Djvu Document
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Clase 9 Magnoliidae-2015.Pdf
Origen y Clasificación de las Angiospermas Son un grupo natural? Cuáles son las novedades evolutivas de las plantas con flor? Cuándo y dónde se originó el grupo? Cuáles son sus antecesores? Cómo eran las primeras plantas con flor? Cuáles son las relaciones con las restantes plantas vasculares? Dra. Susana E. Freire Prof. Titular - Botánica Sistemática II Fac. de Cs. Naturales y Museo, UNLP Filogenia de las Tracheophyta Progymnospermopsidas “Gimnospermae” † † † † Angiospermas Pteridospermopsidas Pinopsidas Rhyniopsidas Lycopsidas Psilophyton Monilophytas Gnetopsidas Gynkgopsidas Cycadopsidas Aneurophyytales Archaeopteridales Hojas retinervadas Doble fecundación / Endosperma Xilema con vasos Tubos cribos con células anexas semilla Óvulos con 2 tegumentos Carpelos cerrados heterosporía + Gametofitos reducidos xilema 2rio + Microsporofilos con 4 sacos polínicos megáfilos Perianto zoofilo ramificación monopodial traqueidas fuertemente engrosadas traqueidas Modificado de Judd et al 2002. Origen de las Angiospermas 130 millones de años Lugar y tiempo de Origen de las Angiospermas 130 millones de años a bajas latitudes Flora del Cretácico Bosques montañosos tropicales: (a) Araucaria (b) Taxodiáceas (c) Cycadáceas (d) Cycadeoideales (a) (e) Lycópsidas (h) (f) Helechos (g) Angiospermas (sa) (h) Angiospermas (h) (i) Gnetópsidas (h, a) (j) Angiospermas (A) Antecesores de las Angiospermas deAntecesores las Lyginopteridales s s e a a l s s i t a a m e r y t l r d e i h y a s t e a o p h s a p p i r o e o o p s o n l e g d d o s o f o u t i k í a t a -
Bioclimatic and Phytosociological Diagnosis of the Species of the Nothofagus Genus (Nothofagaceae) in South America
International Journal of Geobotanical Research, Vol. nº 1, December 2011, pp. 1-20 Bioclimatic and phytosociological diagnosis of the species of the Nothofagus genus (Nothofagaceae) in South America Javier AMIGO(1) & Manuel A. RODRÍGUEZ-GUITIÁN(2) (1) Laboratorio de Botánica, Facultad de Farmacia, Universidad de Santiago de Compostela (USC). E-15782 Santiago de Com- postela (Galicia, España). Phone: 34-881 814977. E-mail: [email protected] (2) Departamento de Producción Vexetal. Escola Politécnica Superior de Lugo-USC. 27002-Lugo (Galicia, España). E-mail: [email protected] Abstract The Nothofagus genus comprises 10 species recorded in the South American subcontinent. All are important tree species in the ex- tratropical, Mediterranean, temperate and boreal forests of Chile and Argentina. This paper presents a summary of data on the phyto- coenotical behaviour of these species and relates the plant communities to the measurable or inferable thermoclimatic and ombrocli- matic conditions which affect them. Our aim is to update the phytosociological knowledge of the South American temperate forests and to assess their suitability as climatic bioindicators by analysing the behaviour of those species belonging to their most represen- tative genus. Keywords: Argentina, boreal forests, Chile, mediterranean forests, temperate forests. Introduction tually give rise to a temperate territory with rainfall rates as high as those of regions with a Tropical pluvial bio- The South American subcontinent is usually associa- climate; iii. finally, towards the apex of the American ted with a tropical environment because this is in fact the Southern Cone, this temperate territory progressively dominant bioclimatic profile from Panamá to the north of gives way to a strip of land with a Boreal bioclimate. -
Susceptibility of Australian Plant Species to Phytophthora Ramorum1
GENERAL TECHNICAL REPORT PSW-GTR-229 Susceptibility of Australian Plant Species to 1 Phytophthora ramorum Kylie Ireland,2,3 Daniel Hüberli,3,4 Bernard Dell,3 Ian Smith,5 David Rizzo,6 and Giles Hardy3 Abstract Phytophthora ramorum is an invasive plant pathogen causing considerable and widespread damage in nurseries, gardens, and natural woodland ecosystems of the United States and Europe, and is classified as a Category 1 pest in Australia. It is of particular interest to Australian plant biosecurity as, like P. cinnamomi; it has the potential to become a major economic and ecological threat in areas with susceptible hosts and conducive climates. Research was undertaken in California to assess pathogenicity of P. ramorum on Australian native plants. Sixty-eight test species within 24 families were sourced from established gardens and arboretums. Foliar and branch susceptibility were tested using detached leaf and branch assays. The experiment was repeated to account for seasonality. Initial results indicate the majority of species tested were susceptible to varying degrees. Of particular interest are the high levels of variability within the eucalypts, low levels of susceptibility within the Pittosporaceae family, and a concerning number of latent or asymptomatic infections. Introduction Phytophthora ramorum, the cause of sudden oak death in California, is an invasive plant pathogen causing considerable and widespread damage in nurseries, gardens, and natural woodland ecosystems of the United States (U.S.) and Europe (Werres and others 2001, Rizzo and others 2002, Brasier and others 2004). Classified as a Category 1 pest in Australia (Plant Health Australia 2006), it is of particular concern to Australian plant biosecurity as, like P. -
HERNANDIACEAE 1. HERNANDIA Linnaeus, Sp. Pl. 2: 981. 1753. 2
HERNANDIACEAE 莲叶桐科 lian ye tong ke Li Xiwen (李锡文 Li Hsi-wen)1, Li Jie (李捷)2; Brigitta E. E. Duyfjes3 Trees, shrubs, or scandent lianas. Leaves simple or palmately compound, petiolate, circinate and scandent in part, estipulate. Flowers bisexual, unisexual, or polygamous, actinomorphic, in axillary or terminal corymbs or cymose panicles, with bracts or not. Outer tepals (sepals) 3–5. Inner tepals (petals) similar to outer ones. Stamens 3–5; filament bases with appendages on external sides or not; anthers 2-celled; cells valvate. Ovary inferior, 1-loculed, 1-ovuled; ovule pendulous. Drupe ± costate, broadly 2–4-winged or enclosed in an inflated cupule and wings absent. Seed 1, exalbuminous, coat leathery. About four genera and 60 species: tropical regions of E and W Africa, SE Asia, NE Australasia, and Central and South America; two genera and 16 species (seven endemic) in China. Li Ya-rü. 1982. Hernandiaceae. In: Li Hsi-wen, ed., Fl. Reipubl. Popularis Sin. 31: 463–480. 1a. Trees; leaves simple, peltate or not; fruit enclosed in an inflated cupule; flowers unisexual ........................................ 1. Hernandia 1b. Lianas; leaves trifoliolate; fruit broadly 2–4-winged; flowers bisexual .............................................................................. 2. Illigera 1. HERNANDIA Linnaeus, Sp. Pl. 2: 981. 1753. 莲叶桐属 lian ye tong shu Biasolettia C. Presl. Trees, evergreen, monoecious. Leaves alternate, simple, petiolate, peltately attached or not, broadly ovate or subcircular, 3–7- veined. Flowers 3–5(or 6)-merous, unisexual, pedicellate, ternately involucrate at apices of branches of a lax panicle; central flower with a cupular involucel at base, lateral ones staminate; involucral bracts 4 or 5, subvalvate in bud. -
WIAD CONSERVATION a Handbook of Traditional Knowledge and Biodiversity
WIAD CONSERVATION A Handbook of Traditional Knowledge and Biodiversity WIAD CONSERVATION A Handbook of Traditional Knowledge and Biodiversity Table of Contents Acknowledgements ...................................................................................................................... 2 Ohu Map ...................................................................................................................................... 3 History of WIAD Conservation ...................................................................................................... 4 WIAD Legends .............................................................................................................................. 7 The Story of Julug and Tabalib ............................................................................................................... 7 Mou the Snake of A’at ........................................................................................................................... 8 The Place of Thunder ........................................................................................................................... 10 The Stone Mirror ................................................................................................................................. 11 The Weather Bird ................................................................................................................................ 12 The Story of Jelamanu Waterfall ......................................................................................................... -
Supplementary Information Of
Supplementary Information of Elevated CO2 and Global Greening during the early Miocene Tammo Reichgelt1,2, William J. D’Andrea1, Ailín del C. Valdivia-McCarthy1, Bethany R.S. Fox3, Jennifer M. Bannister4, John G. Conran5, William G. Lee6,7, Daphne E. Lee8 Correspondence to: Tammo Reichgelt ([email protected]) • Section S1: Morphotype Identification • Figure S1: Examples of cuticles of morphotypes A–K • Figure S2: Examples of cuticles of morphotypes L–V • Table S1: Measurements of stomatal density, pore length, guard cell width, leaf and air carobn isotopic composition of fossil leaves from Foulden Maar. • Table S2: Assimilation rate range of modern living relatives. • Table S3: Intrinsic water use efficiency, conductance to water, total annual carbon gain and length of the growing season. • Table S4: Output of reconstructed atmospheric carbon dioxide, carbon assimilation rates, leaf conductance to water, and intrinsic water use efficiency of Foulden Maar fossil leaves. • References for morphotype identification. Morphotype identification 18 distinct leaf morphotypes were identified based on microscopic anatomical features. Some leaf types were assigned to previously described species from surface exposures at Foulden Maar, others were tentatively assigned genera or families. Below are the leaf fossils assigned to different morphotypes, together with defining anatomical characteristics and justification of assignment to a specific plant group. Morphotype: A. Samples: (25) 9-09-50-1, 14-02-40-5, 17-91-70-1, 17-91-70-5, 17-91-70-7, 17-91-70-8, 18-19-99-1, 31- 19-10-1, 31-19-20-3, 31-19-20-4, 32-20-30-1, 32-20-60-1, 38-97-90-10, 40-93-80-4, 41-88-12-1, 41-88- 28-4, 41-88-28-7, 42-85-0-2, 56-31-20-1, 62-19-2-1, 63-19-95-3, 83-48-86-2 (Fig. -
Heterodichogamy.Pdf
Research Update TRENDS in Ecology & Evolution Vol.16 No.11 November 2001 595 How common is heterodichogamy? Susanne S. Renner The sexual systems of plants usually Heterodichogamy differs from normal (Zingiberales). These figures probably depend on the exact spatial distribution of dichogamy, the temporal separation of underestimate the frequency of the gamete-producing structures. Less well male and female function in flowers, in heterodichogamy. First, the phenomenon known is how the exact timing of male and that it involves two genetic morphs that is discovered only if flower behavior is female function might influence plant occur at a 1:1 ratio. The phenomenon was studied in several individuals and in mating. New papers by Li et al. on a group discovered in walnuts and hazelnuts5,6 natural populations. Differential of tropical gingers describe differential (the latter ending a series of Letters to movements and maturation of petals, maturing of male and female structures, the Editor about hazel flowering that styles, stigmas and stamens become such that half the individuals of a began in Nature in 1870), but has gone invisible in dried herbarium material, population are in the female stage when almost unnoticed7. Indeed, its recent and planted populations deriving from the other half is in the male stage. This discovery in Alpinia was greeted as a vegetatively propagated material no new case of heterodichogamy is unique new mechanism, differing ‘from other longer reflect natural morph ratios. The in involving reciprocal movement of the passive outbreeding devices, such as discovery of heterodichogamy thus styles in the two temporal morphs. dichogamy…and heterostyly in that it depends on field observations. -
Camphor Laurels' Ecological Management & Restoration
emr_399.fm Page 88 Wednesday, July 9, 2008 8:54 AM FEATURE doi: 10.1111/j.1442-8903.2008.00399.x PotentialBlackwell Publishing Asia value of weedy regrowth for rainforest restoration By John Kanowski, Carla P. Catterall and Wendy Neilan Weeds are (usually justifiably) considered ‘bad’! But what about when weedy regrowth supports native species and facilitates the conversion of retired pasture back to functioning rainforest? Figure 1. The Topknot Pigeon (Lopholaimus antarcticus), a rainforest pigeon which feeds on the fruit of Camphor Laurel (Cinnamomum camphora) in north-east New South Wales, Australia. The Topknot Pigeon forages in large flocks and can travel tens of kilometres daily. For these reasons, it is an important long-distance disperser of rainforest plants to stands of Camphor Laurel (as well as being a disperser of Camphor Laurel to other forest types). (Photo: Terry M. Reis.) Introduction and subtropical Australia, many small restoration plantings have been estab- ustralian rainforests have been the lished, mostly utilizing a diverse range Afocus of much conservation and of locally occurring species, planted at restoration effort in the past few high densities (Kooyman 1996; Free- decades. Governments, community body 2007). Research has shown that John Kanowski is a Research Fellow and groups and individuals have invested these restoration plantings can develop Carla Catterall is an Associate Professor in the tens of millions of dollars to rehabi- a rainforest-like structure and support School of Environment, Griffith University (Nathan, litate degraded remnants and replant a moderate diversity of rainforest fauna Qld 4111, Australia; Tel. +61 (0) 7 3735 3823; rainforest trees in tropical and subtropical (Fig. -
Plant Life of Western Australia
INTRODUCTION The characteristic features of the vegetation of Australia I. General Physiography At present the animals and plants of Australia are isolated from the rest of the world, except by way of the Torres Straits to New Guinea and southeast Asia. Even here adverse climatic conditions restrict or make it impossible for migration. Over a long period this isolation has meant that even what was common to the floras of the southern Asiatic Archipelago and Australia has become restricted to small areas. This resulted in an ever increasing divergence. As a consequence, Australia is a true island continent, with its own peculiar flora and fauna. As in southern Africa, Australia is largely an extensive plateau, although at a lower elevation. As in Africa too, the plateau increases gradually in height towards the east, culminating in a high ridge from which the land then drops steeply to a narrow coastal plain crossed by short rivers. On the west coast the plateau is only 00-00 m in height but there is usually an abrupt descent to the narrow coastal region. The plateau drops towards the center, and the major rivers flow into this depression. Fed from the high eastern margin of the plateau, these rivers run through low rainfall areas to the sea. While the tropical northern region is characterized by a wet summer and dry win- ter, the actual amount of rain is determined by additional factors. On the mountainous east coast the rainfall is high, while it diminishes with surprising rapidity towards the interior. Thus in New South Wales, the yearly rainfall at the edge of the plateau and the adjacent coast often reaches over 100 cm. -
Hernandia Nymphaeifolia (C.Presl) Kubitzki Family: Hernandiaceae Kubitzki, K
Australian Tropical Rainforest Plants - Online edition Hernandia nymphaeifolia (C.Presl) Kubitzki Family: Hernandiaceae Kubitzki, K. (1969) Botanische Jahrbucher 90 89: 272. Common name: Hernandia; Sea Hearse Stem White granular and brown fibrous stripes usually visible in the outer blaze. Bark pale brown. Leaves Petiole often pink where it joins the twig and also at its junction with the leaf blade. Leaf blades about 7-33 x 6-29 cm. Petioles about 5-17 cm long. Flowers Perianth outer surface puberulous. Tepals about 5 mm long. Anther valves opening like doors, i.e. on vertical hinges. Ovary in the female flower enclosed in a truncate involucre. Stigma irregularly Fruit. © Australian Plant Image shaped. Index (APII). Photographer: M. Fruit Fagg. Fruits enclosed in an inflated envelope about 3.5-4 cm long. Fruits +/- globular, about 25 x 20 mm, somewhat inflated and vertically ribbed, constricted below the apex, endocarp or testa quite hard and tough. Seedlings Usually 2-4 cataphylls produced before the first true leaves. First pair of true leaves ovate to cordate. At the tenth leaf stage: leaves peltate, apex acuminate, base rounded, upper surface glabrous, underside puberulous; petiole puberulous at least towards the apex, about as long as the leaf blade. Seed germination time 23 to 64 days. Distribution and Ecology Fruit, three views and longitudinal Occurs in NT, CYP and NEQ with an altitudinal range of a few metres above sea level. Grows on section. © W. T. Cooper beaches, rocky shorelines and in beach forest. Also occurs in East Africa, India, SE Asia, Malesia and the Pacific islands. -
Reconstructing the Basal Angiosperm Phylogeny: Evaluating Information Content of Mitochondrial Genes
55 (4) • November 2006: 837–856 Qiu & al. • Basal angiosperm phylogeny Reconstructing the basal angiosperm phylogeny: evaluating information content of mitochondrial genes Yin-Long Qiu1, Libo Li, Tory A. Hendry, Ruiqi Li, David W. Taylor, Michael J. Issa, Alexander J. Ronen, Mona L. Vekaria & Adam M. White 1Department of Ecology & Evolutionary Biology, The University Herbarium, University of Michigan, Ann Arbor, Michigan 48109-1048, U.S.A. [email protected] (author for correspondence). Three mitochondrial (atp1, matR, nad5), four chloroplast (atpB, matK, rbcL, rpoC2), and one nuclear (18S) genes from 162 seed plants, representing all major lineages of gymnosperms and angiosperms, were analyzed together in a supermatrix or in various partitions using likelihood and parsimony methods. The results show that Amborella + Nymphaeales together constitute the first diverging lineage of angiosperms, and that the topology of Amborella alone being sister to all other angiosperms likely represents a local long branch attrac- tion artifact. The monophyly of magnoliids, as well as sister relationships between Magnoliales and Laurales, and between Canellales and Piperales, are all strongly supported. The sister relationship to eudicots of Ceratophyllum is not strongly supported by this study; instead a placement of the genus with Chloranthaceae receives moderate support in the mitochondrial gene analyses. Relationships among magnoliids, monocots, and eudicots remain unresolved. Direct comparisons of analytic results from several data partitions with or without RNA editing sites show that in multigene analyses, RNA editing has no effect on well supported rela- tionships, but minor effect on weakly supported ones. Finally, comparisons of results from separate analyses of mitochondrial and chloroplast genes demonstrate that mitochondrial genes, with overall slower rates of sub- stitution than chloroplast genes, are informative phylogenetic markers, and are particularly suitable for resolv- ing deep relationships. -
Southern Gulf, Queensland
Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations.