques described in the Victorian AUSRIVAS Rapid Assessment Method developed by the Victorian Environment Protection Authority (Tiller & Metzeling 2002). This method involves the collection of samples two sampling techniques: slow-flowing river edges (dip- net technique) and fast-flowing riffles (kick-net technique). Macroinvertebrates were live-picked from the samples while in the field, preserved in 70% ethanol and later identified in the laboratory to family level or other taxonomic resolutions stipulated in the AUSRIVAS protocol (Tiller & Metzeling 2002). Results were then analysed using the AUSRIVAS software package, which contains predictive models that assess the ecological health of a monitoring reach by comparing its macroinvertebrate community with those of similar undisturbed reaches within the model. Backpack electrofishing was undertaken at four sites using a Smith Root LR-24 backpack electrofisher. Backpack electrofishing consisted of 500 second of ‘power on’ time at each site. Ten bait traps constructed of 2 millimetre mesh with entrance funnels of 40 millimetre in diameter were set overnight at Rocky Valley Creek Downstream site. Bait traps were deployed in depths of 0.25 to 0.5 metres, typically amongst cover of aquatic vegetation or other forms of cover.
    [Show full text]
  • And According to Bailey & (1943)
    BLUMEA 24 (1978) 521—525 The Winteraceae pf the Old World. III. Notes on the ovary of Takhtajania W. Vink Rijksherbarium, Leiden, Netherlands INTRODUCTION Very recently Baranova & Leroy (Leroy, 1978) published a new genus Takhta- jania to accomodate the aberrant Bubbia perrieri Capuron. The outstanding characters of this genus are the anomocytic stomatal apparatus (Baranova, 1972; Bongers, 1973) and the unilocular bicarpellate ovary (Leroy, 1977, 1978). work the Winteraceae, also studied the of Bub- During my on I single specimen bia perrieri in existence. The late Capuron told me that he had tried to collect additional specimens but that he had not succeeded in doing so; according to him the type locality was completely deforested. In view of the scarcity of the material it was considered relevant to publish some additional notes without delay. MATERIAL AND METHODS I studied three ovaries of the type specimen (Perrier de la Bdthie 10158). One was cut longitudinally, slightly outside the plane of symmetry; another was cut and its half These drawn transversally upper again longitudinally. parts were (figs. 2 and 3) and then cleared according to Bailey & Nast (1943) (figs 5 and third boiled and then sectioned 6). The ovary was serially (fig. 4). OBSERVATIONS One of the ovaries was taken from a flowerbud of which the closed petals were 57 mm high. The diagram of this flowerbud is drawn in fig. 1. The 2 slightly ruptured calyx showed three putative original apices ± alternating with the three bracteoles at the base of the pedicel. The petals are all free. The ovary is its and the flattened, has a longitudinal groove on narrow sides, highest sta- mens are inserted adjoining its broadest sides.
    [Show full text]
  • Reconstructing the Basal Angiosperm Phylogeny: Evaluating Information Content of Mitochondrial Genes
    55 (4) • November 2006: 837–856 Qiu & al. • Basal angiosperm phylogeny Reconstructing the basal angiosperm phylogeny: evaluating information content of mitochondrial genes Yin-Long Qiu1, Libo Li, Tory A. Hendry, Ruiqi Li, David W. Taylor, Michael J. Issa, Alexander J. Ronen, Mona L. Vekaria & Adam M. White 1Department of Ecology & Evolutionary Biology, The University Herbarium, University of Michigan, Ann Arbor, Michigan 48109-1048, U.S.A. [email protected] (author for correspondence). Three mitochondrial (atp1, matR, nad5), four chloroplast (atpB, matK, rbcL, rpoC2), and one nuclear (18S) genes from 162 seed plants, representing all major lineages of gymnosperms and angiosperms, were analyzed together in a supermatrix or in various partitions using likelihood and parsimony methods. The results show that Amborella + Nymphaeales together constitute the first diverging lineage of angiosperms, and that the topology of Amborella alone being sister to all other angiosperms likely represents a local long branch attrac- tion artifact. The monophyly of magnoliids, as well as sister relationships between Magnoliales and Laurales, and between Canellales and Piperales, are all strongly supported. The sister relationship to eudicots of Ceratophyllum is not strongly supported by this study; instead a placement of the genus with Chloranthaceae receives moderate support in the mitochondrial gene analyses. Relationships among magnoliids, monocots, and eudicots remain unresolved. Direct comparisons of analytic results from several data partitions with or without RNA editing sites show that in multigene analyses, RNA editing has no effect on well supported rela- tionships, but minor effect on weakly supported ones. Finally, comparisons of results from separate analyses of mitochondrial and chloroplast genes demonstrate that mitochondrial genes, with overall slower rates of sub- stitution than chloroplast genes, are informative phylogenetic markers, and are particularly suitable for resolv- ing deep relationships.
    [Show full text]
  • Skin Lightening / Brightening Skin Lightening / Brightening
    Skin Lightening / Brightening Skin Lightening / Brightening Açai Oil AlphaWhiteness® (INCI: Euterpe oleracea) (INCI: Bisabolol and Euterpe oleracea fruit oil) Açaí is a fruit rich in vitamins, fatty acids AlphaWhiteness® is a new natural whitening (omega 3, 6, 9) and antioxidants. It shows active with proven efficacy which promotes the nutritious, moisturising and protective lightness, softness, recovery and uniformity of the properties for the skin against negative skin. It intervenes in the production of melanin, actions of external agents. It is effective in inhibiting the enzyme tyrosinase, the rate of α- hyperpigmentation treatments, skin blemish MSH and the transference of pigments to the and dark circles. With sensory action, giving keratinocytes, decreasing the melanogenesis and a velvety texture to the skin. skin darkening. Recommended usage level: 1- 5 % Recommended usage level: 0.1 - 3% Amiperfect ER BeautySYN Bright (INCI: Gaultheria Procumbens (Wintergreen) (INCI: Dextran, Origanum Vulgare Leaf Extract, Leaf Extract) Butylene Glycol) Amiperfect ER is the first 100% natural BeautySYN Bright provides a prolonged skin salicylic acid molecule extracted from luminosity effect from an innovative and patented wintergreen. This amazing alternative to technology which entraps the Origamum Vulgare synthetic salicylic acid is an all-natural Leaf (Oregano) in a natural polymer controlling its product, which provides the effects of a release over time and aiding stability. recognised powerful cosmetic ingredient for Oregano contains Polyphenols which are known a bright complexion, due to it being a for their antioxidant properties and inhibiting powerful cellular regenerator. Tyrosinase. BeautySYN Bright helps to It is the cosmetic ally of mature, dull or oily significantly reduce the number of dark spots after skin with blemishes.
    [Show full text]