Phylogeny and Historical Biogeography of Lauraceae

Total Page:16

File Type:pdf, Size:1020Kb

Phylogeny and Historical Biogeography of Lauraceae PHYLOGENY Andre'S. Chanderbali,2'3Henk van der AND HISTORICAL Werff,3 and Susanne S. Renner3 BIOGEOGRAPHY OF LAURACEAE: EVIDENCE FROM THE CHLOROPLAST AND NUCLEAR GENOMES1 ABSTRACT Phylogenetic relationships among 122 species of Lauraceae representing 44 of the 55 currentlyrecognized genera are inferredfrom sequence variation in the chloroplast and nuclear genomes. The trnL-trnF,trnT-trnL, psbA-trnH, and rpll6 regions of cpDNA, and the 5' end of 26S rDNA resolved major lineages, while the ITS/5.8S region of rDNA resolved a large terminal lade. The phylogenetic estimate is used to assess morphology-based views of relationships and, with a temporal dimension added, to reconstructthe biogeographic historyof the family.Results suggest Lauraceae radiated when trans-Tethyeanmigration was relatively easy, and basal lineages are established on either Gondwanan or Laurasian terrains by the Late Cretaceous. Most genera with Gondwanan histories place in Cryptocaryeae, but a small group of South American genera, the Chlorocardium-Mezilauruls lade, represent a separate Gondwanan lineage. Caryodaphnopsis and Neocinnamomum may be the only extant representatives of the ancient Lauraceae flora docu- mented in Mid- to Late Cretaceous Laurasian strata. Remaining genera place in a terminal Perseeae-Laureae lade that radiated in Early Eocene Laurasia. Therein, non-cupulate genera associate as the Persea group, and cupuliferous genera sort to Laureae of most classifications or Cinnamomeae sensu Kostermans. Laureae are Laurasian relicts in Asia. The Persea group and Cinnamomum group (of Cinnamomeae) show tropical amphi-Pacific disjunctions here credited to disruption of boreotropical ranges by Eocene-Oligocene climatic cooling. The Ocotea complex accommodates re- maining Cinnamomeae and shows a trans-Atlantic disjunction possibly derived from a Madrean-Tethyan ancestral distribution.These findings support Laurasian ancestry for most extant Lauraceae, with their considerable neotropical representationprimarily derived fromEarly Miocene radiation of the Ocotea complex upon reaching South America. Key words: biogeography,boreotropical, chloroplast DNA, Gondwana, Lauraceae, Laurasia, Madrean-Tethyan,mo- lecular clock, phylogeny,ribosomal DNA. Lauraceae forma large familyof woodyplants prominent components of lowland forests and are (except the herbaceous parasite Cassytha),with frequentlydominant elements in montane vegeta- about50 generaand 2500 to 3000 species distrib- tion (Gentry,1988). uted throughouttropical to subtropicallatitudes. Given their antiquity, widespread distribution, They are among the more speciose basal angio- and ecological prominence, Lauraceae provide a spermfamilies and have a fossilrecord that reaches model system for investigating angiosperm bioge- back to the Mid-Cretaceous(Drinnan et al., 1990; ography. Moreover, the three tribes recognized by Eklund & Kvacek, 1998). Currenttaxonomic di- van der Werffand Richter (1996) suggest thatmajor versityis centeredin tropicalAmerica and Aus- divisions in the familydraw along geographic lines. tralasia,and althoughpoorly represented in conti- Laureae include three genera with North Ameri- nentalAfrica, Lauraceae flourishin Madagascar.In can-Asian disjunctions (Litsea, Lindera, Sassafras), the Americantropics they list among the most Mediterranean Laurus, and Asian endemics (e.g., I The authorsthank anonymous reviewers for insightful comments; K. Ueda foreight unpublished trnL-trnF sequenc- es; J. Rohwerfor six unpublishedITS sequences; M. Zanis forfive at the timeunpublished ITS/5.8S/26S sequences; Y-L. Qiu forproviding three DNA aliquots;the HarvardHerbaria for providing leaf materialof Eusideroxylon; Andrea Schwarzbachfor guidance in moleculartechniques; and innumerablecolleagues who helped to collect materialof Lauraceae forthis study.This studywas undertakenas partof ASC's doctoraldissertation research at the University of Missouri-St.Louis, and was supportedby grantsfrom the MallinckrodtFoundation administered by theInternational Centerfor Tropical Ecology, University of Missouri-St. Louis, and fromthe Smithsonian Institution's Biological Diversity ofthe Guianas Program to ASC; NationalGeographic Society grants 4631-91, 5635-96,and 6571-99 to HW; and grants fromthe Universityof Missourisystem and Universityof Missouri-St.Louis to SSR. This articleis Number45 in the SmithsonianInstitution's Biological Diversity of the Guianas Publicationseries. 2Department of Biology,University of Missouri-St.Louis,8001 NaturalBridge Road, St. Louis, Missouri63121- 4499, U.S.A. 3Missouri BotanicalGarden, P.O. Box 299, St. Louis, Missouri63166, U.S.A. ANN. MISSOURI BOT. GARD. 88: 104-134. 2001. This content downloaded on Thu, 21 Feb 2013 09:43:34 AM All use subject to JSTOR Terms and Conditions Volume 88, Number1 Chanderbaliet al. 105 2001 Phylogenyand Biogeographyof Lauraceae Actinodaphneand Neolitsea). Cryptocaryeaein- lowedthat Persea was an "old Laurasiangenus" but clude pantropicalBeilschmiedia and Cryptocarya, suggestedthat subgenus Eriodaphne, like all other and other predominantlySouthern Hemispheric membersof the family,arrived in South America generawith narrower ranges (e.g., Endiandra and via Africa.Alternatively, Taylor (1988) suggested Potameia).Perseeae are centeredin theNeotropics that the fossil flowerAndroglandula tennessensis withthree widespread genera. Cinnamomum is dis- Taylor,from the Eocene of NorthAmerica, is com- junct between the American and Asian parable to Cinnamomum,Ocotea, and Nectandra, (sub)tropics;Persea (includingMachilus) ranges indicatinga boreotropicalhistory for this groupof throughoutthe Neotropics(into the southeastern genera,with subsequent migration to SouthAmer- U.S.), theCanary Islands, and Asia; and Ocoteahas ica. Raven and Axelrod(1974) and Taylor(1988) about300 neotropicalspecies, one in Macaronesia, allowed thatalthough differing in the directionof a fewin Africa,and about30 morein Madagascar. migration,the high level of species diversityand Apartfrom a fewAsian genera(e.g., Dehaasia and genericendemism require a Late Cretaceous-Early Phoebe) consideredclosely related to Persea, all Tertiaryarrival in SouthAmerica. In contrast,Roh- othergenera of Perseeae are endemicto the Neo- wer and Kubitzki(1993) preferreda morerecent tropics(e.g., Aiouea, Aniba, Endlicheria,Licaria, arrivalof this group,possibly as late as the Plio- Nectandra,Pleurothyrium, and Rhodostemonoda- cene closureof the PanamanianIsthmus, followed phne). The distributionsof Laureae and Cryptocar- by rapid radiationin SouthAmerica. yeae are consistentwith Laurasian and Gondwanan These alternativeviews are here assessed by histories,respectively, but thatof Perseeae is am- addinga temporaldimension to a phylogenetices- biguous in this regard.The trans-Atlanticdistri- timatefor Lauraceae reconstructedwith molecular butionof Ocoteasuggests West Gondwanan history, charactersretrieved from both chloroplast and nu- but the tropicalamphi-Pacific distributions of Cin- clear genomes. namomumand Persea suggestLaurasian affinities. Whetheror not these ambiguitiesare artifactsof MATERIALS AND METHODS tribaland/or generic circumscription is unclear. The systematicsof Lauraceae is unsettled.Lau- TAXON AND MOLECULAR SAMPLING reae are recognizedin most priorclassifications, A total of 131 species, 122 representing44 of but othertribal concepts are not widelyaccepted. the 55 currentlyrecognized genera of Lauraceae, Van der Werffand Richter's(1996) Cryptocaryeae and 9 representing3 outgroupfamilies (Gomorte- and Perseeae are revised concepts supportedby gaceae, Hernandiaceae,and Monimiaceae)were in- Richter's(1981) studyof wood and bark anatomy. cluded in this study.Seventy-seven in-group spe- Some aspects of Cryptocaryeaegain supportfrom cies wereincluded in a broad-scalestudy based on embryology(Heo et al., 1998), but charactersfor sequence variationin the trnL-trnFand psbA-trnH furthersubdivision of the family were not found. A intergenicspacers of cpDNA. Guided by the find- cladisticanalysis of molecular data (Rohwer,2000) ings of this molecularand taxonsampling a two- also providedsupport for Cryptocaryeae and united tieredapproach was adoptedto obtainbetter rep- Perseeae and Laureae in a well-supportedbut un- resentationand phylogeneticresolution at the resolved lade. This Perseeae-Laureae lade ac- genericlevel. Thus a subset of the species repre- commodatesmost of the family, and its distribution sentingbasal lineages in Lauraceae was also se- implies a disjunctionbetween the Americanand quenced forthe trnT-trnL spacer, and therpll6 in- Asian tropicswith a minorAfrican presence. Such tronof cpDNA, as well as the 5' end of26S rDNA, distributionscan be creditedto extinctionof Gond- while 94 species representingPerseeae, Laureae, wanan lineages in Africa(e.g., Raven & Axelrod, and theirsister group were sampled forthe ITS/ 1974), butLaurasian ancestry followed by radiation 5.8S regionof nrDNA.Table 1 providesGenBank in tropicalAsia and Americawas favoredby Roh- informationfor all accessions. wer(2000). TropicalAsia is acknowledgedas a har- bor for Laurasian relicts (e.g., Wolfe,1975), but DNA EXTRACTION, PCR AMPLIFICATION, AND Rohwer'shypothesis that the approximately800 SEQUENCING neotropicalspecies of Perseeae are derivedfrom Laurasianimmigrants contrasts with the Gondwan- Total DNA was obtainedfrom silica-gel-dried, an origincredited to mostmajor neotropical plant herbarium,or freshleaves usingDneasy (QIAGEN) groups(e.g., Raven & Axelrod,1974; Gentry,1982; extractionkits. PCR amplificationof
Recommended publications
  • Evolutionary Comparisons of the Chloroplast Genome in Lauraceae and Insights Into Loss Events in the Magnoliids
    GBE Evolutionary Comparisons of the Chloroplast Genome in Lauraceae and Insights into Loss Events in the Magnoliids Yu Song1,2,†,Wen-BinYu1,2,†, Yunhong Tan1,2,†, Bing Liu3,XinYao1,JianjunJin4, Michael Padmanaba1, Jun-Bo Yang4,*, and Richard T. Corlett1,2,* 1Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China 2Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw, Myanmar 3State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China 4Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China *Corresponding authors: E-mails: [email protected]; [email protected]. †These authors contributed equally to this work. Accepted: September 1, 2017 Data deposition: This project has been deposited at GenBank of NCBI under the accession number MF939337 to MF939351. Abstract Available plastomes of the Lauraceae show similar structure and varied size, but there has been no systematic comparison across the family. In order to understand the variation in plastome size and structure in the Lauraceae and related families of magnoliids, we here compare 47 plastomes, 15 newly sequenced, from 27 representative genera. We reveal that the two shortest plastomes are in the parasitic Lauraceae genus Cassytha, with lengths of 114,623 (C. filiformis) and 114,963 bp (C. capillaris), and that they have lost NADH dehydrogenase (ndh) genes in the large single-copy region and one entire copy of the inverted repeat (IR) region. The plastomes of the core Lauraceae group, with lengths from 150,749 bp (Nectandra angustifolia) to 152,739 bp (Actinodaphne trichocarpa), have lost trnI-CAU, rpl23, rpl2,afragmentofycf2, and their intergenic regions in IRb region, whereas the plastomes of the basal Lauraceae group, with lengths from 157,577 bp (Eusideroxylon zwageri) to 158,530 bp (Beilschmiedia tungfangen- sis), have lost rpl2 in IRa region.
    [Show full text]
  • Cassytha Pubescens
    Cassytha pubescens: Germination biology and interactions with native and introduced hosts Hong Tai (Steven), Tsang B.Sc. Hons (University of Adelaide) Thesis submitted for the degree of Master of Science School of Earth & Environmental Science University of Adelaide, Australia 03/05/2010 i Table of Contents Table of Contents ........................................................................................................... ii Abstract .......................................................................................................................... v Declaration ................................................................................................................... vii Acknowledgements .................................................................................................... viii Chapter. 1 Introduction .................................................................................................. 1 1.1 General Introduction ............................................................................................ 1 1.2 Literature Review ................................................................................................. 3 1.2.1 Characteristics of parasitic control agents .................................................... 3 1.2.2. Direct impacts on hosts ................................................................................ 7 1.2.3. Indirect impacts on hosts ............................................................................. 8 1.2.4. Summary ...................................................................................................
    [Show full text]
  • Tropical Plant-Animal Interactions: Linking Defaunation with Seed Predation, and Resource- Dependent Co-Occurrence
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2021 TROPICAL PLANT-ANIMAL INTERACTIONS: LINKING DEFAUNATION WITH SEED PREDATION, AND RESOURCE- DEPENDENT CO-OCCURRENCE Peter Jeffrey Williams Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Williams, Peter Jeffrey, "TROPICAL PLANT-ANIMAL INTERACTIONS: LINKING DEFAUNATION WITH SEED PREDATION, AND RESOURCE-DEPENDENT CO-OCCURRENCE" (2021). Graduate Student Theses, Dissertations, & Professional Papers. 11777. https://scholarworks.umt.edu/etd/11777 This Dissertation is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. TROPICAL PLANT-ANIMAL INTERACTIONS: LINKING DEFAUNATION WITH SEED PREDATION, AND RESOURCE-DEPENDENT CO-OCCURRENCE By PETER JEFFREY WILLIAMS B.S., University of Minnesota, Minneapolis, MN, 2014 Dissertation presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biology – Ecology and Evolution The University of Montana Missoula, MT May 2021 Approved by: Scott Whittenburg, Graduate School Dean Jedediah F. Brodie, Chair Division of Biological Sciences Wildlife Biology Program John L. Maron Division of Biological Sciences Joshua J. Millspaugh Wildlife Biology Program Kim R. McConkey School of Environmental and Geographical Sciences University of Nottingham Malaysia Williams, Peter, Ph.D., Spring 2021 Biology Tropical plant-animal interactions: linking defaunation with seed predation, and resource- dependent co-occurrence Chairperson: Jedediah F.
    [Show full text]
  • Native Trees of Mexico: Diversity, Distribution, Uses and Conservation
    Native trees of Mexico: diversity, distribution, uses and conservation Oswaldo Tellez1,*, Efisio Mattana2,*, Mauricio Diazgranados2, Nicola Kühn2, Elena Castillo-Lorenzo2, Rafael Lira1, Leobardo Montes-Leyva1, Isela Rodriguez1, Cesar Mateo Flores Ortiz1, Michael Way2, Patricia Dávila1 and Tiziana Ulian2 1 Facultad de Estudios Superiores Iztacala, Av. De los Barrios 1, Los Reyes Iztacala Tlalnepantla, Universidad Nacional Autónoma de México, Estado de México, Mexico 2 Wellcome Trust Millennium Building, RH17 6TN, Royal Botanic Gardens, Kew, Ardingly, West Sussex, United Kingdom * These authors contributed equally to this work. ABSTRACT Background. Mexico is one of the most floristically rich countries in the world. Despite significant contributions made on the understanding of its unique flora, the knowledge on its diversity, geographic distribution and human uses, is still largely fragmented. Unfortunately, deforestation is heavily impacting this country and native tree species are under threat. The loss of trees has a direct impact on vital ecosystem services, affecting the natural capital of Mexico and people's livelihoods. Given the importance of trees in Mexico for many aspects of human well-being, it is critical to have a more complete understanding of their diversity, distribution, traditional uses and conservation status. We aimed to produce the most comprehensive database and catalogue on native trees of Mexico by filling those gaps, to support their in situ and ex situ conservation, promote their sustainable use, and inform reforestation and livelihoods programmes. Methods. A database with all the tree species reported for Mexico was prepared by compiling information from herbaria and reviewing the available floras. Species names were reconciled and various specialised sources were used to extract additional species information, i.e.
    [Show full text]
  • Morphological Nature of Floral Cup in Lauraceae
    l~Yoc. Indian Acad. Sci., Vol. 88 B, Part iI, Number 4, July 1979, pp. 277-281, @ printed in India. Morphological nature of floral cup in Lauraceae S PAL School of Plant Morphology, Meerut College, Meerut 250 001 MS received 19 June 1978 Abstract. On the basis of anatomical criteria the floral cup of Lauraceae can be regarded as appendicular, as the traces entering into the floral cup are morphologi- cally compound, differentiated into tepal and stamen traces at higher levels. The ontogenetic studies also support this contention. The term Perigynous hypanthium is retained for the floral cup of Lauraceae as it is formed as a result of intercalary growth occurring underneath the region of perianth and androecium. Keywords. Lauraceae; floral cup; morphological nature; appendicular; peri- gynous hypanthium. 1. Introduction The family Lauraceae has received comparatively little attention from earlier workers because of difficulty in procuring the material. So far very little work has been done on the floral anatomy of this family (Reece 1939 ; Sastri 1952 ; Pal 1974). There has been considerable difference of opinion regarding the nature of floral cup in angiosperms. The present work was initiated to study the morphological nature of the floral cup. 2. Materials and methods The present investigation embodies the results of observations on 21 species of the Lauraceae. The material of Machilus duthiei King ex Hook.f., M. odoratissima Nees, Persea gratissima Gaertn.f., Phoebe cooperiana Kanjilal and Das, P. goal- parensis Hutch., P. hainesiana Brandis, Alseodaphne keenanii Gamble, A. owdeni Parker, Cinnamomum camphora Nees and Eberm, C. cecidodaphne Meissn., C. tamala Nees and Eberm, C.
    [Show full text]
  • Introduction Methods Results
    Papers and Proceedings Royal Society ofTasmania, Volume 1999 103 THE CHARACTERISTICS AND MANAGEMENT PROBLEMS OF THE VEGETATION AND FLORA OF THE HUNTINGFIELD AREA, SOUTHERN TASMANIA by J.B. Kirkpatrick (with two tables, four text-figures and one appendix) KIRKPATRICK, J.B., 1999 (31:x): The characteristics and management problems of the vegetation and flora of the Huntingfield area, southern Tasmania. Pap. Proc. R. Soc. Tasm. 133(1): 103-113. ISSN 0080-4703. School of Geography and Environmental Studies, University ofTasmania, GPO Box 252-78, Hobart, Tasmania, Australia 7001. The Huntingfield area has a varied vegetation, including substantial areas ofEucalyptus amygdalina heathy woodland, heath, buttongrass moorland and E. amygdalina shrubbyforest, with smaller areas ofwetland, grassland and E. ovata shrubbyforest. Six floristic communities are described for the area. Two hundred and one native vascular plant taxa, 26 moss species and ten liverworts are known from the area, which is particularly rich in orchids, two ofwhich are rare in Tasmania. Four other plant species are known to be rare and/or unreserved inTasmania. Sixty-four exotic plantspecies have been observed in the area, most ofwhich do not threaten the native biodiversity. However, a group offire-adapted shrubs are potentially serious invaders. Management problems in the area include the maintenance ofopen areas, weed invasion, pathogen invasion, introduced animals, fire, mechanised recreation, drainage from houses and roads, rubbish dumping and the gathering offirewood, sand and plants. Key Words: flora, forest, heath, Huntingfield, management, Tasmania, vegetation, wetland, woodland. INTRODUCTION species with the most cover in the shrub stratum (dominant species) was noted. If another species had more than half The Huntingfield Estate, approximately 400 ha of forest, the cover ofthe dominant one it was noted as a codominant.
    [Show full text]
  • Heterodichogamy.Pdf
    Research Update TRENDS in Ecology & Evolution Vol.16 No.11 November 2001 595 How common is heterodichogamy? Susanne S. Renner The sexual systems of plants usually Heterodichogamy differs from normal (Zingiberales). These figures probably depend on the exact spatial distribution of dichogamy, the temporal separation of underestimate the frequency of the gamete-producing structures. Less well male and female function in flowers, in heterodichogamy. First, the phenomenon known is how the exact timing of male and that it involves two genetic morphs that is discovered only if flower behavior is female function might influence plant occur at a 1:1 ratio. The phenomenon was studied in several individuals and in mating. New papers by Li et al. on a group discovered in walnuts and hazelnuts5,6 natural populations. Differential of tropical gingers describe differential (the latter ending a series of Letters to movements and maturation of petals, maturing of male and female structures, the Editor about hazel flowering that styles, stigmas and stamens become such that half the individuals of a began in Nature in 1870), but has gone invisible in dried herbarium material, population are in the female stage when almost unnoticed7. Indeed, its recent and planted populations deriving from the other half is in the male stage. This discovery in Alpinia was greeted as a vegetatively propagated material no new case of heterodichogamy is unique new mechanism, differing ‘from other longer reflect natural morph ratios. The in involving reciprocal movement of the passive outbreeding devices, such as discovery of heterodichogamy thus styles in the two temporal morphs. dichogamy…and heterostyly in that it depends on field observations.
    [Show full text]
  • Coexistence of Confamilial, Folivorous Indriids, Propithecus Diadema And
    Washington University in St. Louis Washington University Open Scholarship Arts & Sciences Electronic Theses and Dissertations Arts & Sciences Spring 5-15-2017 Coexistence of Confamilial, Folivorous Indriids, Propithecus diadema and Indri indri, at Betampona Strict Nature Reserve, Madagascar Lana Kerker Oliver Washington University in St. Louis Follow this and additional works at: https://openscholarship.wustl.edu/art_sci_etds Part of the Biodiversity Commons, Biological and Physical Anthropology Commons, Natural Resources and Conservation Commons, and the Natural Resources Management and Policy Commons Recommended Citation Oliver, Lana Kerker, "Coexistence of Confamilial, Folivorous Indriids, Propithecus diadema and Indri indri, at Betampona Strict Nature Reserve, Madagascar" (2017). Arts & Sciences Electronic Theses and Dissertations. 1134. https://openscholarship.wustl.edu/art_sci_etds/1134 This Dissertation is brought to you for free and open access by the Arts & Sciences at Washington University Open Scholarship. It has been accepted for inclusion in Arts & Sciences Electronic Theses and Dissertations by an authorized administrator of Washington University Open Scholarship. For more information, please contact [email protected]. WASHINGTON UNIVERSITY IN ST. LOUIS Department of Anthropology Dissertation Examination Committee Crickette Sanz, Chair Kari Allen Benjamin Z. Freed Jane Phillips-Conroy David Strait Mrinalini Watsa Coexistence of Confamilial, Folivorous Indriids, Propithecus diadema and Indri indri, at Betampona Strict
    [Show full text]
  • Phytochemical, Elemental and Biotechnological Study of Cryptocarya Latifolia, an Indigenous Medicinal Plant of South Africa
    Phytochemical, Elemental and Biotechnological Study of Cryptocarya latifolia, an Indigenous Medicinal Plant of South Africa by Mohammed Falalu Hamza Submitted in fulfillment of the academic requirements for the degree of Master of Science in Chemistry in the School of Chemistry and Physics, University of KwaZulu-Natal, Durban 2013 Phytochemical, Elemental and Biotechnological Study of Cryptocarya latifolia, an Indigenous Medicinal Plant of South Africa by Mohammed Falalu Hamza Submitted in fulfillment of the academic requirements for the degree of Master of Science in Chemistry in the School of Chemistry and Physics, University of KwaZulu-Natal, Durban 2013 As the candidate’s supervisor, I have approved this thesis for submission. Signed_______________________Name__________________________Date_________ DECLARATION I Mohammed Falalu Hamza declare that 1. The research reported in this thesis, except where otherwise indicated, is my original research. 2. This thesis has not been submitted for any degree or examination at any other University. 3. This thesis does not contain other persons’ data, pictures, graphs or other information, unless specifically acknowledged as being sourced from other persons 4. This thesis does not contain other persons’ writing, unless specifically acknowledged as being sourced from other researchers. Where other written sources have been quoted, then: a. Their words have been re-written but the general information attributed to them has been referenced. b. Where their exact words have been used, then their writing has been placed in italics and inside quotation marks, and referenced. 5. This thesis does not contain text, graphics or tables copied and pasted from the internet, unless specifically acknowledged, and then source being detailed in the thesis and in the References sections Author: ___________________________________________________ Mohammed Falalu Hamza Supervisor:________________________________________________ Dr.
    [Show full text]
  • The Laurel Or Bay Forests of the Canary Islands
    California Avocado Society 1989 Yearbook 73:145-147 The Laurel or Bay Forests of the Canary Islands C.A. Schroeder Department of Biology, University of California, Los Angeles The Canary Islands, located about 800 miles southwest of the Strait of Gibraltar, are operated under the government of Spain. There are five islands which extend from 15 °W to 18 °W longitude and between 29° and 28° North latitude. The climate is Mediterranean. The two eastern islands, Fuerteventura and Lanzarote, are affected by the Sahara Desert of the mainland; hence they are relatively barren and very arid. The northeast trade winds bring moisture from the sea to the western islands of Hierro, Gomera, La Palma, Tenerife, and Gran Canaria. The southern ends of these islands are in rain shadows, hence are dry, while the northern parts support a more luxuriant vegetation. The Canary Islands were prominent in the explorations of Christopher Columbus, who stopped at Gomera to outfit and supply his fleet prior to sailing "off the map" to the New World in 1492. Return voyages by Columbus and other early explorers were via the Canary Islands, hence many plants from the New World were first established at these points in the Old World. It is suspected that possibly some of the oldest potato germplasm still exists in these islands. Man exploited the islands by growing sugar cane, and later Mesembryanthemum crystallinum for the extraction of soda, cochineal cactus, tomatoes, potatoes, and finally bananas. The banana industry is slowly giving way to floral crops such as strelitzia, carnations, chrysanthemums, and several new exotic fruits such as avocado, mango, papaya, and carambola.
    [Show full text]
  • Doctorat De L'université De Toulouse
    En vue de l’obt ention du DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE Délivré par : Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier) Discipline ou spécialité : Ecologie, Biodiversité et Evolution Présentée et soutenue par : Joeri STRIJK le : 12 / 02 / 2010 Titre : Species diversification and differentiation in the Madagascar and Indian Ocean Islands Biodiversity Hotspot JURY Jérôme CHAVE, Directeur de Recherches CNRS Toulouse Emmanuel DOUZERY, Professeur à l'Université de Montpellier II Porter LOWRY II, Curator Missouri Botanical Garden Frédéric MEDAIL, Professeur à l'Université Paul Cezanne Aix-Marseille Christophe THEBAUD, Professeur à l'Université Paul Sabatier Ecole doctorale : Sciences Ecologiques, Vétérinaires, Agronomiques et Bioingénieries (SEVAB) Unité de recherche : UMR 5174 CNRS-UPS Evolution & Diversité Biologique Directeur(s) de Thèse : Christophe THEBAUD Rapporteurs : Emmanuel DOUZERY, Professeur à l'Université de Montpellier II Porter LOWRY II, Curator Missouri Botanical Garden Contents. CONTENTS CHAPTER 1. General Introduction 2 PART I: ASTERACEAE CHAPTER 2. Multiple evolutionary radiations and phenotypic convergence in polyphyletic Indian Ocean Daisy Trees (Psiadia, Asteraceae) (in preparation for BMC Evolutionary Biology) 14 CHAPTER 3. Taxonomic rearrangements within Indian Ocean Daisy Trees (Psiadia, Asteraceae) and the resurrection of Frappieria (in preparation for Taxon) 34 PART II: MYRSINACEAE CHAPTER 4. Phylogenetics of the Mascarene endemic genus Badula relative to its Madagascan ally Oncostemum (Myrsinaceae) (accepted in Botanical Journal of the Linnean Society) 43 CHAPTER 5. Timing and tempo of evolutionary diversification in Myrsinaceae: Badula and Oncostemum in the Indian Ocean Island Biodiversity Hotspot (in preparation for BMC Evolutionary Biology) 54 PART III: MONIMIACEAE CHAPTER 6. Biogeography of the Monimiaceae (Laurales): a role for East Gondwana and long distance dispersal, but not West Gondwana (accepted in Journal of Biogeography) 72 CHAPTER 7 General Discussion 86 REFERENCES 91 i Contents.
    [Show full text]
  • Dry Forest Trees of Madagascar
    The Red List of Dry Forest Trees of Madagascar Emily Beech, Malin Rivers, Sylvie Andriambololonera, Faranirina Lantoarisoa, Helene Ralimanana, Solofo Rakotoarisoa, Aro Vonjy Ramarosandratana, Megan Barstow, Katharine Davies, Ryan Hills, Kate Marfleet & Vololoniaina Jeannoda Published by Botanic Gardens Conservation International Descanso House, 199 Kew Road, Richmond, Surrey, TW9 3BW, UK. © 2020 Botanic Gardens Conservation International ISBN-10: 978-1-905164-75-2 ISBN-13: 978-1-905164-75-2 Reproduction of any part of the publication for educational, conservation and other non-profit purposes is authorized without prior permission from the copyright holder, provided that the source is fully acknowledged. Reproduction for resale or other commercial purposes is prohibited without prior written permission from the copyright holder. Recommended citation: Beech, E., Rivers, M., Andriambololonera, S., Lantoarisoa, F., Ralimanana, H., Rakotoarisoa, S., Ramarosandratana, A.V., Barstow, M., Davies, K., Hills, BOTANIC GARDENS CONSERVATION INTERNATIONAL (BGCI) R., Marfleet, K. and Jeannoda, V. (2020). Red List of is the world’s largest plant conservation network, comprising more than Dry Forest Trees of Madagascar. BGCI. Richmond, UK. 500 botanic gardens in over 100 countries, and provides the secretariat to AUTHORS the IUCN/SSC Global Tree Specialist Group. BGCI was established in 1987 Sylvie Andriambololonera and and is a registered charity with offices in the UK, US, China and Kenya. Faranirina Lantoarisoa: Missouri Botanical Garden Madagascar Program Helene Ralimanana and Solofo Rakotoarisoa: Kew Madagascar Conservation Centre Aro Vonjy Ramarosandratana: University of Antananarivo (Plant Biology and Ecology Department) THE IUCN/SSC GLOBAL TREE SPECIALIST GROUP (GTSG) forms part of the Species Survival Commission’s network of over 7,000 Emily Beech, Megan Barstow, Katharine Davies, Ryan Hills, Kate Marfleet and Malin Rivers: BGCI volunteers working to stop the loss of plants, animals and their habitats.
    [Show full text]