Systematic Studies of the South African Campanulaceae Sensu Stricto with an Emphasis on Generic Delimitations

Total Page:16

File Type:pdf, Size:1020Kb

Systematic Studies of the South African Campanulaceae Sensu Stricto with an Emphasis on Generic Delimitations Town The copyright of this thesis rests with the University of Cape Town. No quotation from it or information derivedCape from it is to be published without full acknowledgement of theof source. The thesis is to be used for private study or non-commercial research purposes only. University Systematic studies of the South African Campanulaceae sensu stricto with an emphasis on generic delimitations Christopher Nelson Cupido Thesis presented for the degree of DOCTOR OF PHILOSOPHY in the Department of Botany Town UNIVERSITY OF CAPECape TOWN of September 2009 University Roella incurva Merciera eckloniana Microcodon glomeratus Prismatocarpus diffusus Town Wahlenbergia rubioides Cape of Wahlenbergia paniculata (blue), W. annularis (white) Siphocodon spartioides University Rhigiophyllum squarrosum Wahlenbergia procumbens Representatives of Campanulaceae diversity in South Africa ii Town Dedicated to Ursula, Denroy, Danielle and my parents Cape of University iii Town DECLARATION Cape I confirm that this is my ownof work and the use of all material from other sources has been properly and fully acknowledged. University Christopher N Cupido Cape Town, September 2009 iv Systematic studies of the South African Campanulaceae sensu stricto with an emphasis on generic delimitations Christopher Nelson Cupido September 2009 ABSTRACT The South African Campanulaceae sensu stricto, comprising 10 genera, represent the most diverse lineage of the family in the southern hemisphere. In this study two phylogenies are reconstructed using parsimony and Bayesian methods. A family-level phylogeny was estimated to test the monophyly and time of divergence of the South African lineage. This analysis, based on a published ITS phylogeny and an additional ten South African taxa, showed a strongly supported South African clade sister to the campanuloids. Assessment of divergence times using a secondary calibration point suggests that this clade started to diversify during the OligoceneTown (28 mya), which coincided with global climatic changes from hot wet to cold dry conditions. A phylogenetic analysis of the South African lineage was undertaken based on morphological and DNA sequence data from the chloroplast trnL-F and the nuclear ITS regions. These data sets were analyzed separately and in combination. The phylogenetic hypothesis was used to re-assess the questionableCape generic boundaries in the family. The ITS data produced poor resolution under parsimony and poor support under Bayesian methods. The resulting phylogenies show fiveof species assemblages that contradict traditional generic circumscriptions, which have primarily been based on the mode of capsule dehiscence. The date estimated for the South African clade was used as calibration point to estimate the age of the clades revealed by the molecular data. Radiation of the Campanulaceae in southern Africa seems to correlate with dramatic climatic and topographical changes such as aridification and continental uplift on the subcontinent that started during the Oligocene. The phylogenetic hypothesis was also used to trace the evolution of nine characters considered important in the circumscription of genera. An uncontradicted synapomorphy was found for the Rhigiophyllum- Siphocodon clade.University The fruit character was found to be taxonomically unreliable at the generic level. The phylogeny of the South African clade was further used to focus on the closely related genera, Roella, Merciera and Prismatocarpus – a group forming a well supported clade in most analyses. The total evidence analysis was used to evaluate the status of each of these genera. Several options were explored to translate the phylogeny into a classification. This process was guided by the primary criterion of monophyly followed by stability in nomenclature, strong statistical support for the taxon, maximum phylogenetic information and ease of identification of the taxon. The results favour retaining of Roella, Prismatocarpus and Merciera as separate genera. A synopsis of these three is provided. v ACKNOWLEDGEMENTS I would like to extend my gratitude and appreciation to the following individuals and institutions for their contribution towards the completion of this thesis. My supervisor, Prof. Terry Hedderson for his guidance and with his kind positive manner kept me motivated. Dr. Gail Reeves initially supervised the molecular component of the projects. My colleagues at the Compton Herbarium for their interest, support, encouragement and collecting of numerous species. The endless help with laboratory techniques, software, reagents, and fruitful discussions of the Leslie Hill Molecular Lab staff and students (Amelia, Angeline, Annika, Ferozah, Tracey and Krystal, Margaret) created a great working environment. Dr. Felix Forest tirelessly helped with numerous technical aspects of the project. The South African National BiodiversityTown Institute (SANBI), my employer, provided financial support and the infra-structure. The various Nature Conservation Authorities in South Africa granted collecting permits and the National Herbarium (PRE) kindly provided specimensCape on loan. Dr. Bill Eddie, my Campanulaceae mentor and friend for always sharing his vast knowledge on the family with me. My steppy gang friends/colleaguesof (Barry, Fatima, Leschelle, Beryl, Shaun, Ismail, Judy A, Barney, Lee-anne, Caitlin) for the much-needed outlet and humour that kept me sane during these long years of many challenges. To my family for their patience, understanding and prayers that propelled me towards the completion of the project. University vi TABLE OF CONTENTS DECLARATION .................................................................................................. IV ABSTRACT .......................................................................................................... V ACKNOWLEDGEMENTS .................................................................................... VI LIST OF FIGURES ............................................................................................... XI CHAPTER 1 - GENERAL INTRODUCTION ......................................................... 16 CHAPTER 2 - SOUTH AFRICAN CAMPANULACEAE: A TEST OF MONOPHYLY AND AN ESTIMATE OF DIVERGENCE TIME ....................................................Town 32 2.1. Introduction ..........................................................................................................................................32 2.2. Materials and methods .........................................................................................................................37 2.2.1. Data sampling .................................................................................................................................37 2.2.2. Data set construction .......................................................................................................................37 2.2.3. Phylogenetic Analyses ....................................................................................................................Cape 38 2.2.4. Dating of the South African lineage ...............................................................................................39 2.2.5. Estimation of per-lineage diversification rateof ................................................................................. 40 2.3. Results....................................................................................................................................................40 2.3.1. Maximum Parsimony ......................................................................................................................41 2.3.2. Bayesian Analysis ...........................................................................................................................43 2.3.3. Estimates of divergence time ..........................................................................................................44 2.4. Discussion ..............................................................................................................................................47 2.4.1. Monophyly of the South African Campanulaceae ..........................................................................47 2.4.2. Age of the South African clade .......................................................................................................49 2.4.3. The positionUniversity of W. hederacea ......................................................................................................... 51 CHAPTER 3 - MOLECULAR PHYLOGENETICS OF THE SOUTHERN AFRICAN CLADE ................................................................................................................ 53 3.1. Introduction ..........................................................................................................................................53 3.2. Materials and Methods ........................................................................................................................57 3.2.1. Taxon sampling ..............................................................................................................................57 3.2.2. Outgroup choice ..............................................................................................................................58 3.2.3. DNA Extraction and Amplification ................................................................................................58 3.2.4. Sequencing and Alignment .............................................................................................................60
Recommended publications
  • Testing Pollen Viability
    2006-03-30 Master’s project in the Danish-Swedish Horticulture programme 2006:6 ISSN 1651-1579 Evaluation of transgenic Campanula carpatica plants by Stefan Bengtsson Biology Supervisors Sridevy Sriskandarajah Margrethe Serek Department of Agricultural Sciences The Royal Veterinary and Agricultural University Thorvaldensvej 40 DK-1871 Fredriksberg C Denmark 1 ___________________________________________________________________________ 2 ___________________________________________________________________________ Foreword This Master’s thesis forms part of my studies as a horticulturist at the University of Agricultural Sciences, Sweden. The work was carried out at the Royal Veterinary and Agricultural University, Denmark during the period April - November 2005. I am very happy to have had this opportunity to do my Master’s project in Denmark. I thank all the staff at the Department for support and help, especially since we had difficult circumstances to work under when the labs had to move and so on. The Royal Veterinary and Agricultural University Fredriksberg, March 2006 Stefan Bengtsson 3 ___________________________________________________________________________ 4 ___________________________________________________________________________ Table of contents Sammanfattning ........................................................................................................................... 13 Summary .....................................................................................................................................
    [Show full text]
  • Campanulaceae) Based on ITS and Tranl-F Sequence Data: Implications for a Reclassification
    CORE Metadata, citation and similar papers at core.ac.uk Provided by University of the Western Cape Research Repository Cupido, C. N. et al. (2013). Phylogeny of Southern African and Australasian Wahlenbergioids (Campanulaceae) based on ITS and tranL-F sequence data: implications for a reclassification. Systematic Botany, 38(2): 523 – 535 http:// doi.org/10.1600/036364413X666714 dx. Phylogeny of Southern African and Australasian Wahlenbergioids (Campanulaceae) based on ITS and trnL-F sequence data: implications for a reclassification Christopher N. Cupido , Jessica M. Prebble , and William M. M. Eddie Abstract The Campanulaceae: Wahlenbergioideae currently comprises 15 genera, one of which, Wahlenbergia, is widespread over the southern continents. Southern Africa is the region with maximum wahlenbergioid diversity with 12 genera and approximately 252 species. A second center is Australasia with 38 Wahlenbergia species. This study used a broad sample of wahlenbergioid diversity from South Africa, Australia, and New Zealand to reconstruct a phylogeny based on chloroplast trnL-F and nuclear ITS sequences. Data were analyzed separately and in combination using parsimony and Bayesian methods. The results suggest that for the wahlenbergioids to be monophyletic Wahlenbergia hederacea has to be excluded and that none of the South African, Australian or New Zealand lineages are strictly monophyletic. There are five species assemblages that are in some disagreement with current classification in the family. Wahlenbergia, Prismatocarpus and Roella are shown to be non-monophyletic and implications for a reclassification are presented. Careful consideration of morphological characters is suggested before the adjustment of generic circumscriptions can be accomplished. Recent family-wide molecular phylogenetic studies have supported the view that the Campanulaceae s.s.
    [Show full text]
  • PLANT PRESS Volume XIII, No
    The Sewanee PLANT PRESS Volume XIII, No. 4 Newsletter of the Friends of the Herbarium Autumn 2009 Jubilee Jamboree he Herbarium hits the half- of particularly interesting plants. Wear We will gather in the new Spencer century mark this year, and we’re comfortable shoes, and bring your Hall at 4 PM that afternoon for a birthday Tcommemorating in style! Throughout camera and drinking water. party—make that a birthday bash— 2009 we’ve had a series of special Dr. George Ramseur, founder of the hosted by the Sewanee Natural History events to mark this Jubilee Year. In Sewanee Herbarium and its Director Society, a student-led organization addition to our regular schedule of emeritus, often took his classes to Fiery dedicated to celebrating the Domain’s wildflower walks and botanical activities, Gizzard to botanize. It was natural, biodiversity. Help cut the cake and toast we produced a series of “Wednesday then, for his former student Ross Clark the Herbarium’s accomplishments and Walks at Noon,” short strolls to to choose the Gizzard as the subject expectations. See the Herbarium’s botanically interesting places on campus of a plant inventory and analysis when new home, and tour this wonderful that could be visited over the lunch hour. he was in graduate school in North facility. For more about the Natural We also initiated a series of “quests” in Carolina. “Ross found the Gizzard to History Society, see <http://snhscurator. conjunction with the Sewanee Natural be a place of great botanical diversity, blogspot.com/>. History Society. Last but not least, we including several rare and interesting That evening, we expect a visit put on a “mega-mountathon” in which plants, which we hope to rediscover with from “John Muir.” Actually, the famous volunteers spent a morning helping us him,” explains Herbarium Director Dr.
    [Show full text]
  • Relationships Among Levels of Biodiversity and the Relevance of Intraspecific Diversity in Conservation – a Project Synopsis F
    ARTICLE IN PRESS Perspectives in Plant Ecology, Evolution and Systematics Perspectives in Plant Ecology, Evolution and Systematics 10 (2008) 259–281 www.elsevier.de/ppees Relationships among levels of biodiversity and the relevance of intraspecific diversity in conservation – a project synopsis F. Gugerlia,Ã, T. Englischb, H. Niklfeldb, A. Tribschc,1, Z. Mirekd, M. Ronikierd, N.E. Zimmermanna, R. Holdereggera, P. Taberlete, IntraBioDiv Consortium2,3 aWSL Swiss Federal Research Institute, Zu¨rcherstrasse 111, 8903 Birmensdorf, Switzerland bDepartment of Biogeography, University of Vienna, Rennweg 14, 1030 Wien, Austria cDepartment of Systematic and Evolutionary Botany, Rennweg 14, 1030 Wien, Austria dDepartment of Vascular Plant Systematics, Institute of Botany, Polish Academy of Science, Krako´w, Lubicz 46, 31-512 Krako´w, Poland eLaboratoire d’Ecologie Alpine (LECA), CNRS UMR 5553, University Joseph Fourier, BP 53, 2233 Rue de la Piscine, 38041 Grenoble Cedex 9, France Received 11 June 2007; received in revised form 4 June 2008; accepted 9 July 2008 Abstract The importance of the conservation of all three fundamental levels of biodiversity (ecosystems, species and genes) has been widely acknowledged, but only in recent years it has become technically feasible to consider intraspecific diversity, i.e. the genetic component to biodiversity. In order to facilitate the assessment of biodiversity, considerable efforts have been made towards identifying surrogates because the efficient evaluation of regional biodiversity would help in designating important areas for nature conservation at larger spatial scales. However, we know little about the fundamental relationships among the three levels of biodiversity, which impedes the formulation of a general, widely applicable concept of biodiversity conservation through surrogates.
    [Show full text]
  • Plant Introduction, Vol. 53, 2012
    НАЦІОНАЛЬНА АКАДЕМІЯ НАУК УКРАЇНИ•НАЦІОНАЛЬНИЙ БОТАНІЧНИЙ САД ім. М.М. ГРИШКА 1/2012 Plant introduction МІЖНАРОДНИЙ НАУКОВИЙ ЖУРНАЛ • ЗАСНОВАНИЙ У 1999 р. • ВИХОДИТЬ 4 РАЗИ НА РІК • КИЇВ ЗМІСТ CONTENTS Теорія, методи і практичні аспекти Theory, Methods and Practical Aspects інтродукції рослин of Plant Introduction ГОРОБЕЦЬ В.Ф., АНДРУХ Н.А. Рід гейхера (Heu- 3 GOROBETS V.F., ANDRUKH N.A. The genus heu che- chera L.): історія інтродукції та селекції ra (Heuchera L.). history of introduction and selection УСМАНОВА Н.В. Итоги интродукции Dianthus 10 USMANOVA N.V. Results of Dianthus tianschanicus tian schancus Schischk. на юго-востоке Украины Schischk. introduction in the south-east of Ukraine ОПАЛКО О.А., ЧЕРНЕНКО А.Д., ОПАЛКО А.І. Фі- 16 OPALKO O.A., CHERNENKO A.D., OPALKO A.I. логенетичні зв’язки культивованих в Україні пред- Phylogenetic relationships in the representatives of ставників роду Malus Mill. genus Malus Mill. cultivated in Ukraine Збереження різноманіття рослин Conservation of Plant Diversity КОСЕНКО І.С., СЕРГІЄНКО Н.В. Стан вперше ін- 24 KOSENKO I.S., SERGIENKO N.V. Condition of ha- тродукованих в Україну ліщин у насадженнях zelnuts introduced for the first time in Ukraine and Національного дендропарку «Софіївка» НАН Ук- growing in plantations in the National Dendrological раїни Park Sofiyivka ПОДОРОЖНИЙ Д.С. Географічне поширення Iris 29 PODOROZHNIY D.S. Geographical distribution of sibirica L. в Україні Iris sibirica L. in Ukraine Біологічні особливості Biological Peculiarities інтродукованих рослин of Introduced Plants ВОЛОЩУК М.І., ШУМИК М.І. Особливості репро- 37 VOLOSHCHUK M.I., SHUMIK M.I. Features of the дуктивної біології Rhododendron myrtifolium Schott reproductive biology of Rhododendron myrtifolium and Kotschy в Українських Карпатах та перспек- Schott and Kotschy in the Ukrainian Carpathians тиви інтродукції and the prospects of introduction ВАШЕКА О.В.
    [Show full text]
  • Conserving Europe's Threatened Plants
    Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation By Suzanne Sharrock and Meirion Jones May 2009 Recommended citation: Sharrock, S. and Jones, M., 2009. Conserving Europe’s threatened plants: Progress towards Target 8 of the Global Strategy for Plant Conservation Botanic Gardens Conservation International, Richmond, UK ISBN 978-1-905164-30-1 Published by Botanic Gardens Conservation International Descanso House, 199 Kew Road, Richmond, Surrey, TW9 3BW, UK Design: John Morgan, [email protected] Acknowledgements The work of establishing a consolidated list of threatened Photo credits European plants was first initiated by Hugh Synge who developed the original database on which this report is based. All images are credited to BGCI with the exceptions of: We are most grateful to Hugh for providing this database to page 5, Nikos Krigas; page 8. Christophe Libert; page 10, BGCI and advising on further development of the list. The Pawel Kos; page 12 (upper), Nikos Krigas; page 14: James exacting task of inputting data from national Red Lists was Hitchmough; page 16 (lower), Jože Bavcon; page 17 (upper), carried out by Chris Cockel and without his dedicated work, the Nkos Krigas; page 20 (upper), Anca Sarbu; page 21, Nikos list would not have been completed. Thank you for your efforts Krigas; page 22 (upper) Simon Williams; page 22 (lower), RBG Chris. We are grateful to all the members of the European Kew; page 23 (upper), Jo Packet; page 23 (lower), Sandrine Botanic Gardens Consortium and other colleagues from Europe Godefroid; page 24 (upper) Jože Bavcon; page 24 (lower), Frank who provided essential advice, guidance and supplementary Scumacher; page 25 (upper) Michael Burkart; page 25, (lower) information on the species included in the database.
    [Show full text]
  • Differential Evolutionary History in Visual and Olfactory Floral Cues of the Bee-Pollinated Genus Campanula (Campanulaceae)
    plants Article Differential Evolutionary History in Visual and Olfactory Floral Cues of the Bee-Pollinated Genus Campanula (Campanulaceae) Paulo Milet-Pinheiro 1,*,† , Pablo Sandro Carvalho Santos 1, Samuel Prieto-Benítez 2,3, Manfred Ayasse 1 and Stefan Dötterl 4 1 Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein Allee, 89081 Ulm, Germany; [email protected] (P.S.C.S.); [email protected] (M.A.) 2 Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos-ESCET, C/Tulipán, s/n, Móstoles, 28933 Madrid, Spain; [email protected] 3 Ecotoxicology of Air Pollution Group, Environmental Department, CIEMAT, Avda. Complutense, 40, 28040 Madrid, Spain 4 Department of Biosciences, Paris-Lodron-University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria; [email protected] * Correspondence: [email protected] † Present address: Universidade de Pernambuco, Campus Petrolina, Rodovia BR 203, KM 2, s/n, Petrolina 56328-900, Brazil. Abstract: Visual and olfactory floral signals play key roles in plant-pollinator interactions. In recent decades, studies investigating the evolution of either of these signals have increased considerably. However, there are large gaps in our understanding of whether or not these two cue modalities evolve in a concerted manner. Here, we characterized the visual (i.e., color) and olfactory (scent) floral cues in bee-pollinated Campanula species by spectrophotometric and chemical methods, respectively, with Citation: Milet-Pinheiro, P.; Santos, the aim of tracing their evolutionary paths. We found a species-specific pattern in color reflectance P.S.C.; Prieto-Benítez, S.; Ayasse, M.; and scent chemistry.
    [Show full text]
  • Australian Plant Name Index
    94 Conservation Science W. Aust. 4 Lindy(3) : 94–95 Cayzer (2002) et al Australian Plant Name Index LINDY CAYZER, LAURIE ADAMS, KIRSTEN COWLEY, BRENDAN LEPSCHI AND GREG WHITBREAD Centre for Plant Biodiversity Research, GPO Box 1600, Canberra, Australian Capital Territory 2601 Summary The Australian Plant Name Index (APNI), is a comprehensive database of published names of Australian vascular plants, now available on-line at: www.anbg.gov.au/apni . The International Code of Botanical Nomenclature has strict rules on the publication and priority of plant names and must be very carefully considered in any revision involving new plant names and name changes. In Australia we have an enormous heritage of taxonomic literature in many languages and from many sources, and much of this literature is not readily available either here or overseas. To assist clients needing this information, the Australian Academy of Science Standing Committee for a Flora of Australia set up the Australian Plant Name Index project in 1973, supervised by Nancy T.Burbidge AM (1912-77). The first compiler was Penelope Hack, succeeded in 1974 by Arthur D.Chapman, but a number of botanists assisted especially during the early years. A four-volume, hard copy edition was published by the Australian Biological Resources Study [ABRS] in 1991 (Chapman, 1991). This contained the bibliographic and typification details for more than 60,000 Australian plant names. Today, APNI provides comprehensive publication and Both WIN and APNI can be found at: type citations on-line for nearly 70,000 botanical names www.anbg.gov.au/win used for Australian vascular plants.
    [Show full text]
  • Phylogeny and Biogeography of Isophyllous Species of Campanula (Campanulaceae) in the Mediterranean Area
    Systematic Botany (2006), 31(4): pp. 862–880 # Copyright 2006 by the American Society of Plant Taxonomists Phylogeny and Biogeography of Isophyllous Species of Campanula (Campanulaceae) in the Mediterranean Area JEONG-MI PARK,1 SANJA KOVACˇ IC´ ,2 ZLATKO LIBER,2 WILLIAM M. M. EDDIE,3 and GERALD M. SCHNEEWEISS4,5 1Department of Systematic and Evolutionary Botany, Institute of Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria; 2Botanical Department and Botanical Garden of the Faculty of Science, University of Zagreb, HR-10000 Zagreb, Croatia; 3Office of Lifelong Learning, University of Edinburgh, 11 Buccleuch Place, Edinburgh, EH8 9LW, Scotland, U.K.; 4Department of Biogeography and Botanical Garden, Institute of Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria 5Author for correspondence ([email protected]) Communicating Editor: Thomas G. Lammers ABSTRACT. Sequence data from the nuclear internal transcribed spacer (ITS) were used to infer phylogenetic relationships within a morphologically, karyologically, and geographically well-defined group of species of Campanula (Campanulaceae), the Isophylla group. Although belonging to the same clade within the highly paraphyletic Campanula, the Rapunculus clade, members of the Isophylla group do not form a monophyletic group but fall into three separate clades: (i) C. elatines and C. elatinoides in the Alps; (ii) C. fragilis s.l. and C. isophylla with an amphi-Tyrrhenian distribution; and (iii) the garganica clade with an amphi-Adriatic distribution, comprised of C. fenestrellata s.l., C. garganica s.l., C. portenschlagiana, C. poscharskyana, and C. reatina. Taxa currently classified as subspecies of C. garganica (garganica, cephallenica, acarnanica) and C. fenestrellata subsp.
    [Show full text]
  • A Global Method for Calculating Plant CSR Ecological Strategies Applied Across Biomes Worldwide” in Functional Ecology, Vol
    Post-Print of: Pierce, Simon et al. “A Global method for calculating plant CSR ecological strategies applied across biomes worldwide” in Functional Ecology, vol. 31 num. 2 (2017), p. 444-457. The final version is available at DOI 10.1111/1365-2435.12722 A global method for calculating plant CSR ecological strategies 2 applied across biomes worldwide 3 Simon Pierce1, Daniel Negreiros2, Bruno E.L. Cerabolini3, Jens Kattge4, Sandra Díaz5, Michael Kleyer6, Bill 4 Shipley7, S. Joseph Wright8, Nadejda A. Soudzilovskaia9, Vladimir G. Onipchenko10, Peter M. van Bodegom9, 5 Cedric Frenette-Dussault7, Evan Weiher12, Bruno X. Pinho13, Johannes H.C. Cornelissen11, J. Philip Grime14, Ken 6 Thompson14; Roderick Hunt15, Peter J. Wilson14; Gabriella Buffa16, Oliver C. Nyakunga16,17, Peter B. Reich18,19, 7 Marco Caccianiga20, Federico Mangili20, Roberta M. Ceriani21, Alessandra Luzzaro1, Guido Brusa3, Andrew 8 Siefert22, Newton P.U. Barbosa2, F. Stuart Chapin III23, William K. Cornwell24, Jingyun Fang25, G. Wilson 9 Fernandes2,26, Eric Garnier27, Soizig Le Stradic28, Josep Peñuelas29,30, Felipe P. L. Melo13, Antonio Slaviero16, 10 Marcelo Tabarelli13, Duccio Tampucci20. 11 12 1 Department of Agricultural and Environmental Sciences (DiSAA), University of Milan, Via G. Celoria 2, I-20133 13 Milan, Italy; 14 2 Ecologia Evolutiva e Biodiversidade/DBG, CP 486, ICB/Universidade Federal de Minas Gerais, 30161 -970. 15 Belo Horizonte, MG, Brazil; 16 3 Department of Theoretical and Applied Sciences, University of Insubria, Via J.H. Dunant 3, I-21100 Varese, 17
    [Show full text]
  • Flora Mediterranea 26
    FLORA MEDITERRANEA 26 Published under the auspices of OPTIMA by the Herbarium Mediterraneum Panormitanum Palermo – 2016 FLORA MEDITERRANEA Edited on behalf of the International Foundation pro Herbario Mediterraneo by Francesco M. Raimondo, Werner Greuter & Gianniantonio Domina Editorial board G. Domina (Palermo), F. Garbari (Pisa), W. Greuter (Berlin), S. L. Jury (Reading), G. Kamari (Patras), P. Mazzola (Palermo), S. Pignatti (Roma), F. M. Raimondo (Palermo), C. Salmeri (Palermo), B. Valdés (Sevilla), G. Venturella (Palermo). Advisory Committee P. V. Arrigoni (Firenze) P. Küpfer (Neuchatel) H. M. Burdet (Genève) J. Mathez (Montpellier) A. Carapezza (Palermo) G. Moggi (Firenze) C. D. K. Cook (Zurich) E. Nardi (Firenze) R. Courtecuisse (Lille) P. L. Nimis (Trieste) V. Demoulin (Liège) D. Phitos (Patras) F. Ehrendorfer (Wien) L. Poldini (Trieste) M. Erben (Munchen) R. M. Ros Espín (Murcia) G. Giaccone (Catania) A. Strid (Copenhagen) V. H. Heywood (Reading) B. Zimmer (Berlin) Editorial Office Editorial assistance: A. M. Mannino Editorial secretariat: V. Spadaro & P. Campisi Layout & Tecnical editing: E. Di Gristina & F. La Sorte Design: V. Magro & L. C. Raimondo Redazione di "Flora Mediterranea" Herbarium Mediterraneum Panormitanum, Università di Palermo Via Lincoln, 2 I-90133 Palermo, Italy [email protected] Printed by Luxograph s.r.l., Piazza Bartolomeo da Messina, 2/E - Palermo Registration at Tribunale di Palermo, no. 27 of 12 July 1991 ISSN: 1120-4052 printed, 2240-4538 online DOI: 10.7320/FlMedit26.001 Copyright © by International Foundation pro Herbario Mediterraneo, Palermo Contents V. Hugonnot & L. Chavoutier: A modern record of one of the rarest European mosses, Ptychomitrium incurvum (Ptychomitriaceae), in Eastern Pyrenees, France . 5 P. Chène, M.
    [Show full text]
  • Vegetation Map for the Riversdale Domain
    VEGETATION MAP FOR THE RIVERSDALE DOMAIN Project Team: Jan Vlok, Regalis Environmental Services, P.O. Box 1512, Oudtshoorn, 6620. Riki de Villiers, CapeNature, Private Bag X5014, Stellenbosch, 7599. Date of report: March 2007 Suggested Reference to maps and report: Vlok, J.H.J. & de Villiers, M.E. 2007. Vegetation map for the Riversdale domain. Unpublished 1:50 000 maps and report supported by CAPE FSP task team and CapeNature. 2 Dedication: For Anne Lise, my dear wife, who motivated so strongly for this study to be done. I sincerely hope that this work will enable her, current and future CapeNature colleagues to contribute more towards the conservation and sustainable use of the biodiversity of the rather remarkable biodiversity of the Riversdale region. 3 EXECUTIVE SUMMARY The vegetation of a circa 800 000 ha area in the Riversdale region of the southern Cape was classified and mapped at a scale of 1:50 000 for the CAPE Fine-Scale Conservation Plan task team. The vegetation was mapped as their occurrence was perceived to be in the 17th century, thus before any transformation due to European impacts. The classification system follows a six-tier hierarchy in order to facilitate analyses at biome, habitat type and vegetation unit level. Aquatic and terrestrial systems are recognized, with two biomes within aquatic ecosystems and five biomes within the terrestrial ecosystems. Aquatic ecosystems cover approximately 12 percent of the domain and terrestrial ecosystems 88 percent. At habitat level, 47 habitat types are recognized; six are within the aquatic ecosystems and 41 in the terrestrial ecosystems. Brief descriptions and a photograph are provided for each habitat type.
    [Show full text]