Tropical Plant-Animal Interactions: Linking Defaunation with Seed Predation, and Resource- Dependent Co-Occurrence
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Conservation Framework for the Critically Endangered Endemic Species of the Caribbean Palm Coccothrinax
A conservation framework for the Critically Endangered endemic species of the Caribbean palm Coccothrinax B RETT J ESTROW,BRÍGIDO P EGUERO,FRANCISCO J IMÉNEZ,RAÚL V ERDECIA L ISBET G ONZÁLEZ-OLIVA,CELIO E. MOYA,WILLIAM C INEA,M.PATRICK G RIFFITH A LAN W. MEEROW,MIKE M AUNDER and J AVIER F RANCISCO-ORTEGA Abstract With threatened species ( categorized as plant exploration initiatives, taxonomic revisions, outreach, Critically Endangered and as Endangered, sensu IUCN), and fundraising. The ultimate aim of this review is to provide Coccothrinax (c. species) is the flagship palm genus for baseline information that will develop conservation synergy conservation in the Caribbean Island Biodiversity Hotspot. among relevant parties working on Coccothrinax conserva- Coccothrinax has its centre of taxonomic diversity in these tion in Cuba, Haiti and the Dominican Republic. Such colla- islands, with c. endemic species. We present a conservation borations could also benefit through partnerships with framework for the Critically Endangered species, found botanists working in other countries. in Cuba, Haiti or the Dominican Republic. Only two species Keywords Antilles, Arecaceae, IUCN, plant biodiversity, (C. jimenezii, C. montana) occur in more than one country red lists, taxonomy, tropical islands (Haiti and the Dominican Republic). Immediate threats include oil drilling and nickel mining, intrusion of saline water into soil, urban and agricultural development, low population recruitment, uncontrolled fires, interspecific hy- Introduction bridization, and unsustainable ethnobotanical practices. Coccothrinax bermudezii, C. borhidiana, C. crinita ssp. crini- alms are an iconic feature of the Caribbean landscape ta, C. leonis and C. spissa are not conserved in protected areas. Pand are associated with strong folk and ethnobotani- Coccothrinax bermudezii, C. -
Dipterocarps
1682 TROPICAL ECOSYSTEMS / Dipterocarps Dipterocarps B Krishnapillay, Forest Research Institute Malaysia, Kepong, Malaysia & 2004, Elsevier Ltd. All Rights Reserved. Introduction The dipterocarp forests of Southeast Asia constitute a dominant and particularly valuable component of the world’s tropical rainforest. As a family of plants, Dipterocarpaceae may perhaps hold the distinction of being the best-known trees in the tropics. Their ecosystems are extremely diverse. They are uneven in their age and multilayered. They grow all the year round under warm temperatures and on sites where there is a large amount of rainfall. However, those growing in the seasonal forest are generally medium sized with the tallest trees being around 20 m with a maximum diameter of about 50 cm. Generally dipterocarps have been observed to occur on soils with very low fertility. Currently the dipterocarps dominate the international tropical timber market, and therefore play an important role in the economy of many Southeast Asian countries. In addition to Figure 1 Phytogeographical distribution of the family Diptero- timber, this family of trees also produces other non- carpaceae worldwide. timber products like resins and oleoresins. 3. South Asia, which constitutes India, the Andaman Distribution Islands, Bangladesh, and Nepal. The present distribution patterns of dipterocarps are 4. Sri Lanka. thought to reflect routes of colonization and past 5. The Seychelles. climatic conditions. They are distributed over the 6. Africa, which constitutes Madagascar, a narrow tropical belts of three continents of Asia, Africa, and strip from Mali to Sudan in the northern hemi- South America (Figure 1). They occupy several phyto- sphere, and Congo. -
Pakaraimaea Dipterocarpacea
The Ectomycorrhizal Fungal Community in a Neotropical Forest Dominated by the Endemic Dipterocarp Pakaraimaea dipterocarpacea Matthew E. Smith1*, Terry W. Henkel2, Jessie K. Uehling2, Alexander K. Fremier3, H. David Clarke4, Rytas Vilgalys5 1 Department of Plant Pathology, University of Florida, Gainesville, Florida, United States of America, 2 Department of Biological Sciences, Humboldt State University, Arcata, California, United States of America, 3 Department of Fish and Wildlife Resources, University of Idaho, Moscow, Idaho, United States of America, 4 Department of Biology, University of North Carolina Asheville, Asheville, North Carolina, United States of America, 5 Department of Biology, Duke University, Durham, North Carolina, United States of America Abstract Ectomycorrhizal (ECM) plants and fungi can be diverse and abundant in certain tropical ecosystems. For example, the primarily paleotropical ECM plant family Dipterocarpaceae is one of the most speciose and ecologically important tree families in Southeast Asia. Pakaraimaea dipterocarpacea is one of two species of dipterocarp known from the Neotropics, and is also the only known member of the monotypic Dipterocarpaceae subfamily Pakaraimoideae. This Guiana Shield endemic is only known from the sandstone highlands of Guyana and Venezuela. Despite its unique phylogenetic position and unusual geographical distribution, the ECM fungal associations of P. dipterocarpacea are understudied throughout the tree’s range. In December 2010 we sampled ECM fungi on roots of P. dipterocarpacea and the co-occurring ECM tree Dicymbe jenmanii (Fabaceae subfamily Caesalpinioideae) in the Upper Mazaruni River Basin of Guyana. Based on ITS rDNA sequencing we documented 52 ECM species from 11 independent fungal lineages. Due to the phylogenetic distance between the two host tree species, we hypothesized that P. -
Calatola Microcarpa (Icacinaceae), a New Species from the Southwestern Amazon
Phytotaxa 124 (1): 43–49 (2013) ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ Article PHYTOTAXA Copyright © 2013 Magnolia Press ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.124.1.5 Three decades to connect the sexes: Calatola microcarpa (Icacinaceae), a new species from the Southwestern Amazon RODRIGO DUNO DE STEFANO1, JOHN P. JANOVEC2 & LILIA LORENA CAN1 1Herbarium CICY, Centro de Investigación Científica de Yucatán, A. C. (CICY), Calle 43 No. 130, Colonia Chuburná de Hidalgo, 97200 Mérida, Yucatán, Mexico; email: [email protected]; [email protected] 2Herbario MOL, Facultad de Ciencias Forestales, Universidad Nacional Agraria La Molina, Apartado 456, Lima 1, Peru; e-mail: [email protected] Abstract A new species of Calatola (Icacinaceae), C. microcarpa, from the departments of Loreto and Madre de Dios, Peru, and the state of Acre, Brazil, is described and illustrated. The new taxon is well documented with staminate and pistillate flowers, and fruits. Its small leaves and fruit are similar to those found in Calatola laevigata and C. uxpanapensis. It is also compared with Calatola costaricensis, with which it sometimes grows sympatrically in Brazil and Peru. The conservation status of the new taxa is assessed against IUCN criteria. Key words: Brazil, IUCN, Peru Introduction The genus Calatola Standley (1923: 688), including C. mollis Standley (1923: 689) and C. laevigata Standley (1923: 689), was referred to Icacinaceae. Standley used the generic name to evoke the vernacular name of the plant as it is known in Mexico, “nuez de calatola” or “calatolazno.” Since then, five additional species were added to the genus: C. -
Freschet Et Al., 2018), Sometimes Across Different Belowground Entities (Freschet & Roumet, 2017)
A starting guide to root ecology: strengthening ecological concepts and standardizing root classification, sampling, processing and trait measurements Gregoire Freschet, Loic Pagès, Colleen Iversen, Louise Comas, Boris Rewald, Catherine Roumet, Jitka Klimešová, Marcin Zadworny, Hendrik Poorter, Johannes Postma, et al. To cite this version: Gregoire Freschet, Loic Pagès, Colleen Iversen, Louise Comas, Boris Rewald, et al.. A starting guide to root ecology: strengthening ecological concepts and standardizing root classification, sampling, processing and trait measurements. 2020. hal-02918834 HAL Id: hal-02918834 https://hal.archives-ouvertes.fr/hal-02918834 Preprint submitted on 21 Aug 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A starting guide to root ecology: strengthening ecological concepts and standardizing root classification, sampling, processing and trait measurements Grégoire T. Freschet1,2, Loïc Pagès3, Colleen M. Iversen4, Louise H. Comas5, Boris Rewald6, Catherine Roumet1, Jitka Klimešová7, Marcin Zadworny8, Hendrik Poorter9,10, Johannes A. Postma9, Thomas S. Adams11, Agnieszka Bagniewska-Zadworna12, A. Glyn Bengough13,14, Elison B. Blancaflor15, Ivano Brunner16, Johannes H.C. Cornelissen17, Eric Garnier1, Arthur Gessler18,19, Sarah E. Hobbie20, Ina C. Meier21, Liesje Mommer22, Catherine Picon-Cochard23, Laura Rose24, Peter Ryser25, Michael Scherer- Lorenzen26, Nadejda A. -
Genetic Variation and Genetic Structure of Two Closely Related Dipterocarp Species, Dryobalanops Aromatica C.F.Gaertn
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Sibbaldia - the Journal of Botanic Garden Horticulture (Royal Botanic... SIBBALDIA: 179 The Journal of Botanic Garden Horticulture, No. 16 GENETIC VARIATION AND GENETIC STRUCTURE OF TWO CLOSELY RELATED DIPTEROCARP SPECIES, DRYOBALANOPS AROMATICA C.F.GAERTN. AND D. BECCARII DYER Ko Harada1, Fifi Gus Dwiyanti2, Iskandar Zulkarnaen Siregar3, Atok Subiakto4, Lucy Chong5, Bibian Diway6, Ying-Fah Lee7, Ikuo Ninomiya8 & Koichi Kamiya9 ABSTRACT Large-scale genetic structure revealed in tree populations in SE Asia, as well as in many temperate forests, has been shaped by climatic fluctuation in the late Pleistocene, most importantly by that in the last glacial period. In a comparative study of the phylogeographic patterns of two closely related dipterocarp species, Dryobalanops aromatica C.F.Gaertn. and D. beccarii Dyer, we inves- tigated how changes in land area associated with changes in climate affected large-scale genetic structure. We examined the genetic variation of D. aromatica, collected from nine populations throughout the Sundaic region, and of D. beccarii, collected from 16 populations mainly in Borneo, using seven polymorphic microsatellite markers. The two species were clearly distin- guishable in the STRUCTURE analysis, although hybridisation probably occurred in sympatric populations and also in several other populations. The D. aromatica populations were divided into two main groups by the STRUCTURE analysis: Malay–Sumatra and Borneo. Mixing of the Sumatra and Borneo clusters occurred on the Malay Peninsula, supporting the hypothesis that tropical rainforests expanded over a dried Sunda Shelf during the last glacial period. The two main genetic clusters might have been formed by repeated cycles of fluctuation in land area. -
Variable Impact of Late-Quaternary Megafaunal Extinction in Causing
Variable impact of late-Quaternary megafaunal SPECIAL FEATURE extinction in causing ecological state shifts in North and South America Anthony D. Barnoskya,b,c,1, Emily L. Lindseya,b, Natalia A. Villavicencioa,b, Enrique Bostelmannd,2, Elizabeth A. Hadlye, James Wanketf, and Charles R. Marshalla,b aDepartment of Integrative Biology, University of California, Berkeley, CA 94720; bMuseum of Paleontology, University of California, Berkeley, CA 94720; cMuseum of Vertebrate Zoology, University of California, Berkeley, CA 94720; dRed Paleontológica U-Chile, Laboratoria de Ontogenia, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Chile; eDepartment of Biology, Stanford University, Stanford, CA 94305; and fDepartment of Geography, California State University, Sacramento, CA 95819 Edited by John W. Terborgh, Duke University, Durham, NC, and approved August 5, 2015 (received for review March 16, 2015) Loss of megafauna, an aspect of defaunation, can precipitate many megafauna loss, and if so, what does this loss imply for the future ecological changes over short time scales. We examine whether of ecosystems at risk for losing their megafauna today? megafauna loss can also explain features of lasting ecological state shifts that occurred as the Pleistocene gave way to the Holocene. We Approach compare ecological impacts of late-Quaternary megafauna extinction The late-Quaternary impact of losing 70–80% of the megafauna in five American regions: southwestern Patagonia, the Pampas, genera in the Americas (19) would be expected to trigger biotic northeastern United States, northwestern United States, and Berin- transitions that would be recognizable in the fossil record in at gia. We find that major ecological state shifts were consistent with least two respects. -
Biomass and Nutrient Pools of Canopy and Terrestrial Components in a Primary and a Secondary Montane Cloud Forest, Costa Rica Nallini M
Available online at www.sciencedirect.com ELSEWER Forest Ecology and Management 198 (2004) 223-236 ww.elsevier.co~~1ate/~oreco Biomass and nutrient pools of canopy and terrestrial components in a primary and a secondary montane cloud forest, Costa Rica Nallini M. PJadkarnia-*,Douglas Schaefers, Teri J. Matelson', Rodrigo solanob "ntc Eve~reenStare Cnil~ge~Olv~npra, WA 98505, USA h~onleverde,Apnnodo 5655. Su$rtu. E1~'luna.Pruriorenos, Ca.~tnRlcn Received 27 July 2003, received in revised form 1 September 2003; accepted 27 April 2004 Abstract Canopy-dwelling epiphytes and their associated dead organic matter exist as complex subsystems of many forests. but they have only rarely been quanritied in rhe context of the whole ecosyqtem. Wca~sessedthe biomass and nutrient capital of canopy- dwellrng and terrestrially rooted components afa primary and an adjacent secondary montane forest in Monteverde, Costa Rica. %tal ahnvcground terrestrislly rooted biomass (dry wetght) was 490.1 and 151 t ha-' in thc pnmary and secondary forest, respectively. The pdmory foreqt supponed a total canopy biomass of 33.1 t ha-'; the secondary forc~tsupported only 0.5% of that. 0.2 t ha-'. Tmnk and branch epiphyte biomass in the primary forcst was over 40 times and 100 times greater than trunk and branch epiphyte biomass in the secondary forest. The bulk (ca. 95%) of the ecosystem biornasq in trunkand bmch wood, which is slower to decompore than the nnn-woody. labile components of foliage and non-woody epiphytes. In contrast to the primary forest. whcredcad organic matler (crown humus. intcrccpted litterfall) compri~edover 60% of thc total epiphytic matenal, there were only trace amounts in the secondary forest. -
Inner Page Final 2071.12.14.Indd
J. Nat. Hist. Mus. Vol. 28, 2014, 127-136 WILD EDIBLE FRUITS OF PALPA DISTRICT, WEST NEPAL RAS BIHARI MAHATO Department of Botany, R. R. Multiple campus Janakpur, Nepal [email protected] ABSTRACT This paper documents the wild edible fruits of tropical and subtropical forest of Palpa District, West Nepal. Thirty-seven plant species under 17 families and 27 genera were identifi ed as wild edible fruit. Over 86% percent of them were trees and shrubs (32 species), 11% herbs (4 species) and the remaining 3% (1 species) woody climbers. Moraceae (9 species), Rosaceae (7 species), Anacardiaceae, Berberidaceae, Combretaceae, Fabaceae, Solanaceae and Rutaceae (2 species each) were the most common families constituting about 75.7% of edible plants. The remaining 24.3% (9 species) of edible plants were distributed among 9 families and 9 genera. A considerable number of wild fruits are sold in market. These are Aegle marmelos, Artocarpus integra, Artocarpus lakoocha, Choerospondias axillaris, Myrica esculenta, Phoenix humilis, Phyllanthus emblica, Prunus persica, Pyracantha crenulata,Tamarindus indica, Terminalia bellirica, Terminalia chebula, Zanthoxylum armatum and Zizyphus mauritiana. Medicinal uses of some major economically important fruits are also documented. Keywords: tropical, subtropical forest, medicinal uses, wild fruits, sweet nuggets INTRODUCTION Wild edible fruits play an important role in the economy of rural people especially living in the hilly region by providing them food and also in generating side income. They collect the wild edible fruits from forest and sold in market regularly. The rural people have better knowledge of wild edible fruits as they visit the forest regularly and have constant association and dependence on these forests and its products for their livelihood. -
Historical Biogeography and Diversification of the Cosmopolitan Ectomycorrhizal Mushroom Family Inocybaceae
Out of the Palaeotropics? Historical biogeography and diversification of the cosmopolitan ectomycorrhizal mushroom family Inocybaceae P. Brandon Matheny1*, M. Catherine Aime2, Neale L. Bougher3, Bart Buyck4, Dennis E. Desjardin5, Egon Horak6, Bradley R. Kropp7, D. Jean Lodge8, Kasem Soytong9, James M. Trappe10 and David S. Hibbett11 ABSTRACT Aim The ectomycorrhizal (ECM) mushroom family Inocybaceae is widespread in north temperate regions, but more than 150 species are encountered in the tropics and the Southern Hemisphere. The relative roles of recent and ancient biogeographical processes, relationships with plant hosts, and the timing of divergences that have shaped the current geographic distribution of the family are investigated. location Africa, Australia, Neotropics, New Zealand, north temperate zone, Palaeotropics, Southeast Asia, South America, south temperate zone. Methods We reconstruct a phylogeny of the Inocybaceae with a geological timeline using a relaxed molecular clock. Divergence dates of lineages are estimated statistically to test vicariance-based hypotheses concerning relatedness of disjunct ECM taxa. A series of internal maximum time constraints is used to evaluate two different calibrations. Ancestral state reconstruction is used to infer ancestral areas and ancestral plant partners of the family. Results The Palaeotropics are unique in containing representatives of all major clades of Inocybaceae. Six of the seven major clades diversified initially during the Cretaceous, with subsequent radiations probably during the early Palaeogene. Vicariance patterns cannot be rejected that involve area relationships for Africa- Australia, Africa-India and southern South America-Australia. Northern and southern South America, Australia and New Zealand are primarily the recipients of immigrant taxa during the Palaeogene or later. Angiosperms were the earliest hosts of Inocybaceae. -
Phylogeny and Historical Biogeography of Lauraceae
PHYLOGENY Andre'S. Chanderbali,2'3Henk van der AND HISTORICAL Werff,3 and Susanne S. Renner3 BIOGEOGRAPHY OF LAURACEAE: EVIDENCE FROM THE CHLOROPLAST AND NUCLEAR GENOMES1 ABSTRACT Phylogenetic relationships among 122 species of Lauraceae representing 44 of the 55 currentlyrecognized genera are inferredfrom sequence variation in the chloroplast and nuclear genomes. The trnL-trnF,trnT-trnL, psbA-trnH, and rpll6 regions of cpDNA, and the 5' end of 26S rDNA resolved major lineages, while the ITS/5.8S region of rDNA resolved a large terminal lade. The phylogenetic estimate is used to assess morphology-based views of relationships and, with a temporal dimension added, to reconstructthe biogeographic historyof the family.Results suggest Lauraceae radiated when trans-Tethyeanmigration was relatively easy, and basal lineages are established on either Gondwanan or Laurasian terrains by the Late Cretaceous. Most genera with Gondwanan histories place in Cryptocaryeae, but a small group of South American genera, the Chlorocardium-Mezilauruls lade, represent a separate Gondwanan lineage. Caryodaphnopsis and Neocinnamomum may be the only extant representatives of the ancient Lauraceae flora docu- mented in Mid- to Late Cretaceous Laurasian strata. Remaining genera place in a terminal Perseeae-Laureae lade that radiated in Early Eocene Laurasia. Therein, non-cupulate genera associate as the Persea group, and cupuliferous genera sort to Laureae of most classifications or Cinnamomeae sensu Kostermans. Laureae are Laurasian relicts in Asia. The Persea group -
Nazrin Full Phd Thesis (150246576
Maintenance and conservation of Dipterocarp diversity in tropical forests _______________________________________________ Mohammad Nazrin B Abdul Malik A thesis submitted in partial fulfilment of the degree of Doctor of Philosophy Faculty of Science Department of Animal and Plant Sciences November 2019 1 i Thesis abstract Many theories and hypotheses have been developed to explain the maintenance of diversity in plant communities, particularly in hyperdiverse tropical forests. Maintenance of the composition and diversity of tropical forests is vital, especially species of high commercial value. I focus on the high value dipterocarp timber species of Malaysia and Borneo as these have been extensive logged owing to increased demands from global timber trade. In this thesis, I explore the drivers of diversity of this group, as well as the determinants of global abundance, conservation and timber value. The most widely supported hypothesis for explaining tropical diversity is the Janzen Connell hypothesis. I experimentally tested the key elements of this, namely density and distance dependence, in two dipterocarp species. The results showed that different species exhibited different density and distance dependence effects. To further test the strength of this hypothesis, I conducted a meta-analysis combining multiple studies across tropical and temperate study sites, and with many species tested. It revealed significant support for the Janzen- Connell predictions in terms of distance and density dependence. Using a phylogenetic comparative approach, I highlight how environmental adaptation affects dipterocarp distribution, and the relationships of plant traits with ecological factors and conservation status. This analysis showed that environmental and ecological factors are related to plant traits and highlights the need for dipterocarp conservation priorities.