<<

KR0000168

KAERI/RR-2002/99

Development of Radiation Food and Biotechnology

Development of and Processing Techniques by Radiation

71

31/40 Please be aware that all of the Missing Pages in this document were originally blank pages KAERI/RR-2002/99

It Development of Radiation Food and Biotechnology

Development of Food Preservation and Processing Techniques by Radiation

7| 2000. 3. 31.

5 Bfl *1 • o]

u.

91 71 -7- o o =8

-?- -§" -7- o

SL

in S.

stlfe

1.

. <>l

ethylene oxide, methyl bromide «§•),

71

2.

- 1 - WTO

• *1# 51

• WTO

•••:• A^; JE*> ol-g-o] -g-o ^-Ml 1711 4 2442 7]-§- #. '99^ 4 171 #)

3. 7l#*}

o]

7\.

2:44 2.471

2. 7\.

51

- 11 - 3. 7}. #4*1 2.4 U. #«Hd 2.4 ^}. ^W 2.4

4. 7K

5. «

6.

7. 7}. ^nf

iv.

2.44?! , POV, TBA, VBN

POV, TBA,

-111- 3, 5 ^ 10 kGy .24*1- 2:4 Hunter

^47}

: 5 kGy

ascorbyl palmitate (AP), a-tocopherol (a-Toe), BHA ^ ascorbyl palmitate + a -tocopherol (AP + a-Toc)# ^7|-^H l~10 kGy5] ^i^^.

24 tcfef * AP>AP + a -Toc>BHA> a -TocS. AP7}

BHA>AP + a -Toc> a -Toc>AP£] AP +

200 ppm

2.

244 , TBA7K oxymyoglobin^ • ^£o| SA^^O] ±?O\Q6\] n*e> #7f*}&tf. ^-^^^ -g-sfl

3.

7K

30 KGy^ ^3o*c»l $\^ %u}#4. ^Af*> ^3.711- 4 ^# ICR

30 kGy

s. typhimuriumlk 98, TA100, TA1535 52 TA15376JI ^t> J^«<>1 ^^-M ^4t> ^^, c)| 0.1-8.3

^ ^ 411 14 &$& ^4^11 y ^ S-9 mixture!- 7f«J ^^oflAl o)§ A]^§^ofl tflsfl 5# typhimurium^

^}# ]4 ^^1. In vivo AJ^AS. ICR ^4^i 7fl^(10 kGy) 1250-2500 ^

- v - 5, 2.5, 1.25

glutamic

phosphorus, potassium, sodium, magnesium^

4.

# 44 1 2% . Back extrusion testofl 47>^1

44

-VI" 5% gj 10% 14

44

, 10%

Farinograph

*]»$<>) loaf volume U]7} 20% M

5.

^ 3 100%^ ZL^\ 1-2 kGy MeBr

. HB131 2 kGy

1 kGy 6.

43.6**1- 4 7]$] -£4 3.

4 3.7%

44

#4*1 4

93^^

3. f-

•-?•

coli KCTC TA 100(Ames test , Bacillus subtilis lag ti 100kGy7> £l«>l£ Zl t}. Ethylene oxide, methyl bromide^}- phospine ^i -*1^-^ ^^ thiophanate methyl(5 ppm)i *]#tH ^f^^ ^BlaoV^AS.^ n]^# ^^-ofl <$*££ u]X\x] <£# acid, propionic acid, sorbic acid % sodium

Salmonella mutagenicity test lOOkGy^l

50 kGy

20kGy 3514. 4 50kGy ol^} -& 100 tt-i-

7.

5007H

4 ^ 100 ^ 200

- x - Gy

r C3H a}-f >.< ^ 200 Gy «ltf 2:44, ^ 2:43"£ 50 Gy 2:44 -§^1 S]^#o] a4 #4:*}^}. JE*h 43" i-H ^S> ^rfe 50 Gy o]>tf

4 ^Si^h -H ^-?- ^^2}, ^Hd 2:4*11 4tS"4°l T£^T 4~IHL;3:fHhc: 500 GyS. 5)^7} £]4 *i*Jt«.i-} i4S7M 1,000 Gy#

superoxide dismutase(S0D)5l 2 Cs-irradiatorJsL ^n}^!-^- 24^1 ^1 "f^lS homogenize, sonication tl -f" ^^'S 1 mg^ SOD^l %^J£# ^^iS-c-tfl, >I2}S.7}-H-<>1|4-C- 0 Gy 8.48 unit/mg^i $.0] 30 Gy 57.3 unit/mgj5.5. ^7}^}^^.^, 100 Gy^lA-]^ 62,6 unit/mg, 500 Gy6fl4fe 65.1 Gy S. cfl^ 70 Gy -T--5-»H|4 plateauH

0 Gy 15.6 unit/mg$g.^.u[- 30 Gy<^]4-2- 16.8 unit/mgS. _j.u|-^| ^7}*}4 *i*vt^-i^, 100 Gy 9.9 unit/mg, 500 Gy 11.2 unit/mgS. T^

V.

2.

3.

4.

5.

XI 6.

7.

xii - SUMMARY

I . Project Title

Development of Food Preservation and Processing Techniques by Radiation

II. Objective and Importance of the Project

As food and health-related industries become highly developed and globalized, stable raw material supply, sanitary production, efficient processing procedure and safe storage and distribution techniques must be secured for the production of value-added products. Techniques such as heat treatment, refrigeration/freezing and chemical treatment (preservatives and fumigants etc.), which have been used in food processing, storage and sanitization, have been more restricted because of the problems in treatment efficiency, costs, wholesomeness and environmental pollution. On the part of health authorities and industries, new techniques for food storage/processing are urgent to solve the problems of food-borne diseases and to establish a safe and sanitary food production. To resolve the problems, the utilization of nuclear power energy is considered to be highly efficient in the application of sanitization, safe storage/distribution and the improvement of safety in food products and processing. In particular, research using the irradiation in quarantine techniques as a biological quality assurance of major import and export food items is in great demanded.

1. Social aspects (1) The effort to obtain quarantine management skills against the global open-market situation and sanitary product production utilizing irradiation techniques in the western world supports the evidence of the importance and potential of the utilization of the technique in food/medicine and pharmaceutical industries.

(2) Some of the chemical fumigants (ethylene oxide, methyl bromide, etc.) and chemical additives (preservatives, etc.) used in food and health related products were banned or will be banned because of their effect on environmental pollution, health problems and production of hazardous substances and their residues. Application of irradiation techniques in the above area is in great demand, particularly in an international trade.

xiii — (3) With improved living standards, consumers require safer foods and health related products. Therefore, the development of techniques to prevent diseases from raw materials of food and medicine and their products and to improve public health is necessary.

(4) Especially, the research in food engineering is necessary to increase the consumer acceptance and to help the understanding in an aspect of peaceful use of nuclear energy.

2. Economic and industrial aspects (1) The development of a stable raw material supply, sanitary food production, efficient processing procedure and safe preservation and distribution techniques is needed to obtain the secure national food resources and to produce value-added food against the WTO system and globalization.

(2) Techniques such as heat treatment, refrigeration/freezing and chemical treatment (preservatives and fumigants, etc.), which have been used in food processing, storage and sanitization, are more restricted because of the problems in treatment efficiency, costs, wholesomeness and environmental pollution. Thus, it is necessary to develop safe and practical alternative techniques. Irradiation would be the best for this purpose and is already proved by previous researches.

(3) Development of techniques for irradiation quarantine for the biological quality assurance of major import and export food items is highly demanded for international competitiveness under the WTO system.

(4) As food irradiation facilities can be used for food processing, storage, and the pasteurization of pharmaceutical and health related products, more irradiation facilities are being constructed around the world. Hence, more local irradiation facilities should be constructed; Currently, only one commercial facility is under operation 24 hours a day and another one is being considered for construction.

3. Technical aspects (1) The expansion of the use of irradiation in food and medicine must be proceeded by consumer acceptance and understanding. Furthermore, the characteristics and advantages and disadvantages of this technique must be compared and publicized. To obtain permission and recognition from the consumer, results must be presented by domestic research groups even though

- xiv- it is already recognized internationally. Therefore, it is necessary to develop a public education program on the safety of irradiated products.

(2) Because a large increase in international trade of irradiated foods is expected it is important to standardize the procedure of irradiation technique and to establish the systematic management skills in Korea.

III. Scope and Contents of the Project

1. Development of processing techniques for safety and storage stability of pork products using gamma irradiation (1) Evaluation of safety and storage stability of gamma-irradiated pork (2) Physico-chemical properties of gamma-irradiated pork (3) Antioxidative effects of lard with added antioxidant for preventing oxidation caused by gamma irradiation (4) Development of pork loin ham without color-developing agent using gamma irradiation

2. Safety and storage stability of chicken using gamma irradiation technology (1) Evaluation of killing effects of contaminated microorganisms (2) Evaluation of storage stability (3) Evaluation of the improvement of color and texture

3. Studies on the safety of gamma irradiated (1) Acute and subacute toxicity tests of irradiated chicken (2) Reverse mutation assay, and micronucleus and chromosomal aberration tests of irradiated chicken (3) Nutritional safety of irradiated chicken

4. Development of the novel material for food additives from marine waste source and its application into various food products (1) Isolation and purification of functional dietary fiber from ascidian tunic (2) Preparation of jam with dietary fiber from ascidian tunic (3) Preparation of jelly with dietary fiber from ascidian tunic (4) Preparation of bread with dietary fiber from ascidian tunic

5. Quarantine treatment of agricultural products for export and import by gamma irradiation (1) Identification of quarantine-related pests from the selected agricultural

-xv- products for export (2) Investigation on radiosensitivity and disinfestation efficacies using gamma irradiation (3) Evaluation of quality stability of disinfested samples by gamma irradiation

6. Improving the public understanding of food irradiation (1) Public understanding of irradiated foods via mass communication (2) A preliminary survey on effect of consumer education on acceptance of (3) A model study of benefit and safety assessments on irradiated red pepper powder during storage

7. Irradiation of food and drinking water to control parasitic infections

IV. Results of the Project

1. Development of processing techniques for safety and storage stability of pork products using gamma irradiation

(1) Evaluation of safety and storage stability of gamma-irradiated pork Microbial populations (total , and coliforms), TBA, VBN and POV were investigated for evaluating the shelf life of pork loins gamma-irradiated at doses of 1, 3, 5 and 10 kGy with air-contained and vacuum-packaged methods. The initial microbial populations decreased with gamma irradiation depending upon the dose and the growth of microorganisms in the vacuum-packaged samples were inhibited more than those in the air-contained samples. POV, TBA and VBN values were higher in the air-contained samples than in the vacuum-packaged samples. In conclusion, the combination of gamma-irradiation and vacuum-packaging could extend the shelf life of chilled pork loin.

(2) Physico-chemical properties of gamma-irradiated pork Post-mortem pork loins were used to investigate the effects of gamma irradiation on the surface and inside color, heme pigments, muscle solubility, purge loss, electrophoretical patterns of muscle , and tenderness. The muscle was cut into pieces of 5 cm in length and divided into two groups, vacuum-packaged and air-packaged. The packaged samples were irradiated at designed doses, 0, 1, 3, 5 and 10 kGy, by a cobalt-60 irradiator, and stored at 4°C for 7 days. There were no significant differences in the purge loss and electrophoretic patterns of muscle protein. Hunter's L and a values of the surface and inside of loins

- xvi- increased by gamma irradiation, showing a bright red color and the red color was maintained during the storage of both samples. However, the concentrations of heme pigments were not significantly changed. Muscle protein solubility slightly increased by increasing the applied dose. The decrease in shear force was observed in irradiated samples. As a result, it is expected that meat quality, especially color and processing properties, could be improved by gamma irradiation at below 5 kGy.

(3) Antioxidative effects of lard with added antioxidants for preventing oxidation caused by gamma irradiation The effects of antioxidants, ascorbyl palmitate (AP), a-tocopherol ( a -Toe), BHA and ascorbyl palmitate + a -tocopherol (AP + a-Toe) were investigated on peroxide formations in lard immediately and during storage at 50°C after gamma irradiation with the dose of 1 —10 kGy. Immediately after gamma irradiation the initial oxidation of lard was greatly increased as expected. But antioxidants were found to be greatly effective in minimizing the radiation-induced peroxidation of lard and their antioxidative activities were AP>AP + a -Toc>BHA>a -Toe. Especially, AP showed the greatest antioxidative activity of initial oxidation than that of any other antioxidant. Oxidation of lard during storage at 50°C after irradiation was accelerated significantly. But the additions of antioxidants inhibited formation of peroxides. Their antioxidative activities were BHA>AP + a -Toc>a -Toc>AP. Especially AP + a-Toe mixture was not significantly different from BHA (p>0.05).

(4) Development of pork loin ham without color-developing agent using gamma irradiation Study was undertaken to determine if gamma irradiation can be used instead of sodium nitrite to obtain and maintain the desired color of pork loin ham. A dose of 5 kGy was observed to be as effective as the use of 200 ppm sodium nitrite to provide and maintain the desired color of the product for 30 days. Peroxidation of the product was reduced with addition of sodium nitrite but increased with irradiation. However, organoleptic quality of the irradiated ham without added sodium nitrite was acceptable.

2. Safety and storage stability of chicken using gamma irradiation technology

Microbial populations of total aerobic bacteria and coliforming bacteria, TBA, Hunter's color value, heme pigments, muscle protein solubility, cooking loss and shear force were investigated for evaluating the shelf

xvn- life of chicken legs gamma-irradiated at doses of 1,3, 5 and 10 kGy with air-contained and vacuum-packaged methods. The initial microbial populations decreased with gamma irradiation depending upon the dose, and microorganisms in the vacuum-packaged samples were inhibited more than those in the air-contained samples. TBA values were higher in the air-contained samples than in the vacuum-packaged samples. Hunter's L and a values of the surface and inside of the legs increased by gamma irradiation, showing a bright red color and the red color was maintained during the storage of both samples. The concentrations of oxymyoglobin among the heme pigments increased by gamma irradiation. Muscle protein solubility slightly increased by increasing the applied dose. There were no significant differences in the cooking loss and shear force values. In conclusion, the combination of gamma irradiation and vacuum-packaging could extend the shelf life of chilled chicken without deterioration of the quality.

3. Studies on the safety of gamma irradiated meats

(1) Acute and Subacute toxicity tests of irradiated chicken In an acute toxicity test, the chickens irradiated at 10 kGy were administrated orally at a dose level of 313 to 5,000 mg/kg, and then number of deaths, clinical signs, body weights, and pathological examinations were examined daily for 14 days post-administration. The results indicated that the maximal dose of 5,000 mg/kg did not change any toxic parameter examined in this study. Thus, LD50 value of the irradiated samples may be over 5,000 mg/kg. In subacute toxicity study, groups of 40 male and female ICR mice were given in the food from the chicken irradiated with a dose of 3, 10 and 30 KGy. Appearance, behavior, mortality, food and water consumption of mouse of treated groups were not affected during the experimental periods (four-weeks). Urine analysis, hematological examination and serum biochemical experimen showed no significant differences between the control and treatment groups. Although minor changes in some hematological and biochemical parameters were observed, they were in the normal range and were not dose dependent. Spotty necrosis was found in a case of the male liver administered with the highest dose. However, it seems not related with the treatment, because it lacks either the dose dependency and the secondary changes accompanied. Our results suggested that no adverse effect is expected from the irradiated chicken with more than 30 kGy when administered with two times more than average daily intake of chicken into the mouse for four weeks.

- xvur (2) Reverse mutation assay, micronucleus and chromosomal aberration tests of irradiated chicken The reverse mutation assay of the irradiated chicken (10 kGy) was evaluated by Salmonella typhimurium reversion assay. The results were negative in the bacterial reversion assay with S. typhimurium TA98, TA100, TA1535, TA1537. These results confirmed that the irradiated sample did not have any mutagenic activity. The test of micronucleus formation from marrow in mice demonstrated no significant differences, when compared irradiated samples (up to 10 kGy) with nonirradiated ones in the concentration of the sample producing cytotoxicity (1250-2500mg/plate). No mutagens were formed by gamma irradiation up to 10 kGy. In chromosomal aberration tests with CHL cells, no significant difference in the incidences of chromosomal aberration was seen between nonirradiated and 10 kGy irradiated chickens. These results indicate that 10 kGy irradiated chicken did not show any genotoxic effects under these experimental conditions.

(3) Nutritional safety of irradiated chicken The proximate composition of foods were not significantly changed by irradiation dose. The acid value of irradiated samples increased more slowly than that of nonirradiated samples. VBN value increased more rapidly in nonirradiated samples than irradiated samples during storage. So, it was evident that gamma irradiation delayed protein decay. Twelve kinds of fatty acids were analyzed from chicken. No significant difference in the components of fatty acids, were observed by gamma irradiation. In general, the amount of the free ami no acid released was not significantly changed by gamma irradiation. There was no difference in total content between nonirradiated and irradiated samples. The SDS electrophoresis patterns of samples were not significantly, different between nonirradiated and irradiated samples. The major minerals of chicken were phosphorus, potassium, sodium, magnesium. The content of mineral was not significantly changed by gamma irradiation.

4. Development of the novel material for food additives from marine waste source and its application into various food products

(1) Separation and purification of dietary fiber from ascidian tunic Fiber supplements used in food are important as a function of physiochemical and rheological properties. Food products enhancing physiological functions were prepared with using the fiber isolated from ascidian (Halocynthia roretzi) tunic collected from marine waste source.

- xix- Ascidian tunic was isolated and then purified by chemical methods as combined treatment of alkaline and acid solution.

(2) Preparation of jam with dietary fiber from ascidian tunic Strawberry jams were prepared with addition of 1.0 and 2.0% dietary fiber isolated from ascidian {Halocynthia roretzi) tunic for recycling wastes of seafood source and developing new food products. The texture of the samples was examined using a back extrusion rig and four sorts of rheological parameters were analysed as follows; firmness, consistency, cohesiveness and resistance to flow. All the rheological parameters decreased in the jam with added fiber. Also the viscosity profiles decreased in the jam with added fiber. Hunter L* and a* values increased in the jam with added fiber and the colour was light red. As a result of sensory evaluations, taste overall acceptance were significantly different at p<0.05. In the list of acceptance factors except for spreadibility, jam that 1% fiber was added noted the highest sensory scores and preference.

(3) Preparation of jelly with dietary fiber from ascidian tunic Jellies enhancing physiological functions were prepared with using 5 and 10% dietary fiber isolated from ascidian {Halocynthia roretzi) tunic collected from recycled seafood waste. The texture was examined with two-bite compression test and analyzed using five sorts of rheological parameters with texture profile analysis'. hardness, adhesiveness, springiness, cohesiveness and gumminess. All the rheological parameters decreased in the fiber added jellies. However, the springiness and cohesiveness increased slightly in the fiber added jellies. Hunter L* and b* values increased in the fiber added jellies and accordingly the color was light yellow, a* value showed green with the addition of fiber. As a result of sensory evaluations, the color and overall acceptability were significantly different at p<0.05. The 10% fiber added jelly was noted the highest sensory scores and preference.

(4) Preparation of bread enhanced with dietary fiber from ascidian tunic The rheological properties of wheat flour dough and qualities of bread prepared with 0, 10, and 20% of dietary fiber slurry extracted and purified from ascidian {Halocynthia roretzi) tunic were investigated. Water absorption of the dough increased with the increase of dietary fiber slurry. Both arrival and development time of the dough with 10 and 20% dietary fiber slurry added were shorter than those of the control. An increase in the added amount of the dietary fiber slurry resulted in an increase of weakness. The dough's extensibility and resistance to extension

- xx were decreased, and the ratio of resistance to extensibility (R/E) decreased with the increase in the dietary fiber slurry. The maximum viscosity gradually decreased with the increase in the amount of dietary fiber slurry, while the temperature of gelatitiization was not changed. Both loaf and specific volume of bread were slightly decreased with an increase in the amount of dietary fiber slurry. Overall preference scores by sensory evaluation and the quality characteristics of the bread with up to 20% dietary fiber slurry added was not significantly different from those of the control(p<0.05). The results indicated that the addition of the dietary fiber from ascidian tunic retarded staling and improved the shelf-life of the bread by enhancing the water holding capacity.

5. Quarantine Treatment of Agricultural Products for Export and Import by Gamma Irradiation

Panonychus ulmi Koch and Tetranychus urticae Koch have been found as major quarantine pests attached or aggregated on the fruits of both apple and pear for export to North America. The disinfesting effect of overwintering stages of Panonychus ulmi on the fruits of apple and pear was apparently above 2 kGy of gamma irradiation. Especially, the mortality of the mites increased rapidly after 7 days when irradiated at 3 kGy, thereby attaining 100% after 17 days. Meanwhile they showed an apparent mortality at around one month after irradiation at 1 to 2 kGy. The current methyl bromide (MeBr) fumigation was perfect in its disinfesting capability. Associated with quality stability of stored fruits, the treatment timing of fumigation and irradiation for quarantine purpose was more adequate after 40 days of storage at 0±l°C following harvest than immediately after harvest. The fumigation resulted in the changes of the physiological properties of the fruits like respiration increase and ethylene formation, thereby showing the loss of physical and organoleptic qualities in pear after 60 days of storage at 0±l°C, such as mold growth in the surface of the fruit and its core browning. Fumigated apple also showed quality changes, such as peel browning, reduction of sweetness and overall acceptability and flesh browning at around 60th day of storage, while apple fumigated at the 40th day of storage after harvest was maintained its marketability up to 120 days of storage. More than 2 kGy irradiation was detrimental to physical and organoleptic qualities of the fruits, but 1 kGy irradiation based on its accumulated mortality effect showed a possibility to be applied as a quarantine procedure for the corresponding pests with insignificant changes in the quality of fresh products such as apple.

- xxi - 6. Improving the public understanding of food irradiation

(1) Public understanding of irradiated foods via mass communication Only 8.7% of the general public have heard of irradiated food. 43.6% of the nutritionists have heard of irradiated food. 30.5% of the consumerists and environmentalists have heard of irradiated food. Impressions of irradiated food that the general public mentioned most frequently: harmful, insecure, negative, etc. The consumerists and environmentalists were found to have the most inaccurate knowledge of irradiated food. Television and newspaper were the major sources of impressions of, exposure to and focus of attention on irradiated food. Consumer/environmental civic groups and international institutions were the most trustworthy organizations that would provide information of irradiated food. The nutritionists had the most accurate information of irradiated food.

(2) A preliminary survey on effect of consumer education on acceptance of irradiated foods The knowledge and attitude on irradiated foods were surveyed by questionnaire toward 229 ordinary adult men and women in Korea (Non-educated group). And 93 people who attended a seminar on the acceptance and trading of irradiated food held at Korea University (CAFST), where the safety and the present status of the use of irradiated foods in different countries were introduced, were also asked with the same questionnaire at the end of the seminar (Educated group). The differences in the attitude and understanding on irradiated foods of these two groups were compared, and the effect of education on the consumer acceptance of irradiated food were evaluated. The percentages of Non-educated (NE) respondents who expressed concern on the contamination of harmful microorganism in food, and residual chemicals, and unhygenic treatment of food were 50%, 47% and 55%, respectively, whereas those of Educated group(EG) were 60%, 46% and 66%. On the other hand the percentages of the people showing concern on irradiated food were 47% in NE and 13% in EG. The respondents expected microbial destruction and extending freshness of food by irradiation, but did not worry about the cost of irradiated food. It was evident that education enhanced the consumer's understanding and willingness to purchase of irradiated foods, but the effects of education varied with the gender, age, educational level, income and occupation of the respondents.

(3) A model study of benefit and safety assessments on irradiated red pepper

xxn powder for storage The effects of irradiation on the quality and microbiological and toxicological safety of red pepper powder for storage were compared to those of other preservative methods such as fumigation, pesticide treatment and food preservatives addition. The color values (L, a, b) and carotenoids content of red pepper powder changed significantly when the irradiation dose exceeded 50 kGy. The biological influence of the treatments was examined by testing the microbial growth rate on the media made from the extracts of red pepper powder treated with different preservative methods. The microorganisms known to be sensitive to chemicals, such as E. coli KCTC2571 (Food preservatives sensitive), Salmonella TA100 (strain for Ames test) and Bacillus subtilis No. 95 (wild strain) were grown on the media, and the lag time and the growth rate were examined. The growth rate of the microorganisms did not affected by irradiation of red pepper powder up to 100 kGy. Neither the fumigation with ethylene oxide, methyl bromide nor phospine, and the addition of thiophanate methyl (5 ppm) influenced the growth rate of the microorganisms, while the additon of benzoic acid, sorbic acid and sodium sulfate at the concentration permitted in food additive regulation supressed the growth of the microorganisms. Ames test using Salmonella on the extract of irradiated red pepper powder showed no mutagenicity evidence up to 100 kGy. Since the sensory quality changes like discoloration occurred apparently by 50 kGy irradiation, the safety of irradiated red pepper powder could be secured as long as the sensory quality was acceptable. An experiment on microbial sterilization by irradiation showed that minimum 20 kGy was needed for the sterilization of red pepper powder. Therefore, it was concluded that the optimum dose for the storage of red pepper powder was 50 kGy, and the toxicity problem did not occur by irradiation up to 100 kGy.

7. Irradiation of food and drinking water to control parasitic infections

Although parasitic diseases are well treated with drugs, the infection cycle is continued among the population of the endemic area due to their raw eating habit, and drug therapy cannot eradicated all the parasitic diseases. Recently, irradiation of foods is applied to control various kinds of human infecting pathogens. International Atomic Enert Agency (IAEA) have considered irradiation as a control measure for food-borne parasitic infections (IAEA, 1989 & 1991), because radiation exerts an enormous influence on helminth parasites. The purpose of the present study is to observe the effects of gamma irradiation on the infectivity and development of Metagonimus yokogawai and

- xxin - Gymnophalloides seoi. Also, the difference of radiation susceptibility depends on the capacity for DNA repair. Hence, Anisakis, the radioresistant parasite, might show few apoptotoc cells after irradiation, and Neodiplostomum seoulense, a sort of trematode, might have a lot of apoptosis. In this study, three kinds of parasites having different susceptibilities to gamma irradiation were observed for the apoptosis. In addition, the changes due to gamma-irradiation, including infectivity, growth retardation in the final host, were observed in N. seoulense. In the case of M. yokogawai, the worm recovery in the group of metacercariae irradiation was more than in the group of fish irradiation, and change of development in the group of metacercariase irradiation was significant in 100 Gy. In the case of G. seoi, the worm recovery in the group of metacercariae irradiation was significantly reduced in 200 Gy, and in oyster irradiation group was significantly reduced in 50 Gy. In non-irradiated control of Anisakis, SOD was 38.9±7.3 unit/mg, ranging from 29.3 to 46.0. The value slightly increased to 40. 4±16.9 at 30 Gy returned to 38. 2±8. 6 at 100 Gy. After then, they increased significantly (p<0.05) reaching a peak (51.3±5.8) at 500 Gy. The SOD of N. seoulense were recorded at Table 2. In non-irradiated control, SOD was 15.6±6.5 (ranging from 4.3 to 19.7), lower than that of Anisakis. It was increased to 16.8±9.2 at 30 Gy, then decreased again to 9.9±26.4 at 100 Gy. The value slightly increased to 11.2 ±9.6 at 500 Gy, but it was lower than that of the control group. All the changes of N. seoulense were statistically insignificant (p<0.05). In the case of the sparganum, SOD of the non-irradiated group was 8.5±9.0, the lowest among the three species examined. However, the SOD value was increased to 57.3±21.9 at 30 Gy, 62.6± 19.4 at 100 Gy, 65.1 ±71.1 at 500 Gy, respectively. In non-irradiated sparganum, few apoptotic cells were observed, and they were localized to tegument only. The sparganum irradiated with 30 Gy showed similar feature with that. Compared with non-irradiated control, a remarkable change was observed in the 100 Gy irradiated sparganum. In addition to tegument, many apoptotic cells existed inside the worm. At the dose of 500 Gy. more apoptotic cells were stained with dark brown, and they were localized throughout the worm. In Anisakis, pronouncing changes of apoptosis was not observed. In non-irradiated control, apoptotic cells were distributed along the cuticle layer, but there was no apoptosis inside the worm. A similar feature was observed at 30 Gy. In 100 Gy irradiated sparganum, some cells inside the worm were stained with dark-brown. In 500 Gy irradiated Anisakis, many apoptotic cells were observed inside the worm. In the case of N. seoulense, only 100 Gy irradiated group was observed. No apoptotic cells existed in it. Through these results, it is suggested that irradiation of fish infected

- xxiv~ intestinal flukes could be effective for the control of infectivity of parasite. Also, it is suggested that the difference of radiation susceptibility depends on the activity of SOD.

V. Application of the Project Results

1. Expansion of permission of items to irradiate from the ministry of health and welfare, and technical transfer to related industries 2. Expansion of consumer acceptance and application through safety assurance on irradiated foods: currently more than two hundred facilities are using the irradiation and the number is increasing yearly 3. Improvement of public sanitation and indirect productivity through prevention of food poisoning in fast food stores or catering services. 4 Increase of ability to compete with foreign countries and marketability through a biological quality assurance for major export food items 5. Improvement of quality of living by development of functional foods and by sanitization of meat products. 6. Examination of industrialization feasibility through survey/consignment research, information exchange and empirical tests with related institutions 7. In the final stage, technical transfer will be accomplished after cooperative research with related industries

-xxv - CONTENTS

Main Research 1

Chapter 1. Introduction 3

1. Development of safety and processing techniques of pork using gamma irradiation technology 4 2. Safety and storage stability of chicken using gamma irradiation technology ...-6 3. Development of the novel material for food additives from marine waste source and production of the products using this materials 7

Chapter 2. Status of development of recent techniques 9 1. Sanitization and storage of Meat 9 2. Irradiation technology for food and agricultural products 10 3. Sanitation of meat by radiation technology 11 4. Prosperities of food irradiation in the food industries 17

Chapter 3. Contents and results 19

Section 1. Contents and methods 19 1. Development of safety and processing techniques of pork using gamma irradiation technology • 19 2. Safety and storage stability of chicken using gamma irradiation technology .-23 3. Development of the novel material for food additives from marine waste source and production of the products using this materials 25

Section 2. Results and discussion 30 1. Development of safety and processing techniques of pork using gamma irradiation technology 30

- xxvir 2. Safety and storage stability of chicken using gamma irradiation technology .-57

3. Development of the novel material for food additives from marine waste source and production of the products using this materials 63

Chapter 4. Achievement of research goals and foreign contributions 77

Chapter 5. Plan of utilization of the results 81

Chapter 6. References 83

Collaborative research 1 95

Collaborative research 2 249

Sponsoring research 1 279

Sponsoring research 2 329

- xxvui" 1

l ^ ^ s. 3

£ V 7fl^ 4 4 4

4 H^4 I j^l^j %}± 5 2:471 ^ ol-g- ^ ^124 tiJ44 ^Nl7l# 7ft 6 2. #nHd 247]^ «>l-§- ^1^-51 ^1^5f ^ 4^)- o>^^ 4^ 6 3. ^-i>sj|4*J °l-§- ^# ^l^B 4tiJ: 5J °11- ol-g-t> 7^fi# Al^ ••• 7 7>. -f^^oK^Tfl) ^^S^-Bi ^oi-g-fr ^el .^^1 5J ^#^5] ^j-g- 7 ^ oj-g- ^^ 42.... 7 oi-g- ^ge] *i 4^ 8 ^g 8

*H 2 ^ ^-uH • 5q 7l#7fl^ ^% ...... 9 1. ^^-^ Z^n "A ^ 9

2. ^i#^ «OU}AJ 2471^ • 10 11 13 13

15

16 4 ^ 4 ^^ ift^ H3 ^16 4. ^4^OT aoV4^ 2471^51 ol-g-^nj- 17

4 3 # ^^Bt^^ uH-g- g| ^2f 19

- xxix- 19 19 l-i. &*$ $)W5)- *HV °M^ *]% 19 7}. X\S. 51 HMHd ^4 19 v}. n]^#^ ^^ 19 •c}. 2fAfSf#7l- 4^ 19 1 1^ll(» ^g 19 ^(Volatile basic nitrogen, VBN7» 19

20

£ 20

Ij. 7^1^ ^S. 5J ^-^4: ^3O> ^.^ 20 4. ^*1 -8-tsfl^ ^ 20 5f. Purge loss ^g 20 n>. ^7l<^ofl 511> ^>y4^^ ^SJ- ^^ 21 a}. ^^^ ^-^g 21 21

1-3. #*Hd 3^W ^x| ^sfl^ll- ^t> 4>SHM*H5} %7}S.3} 21 7\. ^*m 21 21

1 |^ ^f 21

Sj-. 2^A>SH-7^ ^^ 22 4. ^^1^:^ 22

4.#n}*l SAf7l^ oj-g- ^ 4^x] ti^^|| cfl^|7]^- 7fl^ -22 7\. ^A^ 4^ 22 22 23 23 4. ^^^7} X\% 23

xxx - 2. #4*1 2LX[7)£ ©1-g- Tfl^ $}s$Q % x\% apg^ Al^ 23 7>. A]S il ^Hd ^4 •- 23 v.K 4^1- ^ 4^ 23

4. TBA7} 4^ ••< 24 ef. 7]7(|^ ^S. £ 4A4^ ^^ ^^ 24 4. ^^ -§-«fl^ ^-^ 24 4. ^^ ^H§ 24 4. 3#3 ^^ 25 4. W 3g7> ^ ^-4^5} 25

3. ^5fl*}# oj-g- Ai^ AI^^J 7|tij. g o]# o]-g-*> 7f^-^}# >§A1: 25 3-1. -f^^!«>l(^7fl) ^^S^-Bl 71VS *l*l^-fr^^el ^ ^1 25

7\. 7l^g ^ol^-o. «.B] . ^ 25

3-2. -f ^l ^^S-f-BJ ^el . ^4SJ Aiol^-o. o)^- ^^) 43. 25

7>. 4 5. 25

uf. ^0)^^-1- ^7m *£$] *\}2. 25 4. *M^-S- ^7} ^^ #^ ^^ 26 Bf. <$<>]<£-& %7\ JgSj ^£ ^-^g 26 4. ^ilol^-n- %y\ ^^ ^£ 5pg 26 4. ^^^71- 26

3-3. -

7}. 4 5. 26 %7}% ^3]^ 43 27 ^7} ^gel5] #^ ^^ 27 ^ 171- ^B]5] qs, m& ; 27

3-4. -f^^ol ^^S^-Bi ^-el .^4^ ^lol^-^ o]-8- ^1BSV 7}^- 27 7f. 4 S 27

- xxxi 28 28 29

2 ^ ^W ^ J2# • 30 30

#H ^ ^gj ^ )^j ^^ ^> 30 ' 7}. #3^ £3} 30

^^] ^j30

^^5^^ ^33

ef. ^A>SH-7^ ^Sf- • 33

-33

38

1-2. #nHd 24§ s^. ^>y^ ol^t|^ ^ ^Sf , ..38 7\. qs. %-%q± H*gS\ £4* 38 i-f. ^^^ -§-*H3 ^^- .- -.39 t:}. Purge lossS] ^4|- • • 39 5K #7]

1-3. #n}*i ^A}A) s^ A>ifl^^|l. ^^> ^if^x}^^ ^7fjL2f 45

45 45

1-4. #nH! ^A>7l# oj-g- ^ ^)^A] igq^ cM7l^ 7{|^ 52

7\. -^^^^ MI-f-^35. 4^ •• •• 52 52 1 U^B ^^ 55 3f. ^-^^7} A]^ 55

- xxxii - 2. #nHi 3^A}6\] $)*} 7j)^| ^AgSf 5| *|# oj^ ^7f ...57 7f. -f^Sj ££}• 57

4. tH^^-Sj ^ ' 57 n>. TBA7}S1 *l£f 57 ef. ^s. 92 ^H^ W^ $il- 60 60

3. *N>Sf|*KI o]^- Al^. Al^fl 7^^ gj oil- ol-g-^ 7fg-^# ^^i7]# 63

3-1. -f-^^o|(^7i]) %%3.^n 7]*$ ^o]M^^ £.Sj 5J ^^ 63 ^^ 63

3-2. -f^ol ^^ ^^--fe ^7} ^ 4^^f #^ ^"^ 63 7}. ^H^-S- ^7f ^5] #^ ^g ...... 63 ^7} ^51 ^£ ^41- 64 64

64

3-3. -f ^^Jo| ^ ^^.^i ^7} ^e] ^l^iq- #^ ^-^ 66 ^^ 66 67 67

3-4. -f^^Jo] ^^ ^^.^ ;§7j. ^|«g. ^ ^^ ^.A^ 68 7}. -f^^T^] ^^ -S-ffcdL ^7fH g-^^^ farinogram ^-^ 68 extensogram ^-^ 70 amylogram ^-^ 72 5}. -f^«*8<>l ^^ &*± %7} ±\*%$ ^£ 5J ±n^rS. ^Sf 73 75

4 % ^i^-711^ ^-a ^^S. % cfl^l 7}<^S. 77 7\. <&^-7H*k "^S iMS-E 77

xxxin- 81

83

95

249

279

329

- xxxiv- Development of Sanitary Meat, New Meat Products and Novel Food Ingredient by Gamma Irradiation IS

7}

3.71 SJ

oo>^c>l $\o] ^.^^-ar]-7|) 4)^-^ ^-f Salmonella, Campylobacter, monocytogenes, , 0157:H7, Yersinia enterocolitica ^B] t§-%!>c> nlAl"S":2}" Trichinella spiral is, Toxoplasma gondii, Taenia solium %•$

Slfe^ <=>lfe }. ZLBlu} ©1 7]

(WHO), n.

WH0/FA0/IAEA(4M[}Hf) 1997\1 9^ 15-20^) 75 kGy (10-100 kGy) >?>#

3 safe

3-7

-3- 1351:2. Sa^-^, IAEA, WHO, FDA 39711-SHM 4

Listeria wonocytogenes, Escherichia coli 0157:H7

Bl^^l^^l ^71 ^} 7}^ acetic acid, lactic acid, fumaric acid potassium sorbate, sorbic acid, BHA, BHT, EDTA %$

tcfej-

of-g-o] ^7>* FAO/IAEA/WHO "10 kGy

«^ 13 71 ^-

71 fe

71

radicals^

coil 0157: 1997\1

-4- 4.5-7.5 kGy

oj-g-o] Sj-tfl , o]ofl n^.

71 Ulster

oj-g-o)

-8-4 507, 105.000 , %• 612,000^-01] 25.6g, 1989^1 ^ 39.

. Slfecjl. -8-8-- 4 -8-4 Si margarine, shortening ^5] ^u|7|- 3.71] 7}

DNA-

Sa

4

-5- ascorbyl palmitate, a -tocopherol, BHA ^J ascorbyl palmitatei]- a-tocopherol 4

Clostridium

N-nitrosamines#

K Shahidi -§-<44)£: 10 kGy o]t>}$)

(45) JL2.*>9it;K Shults -§- ^ »g-AHi 2:47r corn beef brisket^ ^ . SzczawinskiA)- Szulc(46>, HBl^L Whitehair

5 kGy

2.

<>l] n^3> , Salmonella spp., Escherichia coli 0157:H7 ^^ *

2*}

7}

-6- 51^}.

3.

ascidian, Halocynthia 4 ^

51 51

51 «I|n

^12:4 high methoxyl pectin^

-7- low methoxyl pectin^-

low methoxyl pectin

o]ofl ir}$

Wang A]

mixograph

^ 5%

-^-S. 99% ai

-8- a\

7}

7}

Salmonella, Campylobacter, Listeria monocytogenes, Staphylococcus aureus, Escherichia coli 0157:H7, Yersinia enterocolitica ^-$\ ^T!^ n]A^#2]- Trichinella spiral is, Toxoplasma gondii, Taenia solium %^\ $.<&*$ 7]*$&>] ^7\] #^£]<^ ^^# ^^.^ 4 $I4(S 1).

o} 2).

(49,73)

(WHO), 91

WH0/FA0/IAEA(^mu>, 1997^ 9^ 15-20^)

75 kGy (10-100 kGy) °>#

USDAfe 3-7

-9- 41 * 4 tf Salmonella, Campylobacter, Listeria monocytogenes, Staphylococcus aureus, Escherichia coli 0157:H7, Yersinia enterocolitica Trichinella spiral is, 3^ 7]^ Toxoplasma gondii, Taenia solium °R Vi^l: «J 39^ ~ 43<^iHH

^i^-^, CA S.^^1, MA S^t!, °1#S S^J-'g

• -fr7lt> 51

• S^^3c.7

IAEA, WHO, FDA

51

-10- mfe

SUfe

Aj-^A]^ ^ al4fe 7} 1921V!

60^

^l^^ WHO, IAEA, FAO ^ ^-^71^-^ FDA 71 «hi- nf^-&}7l (4973)

51 ?I

t:>.

: Campylobacter jejuni, Escherichia coli 0157:H7, Listeria monocytogenes, Staphylococcus aureus, Salmonella spp., Yersinia enterocolitica}3\ -5l 7l^}-§H<>fl: Trichinella spiralis, Toxoplasma gondii, Taenia solium)-^ 41ll'srK2.> •*}•§•-£..§. ^1

7H

3, 4).

o) Jg^^olc}. olsj^> ^^^ Dfl-f

-11- JSE 3.

°] ^ # A 6 n « (10 Afl|Aieo>, kGy) Aeromonas hydrophila n}^ o^/£lJL7l 1.3 Campylobacter Jejuni 1.9 Escherichia coli 0.4 Escherichia coli 0157:H7 1.5 ~ 2.0 Pseudomonas spp. 0.6 Salmonella typhimurium 3.4 Salmonella paratyphi 1.8 Shigel la dysenteria 2.4/1.5 Shigella flexneri 2.5 Shigel la sonnei 1.6 Vibrio parahaemolyticus 0.5-1.0 Yersinia enterocolitica ^JL7|/4-f 1.2 Staphylococcus aureus 1.9 ~ 3.4 Streptococcus faecal is 5.5 Micrococcus radiodurans 60 Clostridium botulinum 62A (spores) 15.5

Food-and-mouth 36 disease virus Poliomyelitis virus 84

4.

71 * * 4 (kGy)

Toxoplasma gondii 0. 25

Trichinella spiral is 0. 3

Cysticercus bovis 0. 4 -- 0. 6

Cysticercus 0. 4 -- 0. 6

-12- HACCP (Hazard Analysis of Critical Control Point) system

(critical control point)o]Z}3. ^t!^}. o]$} Qo]t ^ 71 ^g:

)^xl ^fecHfi 5).

7\. (jsjational Advisory Committee on Microbiological Criteria for Foods, 1993)^ "^^-frt^f #^# $3.7]*) ^A f-^^ 45^14"^.^ Salmonella spp., Clostridium perfringens, Staph. aureus^ °]<>\tf E. coli 0157:H7#

^o] ilJL7l). o] £]^£^ «1-^ 5. cereus/ L. monocytogenes, Y. enterocolitica7\ •§-!•<$ ^]#2} 3^^51 -g-i^6]x]-olx}n>, «^«>^ *.S ^^.7| *]#2fe 3^o| 6^t:}3. ^M4. SltUS, ^4# ^-M-fe Aeromonas hydrophila^ "

HACCP SS.Z1

-13- 5. 4 s. 4

^: 10 kGy

(minimum line)'«fl cj*1|

xrfl

.03.

GMP (Good Manufacturing Practice)^ • US Army Natick Center - 2L*\Q £3.7], ^3.7], ,*&,*§<>

• - 4.5-7.0 kGy • 5 5 kGy HACCP

C. botulinum % : 0, 0.5, 1 kGy, A>^^£: 0, 10, 20%) 10-20% ^8M>| &%%. S.^ 4Sfe 14 . ^^ 0% *i^H14-b o kGyofl4 21

-14- ^. 5°C<>1|4 4^ S^- 4£-<>114-b *i# 44 #4<*i l4AJso^ ^^cMfe 15°C o)^ C. botulinum6\]

^ 0.5 kGy 2Afe 7^, 1 kGy ^A}^ 14<*J *$5L ^-^^A^ xj^Aiflt:!- 15-30^ o|

I, 1 kGy SAH]A^ 20% ^S. S^ X\^£- ^• x) . 20% ^2^: 80% ^4i ^-^r 20% ^^b.: 20% o]Aks^Ji: 60% ^4i 20% ©l-ivaj-u-ii: 80% ^^i ^S.^| 100% ^^oflA] Jit:} 20% bacteriocin# A5A^H, C. botulinnmA ^*$%\7] v^^o]^}3. 4£SCK ^tl 1991 |721 C. perfringensS} L. monocytogenes^ *J*l|*f8it:}. C. 20%

., °\ A

1, 3, 5 kGy

4°c, 25'c) ^ 8.0X102 CFU/g, 2.0X102 CFU/g, 31S. ^ 8.0X101 CFU/g, Pseudomonas spp. ^ 6.0X102 CFU/g 7.0X102 CFU/g^.S fe^ ^I1 5 kGy

3-5 kGy

-15- #441

514. #44l #441

(18,86.87)

xfo]

xtfl,

je.nf 0}$}

#441

#441

35%

4.

-16- JH(M. Sternomandibularis)*]

-faf ]

4.

ZL 43.5] A}-g-o]

WHO, FAO, IAEA, USDA -g-

7]

o]ol ^^-^

-17- 3 g-

*

l-l.

7>. 244 £o| ^2}^ s.^. ^Ai^. ^*M e^-# ^(| 5 cm(<^ 500 >«> ^ ^SW ^7lS^i- *}%.^}, 5£^^ AlS# Co-60 Ci)# oj-g-sM ^l^^ 2 kGy^ ^^#5. 1, 3, 5^f 10 , ceric-cerous dosimeter-! °]-§-*H •S^r'ti fe ±0.12 kGy^r}. ^nHd ^4€ ^fife 4 + rc

swab method(96)S. A]S^ a^l-§-*M 25S]# 0.1% ^5 peptone waters] $m*\$lt\. f^Hr Plate count agar(Difco co., USA)!- bromo cersol purple(Merck Lab., Germany) tifl^il- o)-§-*>$5lJ ^ EMB agar# 4-§-^H pouring methods *|*r$!i-^-^. 37t;6fl4 24-48 ^ 5^r(colony forming unit, CFU)#

rfe Hampson ^$] ^m<% ^ chloroform: methanol(2:1, chloroform:acetic acid(2:3, v/v)-g-^^S. -§-s)fA|7'lJI KI 3L3} ^-^ 0.5 mL# ^ 1^?> f^:*l ?l%4^3. 5^^> ^Ji

TBA(2-Thiobarbituric acid)7fe Turner 1 g^Hl 20?« TCA(trichloroacetic acid in 2M phosphoric acid) -g-^ 5 mL 4 0.01 M TBA -g-<>4 10 mL# 7>*> ^ 30^- ^9} 7}

) 15 min)*M H

(Volatile basic nitrogen, VBN7f)

-19- 10 g-§- ^*M Wahisa^ Conway

0.02 N H2S04

1-2.

7}. A

5 cm(*J 500 g) Co-60 ^JnH 2 kGy^ ^^?#S 1, 3, 5 ^ 10 kGy5] , ceric-cerous dosimeterl- °l«g-*M l-^r^^^- ^^I^Sd^K <>]nfl ±0.12 kGySdc>. ^-nf^i ^4S ^lSfe 4±TC

.^- Color/color difference meter(ND-1001 NP, I&T Co. Ltd., Japan)!- 4"§-^M Hunter ^^7)]^ *gJE(L, lightness), 2\qs.(a, redness) , yellowness)!- BS\ «14 4^*M ^^SM- ^^K °I4 4-§-^l S^ L, a, b^^r 90.6, 0.4 ^ 3.301^4. a*> 4 ^S«II ^flt> heme pigment*] ^ Krzywichi(100)^

^-, 2 g5| X\3Lt% 20 mL^ 0.15 M NaCl^ 10 mM sodium phosphate 1 ; 7.0, PBS)# ^7f«J: -T 5- g7l(Ultraturex1 Heidolph DIAX 900, Germany)^]^ 10,000 ^^£S 3^r?> 5:^^*> ^ 9,000 rpm^.5. 4°C Whatman No. 3 ^^M! >»>}-8-*>"H ^Att ^ 3. o^ ^^ o^^-S 3*1 ^ 0.6 M NaCl^ 10 mM sodium phosphate ^j"3M^(pH 7.0, high salt buffer, HSB)# ^7}«> ^f t\X\ ^^t}3. Q^Z]7]o\]*\ 9,000 -i- Whatman No.3

bicichinconic acid(BCA) protein assay kit(Sigma Chemical Co., St Louis, M0, U.S.A)!- 4-g-*>to(102), a^g-«J|'j&S.fe 0.5 mg/mLH 5.0 mg/mL *&S£\ bovine serum albumin

5]-. Purge loss Seideman -

-20- water batho)H X\S.B\ ^££.7} 70°C7\ % ofl^fx] 7}<& 7f^^%>( cooking loss)^

Denatured polyacryl amide gel(SDS-PAGE, 10% aery 1 ami deHH

2 ^V+ ^ Claeys - }^ £:*] marker-S.-H prestained molecular weight marker(Sigma Chemical Co., St Louis, MO. USA)# >»•}-§-«•]•

Liu -^(106)5] #$>§• Afg-*}^ purge loss cm5j ^^-7lS ^^-# ^y-^f^S. ^^g-tt ^ Texture analyser(TA-XT2i, Stable Micro Systems, England)*

-^r SAS software(107)oi]A] Sla^§ general linear procedures, least square ^-SiSM- Duncan's multiple range

1-3. ^

0.02%(w/v) ascorbyl palmitate (AP), 0.02%(w/v) c-tocopherol (a -Toe), 0.02%(w/v) BHA iJ 0.01%(w/v) ascorbyl palmitateif 0.01%(w/v)c -tocopherol ^^^e|5(AP + a-Toc)^S. *M ^7^1-JL methanol^- ^<>| ^^7l^- %•<& ^^J-*> ^, 40°C rotary evaporator^, -g-nfll- 47]*M A]SS A}-§-

^ Lee -^(108)2f Jung(109)5] ^^ofl afe} 35 mL^l ^«> glass serum bottled 30 mL*] ^%*>7fl \4JL JL^-n}7i|it aluminum capj5.S ^^1^1^! ^ Co-60 2 kGy^ ^^#S. 0, 1, 3, 5 % 10

-21- , 1^%^ ^tlc eerie cerous dosimeter fe ±0.1

value, 3:44 ^ €-^H1 35• mL9j chloroform: acetic acid(2:3, v/v)-g- KI SSH^g-^ 0.5 75 mh$\ £&*]*) *)! 1 mLl" 7>*>3. 0.01 N

(A-B)XfXN X1000

A: A]SS| ^^^t(mL, Na2S203) B : control^ ^^^(mL, Na2S203) f ; factor N : Na2S203^ ^$ Jg-S. S: X\S.Si\

f-^l^r^^r SAS(107)^- Duncan's multiple range test#

1-4. ^B>^ ^47l# o)-g- ^

lkg ^g£ 5^711 l^t> ^ Table <&x\q& <$*)<$ ^6J7]1- Afg-*H ^^^ ^S-711 ^^*>3. ^#e| (Tumbling machine)oflA-]

70'C7> 1 nfl7W ^^^el^SJcK 7^1^ <$ 50 ^ M|-f-&-£7} 18°C g ]^ 8±2°C^.

^ Color/color difference meter (ND-1001 NP, I&T Co. Ltd. , Japan)!- 4"§-*H ^^ofl cflt> Hunter ^^1^ *g£(L, lightness), ^^£(a, redness) Rj %^£(b, yellowness)!- 5^ ti>4 4^*H ^fti" ^SDl^K ^^l1^ 4 L, a, b^^r 90.6, 0.4

-22- Table 1. Formula for manufacturing pork loin ham Materials composition {%) Pork loin 84.15 Iced water 13.46 NaCl 1.18 Phosphate 0.17 1.01 L-ascorbic acid 0.03 NaN02 0, 50, 100, 150, 200ppm

MRS ] 3. number in CFU/g)5L

fe TBA . TBA a (2-Thiobarbituric acid)7fe Turner -g^^ o 1 g<^] 20% TCA(trichloroacetic acid in 2M phosphoric acid) 5 mL2f 0.01 M TBA -§-«^ 10 mL# 7>^> ^ 30^ ^d 7}<£-s}%.v\. 7> ^ 2^r > 15 M lM ^

; 2, i+£; 3, -; 4, #^-; 5,

2.

SA}

Co-60 ^ 2 kGy^ sd^S. 1, 3, 54} 10 ceric-cerous dosimeter $}^ ± 0.12 ^ 4±1°C

-23- fe swab method(96)5. X\g£\ S£6fl 10 cm2 255] ofl :£*) ST&§- ^1^- tf^§- 0.1% li^r peptone waterofl #5TC Plate count agar (Difco co., USA)# 4-§-«rf

.^. EMB agar# 4-§-*M pouring method^. W&-°.B}, 37°C

t:}. TBA7> TBA(2-Thiobarbituric acid)7fe Turner 1 g

t:f5]^ S^^S.^ ^^^ ^^ ^ Color/color difference meter (ND-1001 NP, I&T Co. Ltd., Japan)!- 4"§-*M Hunter 4^4^ ^Jc.(L, lightness,), ^^S. (a, redness) ^ %^3c.(b, yellowness)* 55] «14 ^-^^H ^5?ti- ££4. ojufl B 4-8-^1 S^ 4^^ L. a, b^^ 90.6, 0.4 ^ 3.3<>]#c\t a«> 4 ^lS^ cj(*> heme pigment^ ^-cfla} ^£^ Krzywichi(100)^

(101) ^r Wagner^)- Anon 5] «o 4, 2 g^ A]5.ofl 20 mL5| 0.15 M NaCl^ 10 mM sodium phosphate 7.0, PBS)# ^7>*> ^ ^H§7l(Ultraturex, Heidolph DIAX 900, Germany)ofl^ 10,000 ^^-£S 3^:^ 3"^^t> ^ 9,000 Whatman No. 3

0.6 M NaCl^f 10 mM sodium phosphate ^%-§^(pH 7.0, high salt buffer, HSB)# ^7}«> ^ C>A| ^^*]-JL ^^^-5]7]^]A-] 9,000 rpmAS Whatman No. 3

bichinconinic acid(BCA) protein assay kit(Sigma Chemical Co., St Louis, MO, (1<>2> USA)f- 4-g-*>SiJL f a^~§-^^-S^- 0.5 mg/mL

Seideman

-24- 80°CS. 3.$%. water bath^H X\S.S]

Liu muscle. Semitendinosus^k §el*M «J3 1 ^ Texture analyser(TA-XT2i, Stable Micro Systems, England)!

^2f§^- SAS(107)

3. ^

3-1.

7K

^el*>7l ^*M ^^* 1.7* Nacio2 acetate buffer(7.5% acetic acid, 2.7% NaOH) 3l ^^-^r7f 44 1:1:3<>1 5\S.-^ ^ #*>i, ^^-^5. Afl^tf ^, 5% KOH -g-^^1 8-10

, 20 mesh sievet-

Faulks ^^ «o>-

3-2. -f^^o] ^^S-f-B^ ^e] -^^1^ ^ol^-S- °!-§-

11.5 °Brix deep freezer(SW-UF-300, Samwon Co., Korea)*!]

Hyveon B v 50%^ ^ o # ^7f-&>3L, 1**J fructool igosaccharide (Samyang Co., 30% purity), l%$\ -i-^(Daesang Co., maltose 55%), 0.5%-£) low methoxyl pectin (LM-101AS, Hercules Inc., Skensved, Denmark), 0. \b%$\ citric acid r%n 44

-25- hot plated 7>^*^>M, cup test.3. hand refractometer, Atago Co., Tokyo, Japan)5^ °Brix 7} 62

-7-*>7] ^*H, TA. XT2/ Texture Analyser (SMS Co. (115) a LTD., England)^. Cock ^ 5? o^^- *l-g-*M back extrusion rigS ^^^f^A n}, ^-^i^-cr pre-test speed 1.5 mm/s, test speed 2.0 mm/s, post-test speed 2.0 mm/so]nj, 50%$] ^^#S <^^>^JL, 4-§"^ ^*lfe Fig. force-time curveS-f-^ #^^^*]1- Herman ^(116)iq » , curved + ^^ollA-] ^

3., - ^(g-s)# -H-^^^Mresistance to flow/ viscosity)^.^ ^^r 18°C^ %^7H i^«> Jf, 4^§ ^^«H1 *|MH 10*? o]^- ^H ^^f^ -2., ^l^l^fe ^5- curve-1- 9"tl •?-, Texture expert software (SMS Co. LTD., England)^. -

Color/color difference meter(model 1001DP, Nippon Denshoku Kogyo Co, LTD. )S. ^-^^H Hunter's color valued? L(lightness), a(redness), b(yellowness)S M-B>^^.t^(117), 102]

Brookfield viscometer (model DV-II, USA)5. LV type (118) spindle No. 4# 4-§-*H 30 rpm

10S1 O]AOV ti>^}c^ ^.^^513., 55?

*H2& %£ -y^H^M 10^5? :a^i§7i-A^l- -d^frM 4^^3c. A]^^(scalar scoring test)-*.^. 5?JL 5^(most acceptable), S?^ l^(least acceptable)5? 57H^1 ^7^ ^, ^fl^^^-& SAS(Statistical Analysis System) program ANOVAi?- Duncan's multiple range testS. A

3-3.

7\.

-26- Table 2. Proximate composition of jelly formula

Ingredient Weight (g) (*) Water 30 10 Sucrose 90 30 Glucose syrup 75 25 Gelatin 15 5 Orange juice concentrate 90 30 Total 300 100

;§7j. Freedman Table

hot plateS 3cm, cylindrical mold<>1]

^^-1 TA XT2i Texture analyser(SMS Co. Ltd., England)!- 4-§-^S-^^, ^^^r 2^ «>4 ^^ ^^(two-bite compression test)^. S. pre-test speed 1.5 mm/s, test speed 1.5 mm/s, post-test speed 10 mm/s^ °_S. 25%^ ^^-t^ "y-^-^^^K ^^ ^ £«H3! force-time curved TPA ^-^(1 °fl ^l"5} texture expert software system^-S. ^.3.35. (hardness, g), -f (adhesiveness, -g • s), ^^(springiness), -^-^^(cohesiveness) ^ (gumminess) -^-Sl texture profile analysis

Color/color difference meter(model 1001DP, Nippon Denshoku Kogyo Co, LTD. )S. ^-^H Hunter's color valued L(lightness), a(redness), b(yellowness)(I

3-4. g

7\. A s.

-27- Table 3. Proximate composition of white bread formula Ingredients Content(g) Bread flour 100 Dietary fiber slurry 0-20 Compressed 3.0 Yeast food 0.5 Sugar 5.0 Salt 2.0 Non-fat dry milk 3.0 Shortening 4.0 Water Variable

l^ Table 0%, 10% 44

ti (124) AACC o^ 21-10Aofl tcfe> ^}^«14^ (straight dough methodH ^ SflA-] Mixing -» Fermentation(27°C, 80% R.H., 1 hr) -* Degassing(20 min) -»• Dividing —> Rounding —> Bench time(15 min) -» Moulding -> Proofing(38°C, 85% RH, 60 min) -> Baking(200°C) -»• Bread 3.

a (124) Farinograph ^£ AACC ol-^ SElt:K ^-Al^fe *>9icK ~Le]31 ^^#(water absorption), ^^-S^^1 ^(arrival time), «t^^Al^(development time), (stability), <^^-i(weakness) 9J aJ:S5lnlBl ^(valorimeter value) c>. «J4K£( weakness )fe SH^^^^l^^l^ ^-T-^^^I ^l^MM 12 12- g ^^ curve ^£.1- 500 B. U.-idje-S.-?-^ 7)e](B.U.) Extensograph ^^4^ 7^}J1 farinograph ^ ^W tiJ:^-# 44trH farinograph^ 500 B.U.ofl curved 150g$] ^m-=r extensograph( BrabenderA>, ^J) rounder^]>M . ^ 4 t:} ^-^extensibility), to extension), R/E Hj-gr 7]el, *!#*l*

Amylograph ^-^^r amylograph (Brabender 4, temperature), (gelatinization temperature), ure at max. viscosity) . viscosity)*] ^

-28- 450 mLt- ^7>*i ^ ^oJ|AS. *H A^g-*}*^ ^7flA]£j51-b 25

44 o, io, 20% (firmness )<2H>£ TA XT2/ Texture analyser(SMS Co. Ltd., England) ^ ^££- AACC(127) standard method^] nf^A^, ^-^ ^ ^Six;]-(1Z8). ^^H Avrami

= exp {-kt") (1)

6 • t k : ^rS. ^^r (da/n) n : Avrami -^]^r t : *HV 71 ^> (day)

EL - Et 0 = = exp (-kt") (2) EL - E0

E0 : Et : t EL : ^

(EL - Et) log [-In ] = log k + n • log t (3) (EL - EO)

Avrami

44 0, 10, 20% %7}f>\o\ volume)^ #4 *m^(130)ofl 5]«B ^ 4 7ft- tt "g-Sj i^|^J-(internal score) ^J ^^(external score)^ ^(symmetry), ^^^(crust color), *%$>] ^^^(break to shred)^]- »%$] A v (texture), 7]^-(grain), i-fl-f-^ o (crumb color)-§-^- ^7}

-29- o|-g- S^ ^AgSfif *^*MH ^ 7^§-7]itf Till*

11. ^n>>a 24°I 3t> ^^-S| ^^^ ^ *|3- tf^ ^

Fig. l.

2 ^ 3.3X103 CFU/cm ol^o.i-1-j 1^ 3 kGy *|3l^4r 44 0.6^ 8.3 2 2 X10 CFU/cm # vj-BJ-uflo] ^-n}^ 3LX[6\] $)a§ £.7] %-^7\ 4^5]^^.t^, 5 kGy o]

kGy *1el^ 1065t 105 CFU/cm2!- i >. 3 kGy 2:4^ ^Hv 30

2.45X104 CFU/cm2# v}B}uf[ 3 loglO cycle ^S.3] £.7} n]A|# A>igjL2ft tfE^, ^A]-^BO>O]

n^s. s-^i-l 4^- ^ ^A>^^ ^^-^ Fig. 2.4]- r 11.05X10. 3 CFU/cm2^^ a>S{[, 1-3 kGy 44 5.01X102, 0.33X102 CFU/cm2

1.02X106 CFU/cm2!- ^^^^.1^, 1 kGy ^HHr 3.98X105 CFU/cm2, 4 2 3 kGy 2:49-^ 1.05X10 CFU/cm !- T-fB]-uK<>| x^e^d] 1 kGy ^m^uh 3 kGy 54^ 2.0 loglO cycled

5 kGy O)AO 14 ^^ 4 4.79X105 CFU/cm2 1, 3 kGy ^AH?-efl4 44 1.32 5 5 2 L X10 , 2.51X10 CFU/cm !- uj-Bfiflol 3 kGy ^A]-^-^ «l^AH ofl Hlsfl ftf 2.28 loglO cycle %S.2[ ^^15:^ ^^1# JiSitzf. 3E«> ^7] a^^ofl^Al. nf^>7}45. 5 kGy o]

-30- 10 - -•- OkGy (A) —w~ 1kGy -^ 3 kGy 8 -

6 -

4 - ^

2 u. O > 5 kGy: Not detected 0 - O) 10- o (B)

0) o 8 - J2 JQ re 6 -

4 •

2 -

> 5 kGy: Not detected n - 01 3 7 14 30 Storage period (day)

Fig. 1. Effect of packaging methods, air (A) and vacuum (B), and gamma irradiation on the growth of total aerobic bacteria in pork loin during storage at4°C. Pork loins were packaged and irradiated at the designated dose, 0, 1, 3, 5 or 10 kGy.

-31- on thegrowthflacticacidbacteriaiporkloiduringstorag e at4°C.Porkloinswer Fig. 2Effectofpackagingmethods,air(A)andvacuum(B) , andgammairradiation packaged anirradiateatthedesignatedose,0,135 or10kGy.

Viable cell (log Nc>. CFU/cn 10 10 • 4 - 8 4 • 8 - 0 - 2 6 - 2 6 • 0 - j y 01 374 i —•- —v- —•• ^ w m - 3kGy - 1kGy - OkGy •— Storage period(day) ^ " ^ _^ -32- > 5kGy:Notdetected > 5kGy:Notdetected ^ (A) (B) 30 Sfe Fig. 3.3} W. tfl^-5^ SL7\ Si<&S.^ al^FHW 4.78X102 CFU/cm2, kGy 2^HM^ 9.1X101 CFU/cm2!- ^>i|Sft^.14, 3 kGy

1.29X106 CFU/cm2 1 kGy ^HF-fe 9.12X103 CFU/cm2!- ^MMM ^ 2.1 loglO cycle i^t:}. j£«> ^1^- S^-^-5^ Hl^}^ 4.9X105 CFU/cm2, 1 kGy S. fe 1.58X103 CFU/cm2! tfE>t||o^ Hl^A^^l U)sj{ ^ 2.49 loglO cycle J5:^, 3 kGy ©]#

}fe Fig. 4. 11.72 meq/kgSd-^-^ ^l^l^l fl 0} ^^ 30^*Mfe %V7l S^%3} ^ i^%o] 44 36.95 ^ 35.56 meq/kg# u EMol -^-Ii|^^|ofl ol^c}.. *>^ ^nj.^ ^A>^-fe ^71 S3N*-S] ^-f 1, 3, 5 il 10 kGy SA}^0!!^ ^4^^ 44 12.23, 13.24, 14.50, 15.55 meq/kg! u|-E}tflSi3 4^ ^S> Tfl^j. f7}^c[7} 14^ ol^. ^.^*] ^7}*M 4^ 30^*11 44 38.43, 39.76, 43.36 ^ 45.96 meq/kg# i+E}^ ^>«d^?l 1 kGy

i*.q- 3 kGy O]AO^ SAH?.^. HJSA}^ fl-7} ^[SH- i^ ^Hv 30^^11 1, 3, 5, 10 kGy .7} 44 36.56, 37.42, 38.37 # 40.26

Fig. 5. 3 TBA7K£ rcj- 44 5, 10 kGy

o] vtTfl t}B}Jdtc}. o]fe 4n^o] 4*oMm! 4^1^>t:fe Smith Bhattacharya

fe Kim

-33- -•- OkGy (A) -T- 1kGy 6 -

4 •

, r .o 2 LL O > 3 kGy: Not detected 0 O (B) U J 6 n re

4

•—»

s _- -—' 2 ^^

> 3 kGy: Not detected 0

01 3 7 14 30 Storage period (day) Fig. 3. Effect of packaging methods, air (A) and vacuum (B), and gamma irradiation on the growth of coliform group in pork loin during storage at 4°C. Pork loins were packaged and irradiated at the dose of 0,1, 3, 5 or 10 kGy.

-34- 50 -

40

30 -

20

10

O 50 £L

40 -

30 -

20

10 7 14 30 Storage period (day)

Fig. 4. Effect of packaging methods, air (A) and vacuum (B), and gamma irradiation on the changes of peroxide values in pork loin during storage at 4°C. Pork loins were packaged and irradiated at the dose of 0,1, 3, 5 or 10 kGy.

-35- .5 -•- OkGy —r- 1 kGy (A) -•- 3kGy —•- 5 kGy .4 • -*- 10 kGy ^---—•

.3

—•

.2

I __——•• 00 .1 • CO w re r u> 0.0 - .5 - I (B) Q O .4 -

.3 - ^ '

.1 •

0.0 • 01 3 7 14 30 Storage period (day)

Fig. 5. Effect of packaging methods, air (A) and vacuum (B), and gamma irradiation on the changes of TBA values in pork loin during storage at 4°C. Pork loins were packaged and irradiated at the dose of 0,1, 3, 5 or 10 kGy.

-36- 35 -

30 -

7 14 30 Storage period (day)

Fig. 6. Effect of packaging methods, air (A) and vacuum (B), and gamma irradiation on the changes of VBN contents in pork loin during storage at 4°C. Pork loins were packaged and irradiated at the dose of 0, 1, 3, 5 or 10 kGy.

-37- 11.21 mg%l- T4^>MlSSl^.^ 1, 3, 5 g 10 kGy S^xr iA}2|^ 4 4 11.21, 9.8, *! 8.4 mg%-& l^HJM 3 kGy

^ o]n]

20 mg%# i2j-*>&S.nJ> 1 kGy 3LX[^-S. 19.61 mg%S 7f^ -f-3£fl ^7^]^1 oj 5 kGy ^^f^fe ^^ 30^*fleflS. 22.41 mg%# UBfT,flo] 15^^£ ^ ei^A]^ ^ *i^ ^IS. ^UstM ^1 10 kGy 16.00

19.61 mg%, 1 kGy 2^KHr 18.21 ^ StlSi^^, 5 « 10 kGy 44 20.61, 16.81 fe Jaye

1-2.

7>. -6J ^E^^ A144 ^#7>*1^6jA| n^a. Hunter^*] ^ISfe Fig. 7^

O ^H l^fe ^ ^^l>. Hunter L, a, ^l }}% | ^} oxymyoglobin# %^*>3. ^>^- ^^M 7^1^ ^l*J^

metmyoglobin^

10 kGy o]«r>^ . Hunter&£)

heme pigment^ ^fl^«J ^eo># 4^*>SicK metmyoglobin ^£

-38- 4). H&m, oxymyoglobinS}

^ ^6> 4

fe Table

*!•

t:>. Purge Ioss3j

(Table 6). o) 4^- l

n)

ig. 8) myosin (212 kilodalton, actin(48 vc\7\

-39- 52 (A) 51

50

3 49

48

47

46 22

20

0 18 •

ro 16 14

12

8

o 1 10 0 1 3 10 Irradiation dose (kGy) Fig. 7. Hunter's color values of gamma-irradiated pork loin. Pork loins vaccum-packaged (A) and air-packaged (B) were irradiated at the dose of 0,1,3, 5 and 10 kGy.

-40- Table. 4. Changes in relative concentration of heme pigments in gamma- irradiated pork loin during storage at 4°C Packaging Heme Irradiation Storage period (day) type pigment dose (kGy) 0 1 3 7 0 0.46" 0.45 0.48 0.44 1 0.42 0.45 0.46 0.43 Myoglobin 3 0.42 0.42 0.49 0.45 5 0.41 0.43 0.45 0.44 10 0.42 0.45 0.47 0.44 0 0.24 0.22 0.21 0.24 1 0.25 0.23 0.23 0.25 Vacuum Oxymyoglobin 3 0.28 0.27 0.25 0.24 5 0.30 0.26 0.26 0.25 10 0.29 0.28 0.28 0.28 0 0.43 0.42 0.44 0.42 1 0.41 0.43 0.42 0.43 Metmyoglobin 3 0.45 0.43 0.43 0.44 5 0.44 0.44 0.43 0.45 10 0.44 0.45 0.44 0.42 0 0.42 0.42 0.40 0.39 1 0.44 0.42 0.37 0.35 Myoglobin 3 0.44 0.41 0.39 0.39 5 0.43 0.41 0.38 0.36 10 0.42 0.42 0.41 0.40 0 0.28 0.31 0.34 0.36 1 0.25 0.30 0.32 0.37 Air Oxymyoglobin 3 0.25 0.28 0.32 0.34 5 0.25 0.27 0.34 0.37 10 0.28 0.30 0.35 0.38 0 0.43 0.43 0.45 0.48 1 0.41 0.43 0.46 0.50 Metmyoglobin 3 0.45 0.44 0.47 0.49 5 0.44 0.46 0.48 0.52 10 0.44 0.47 0.48 0.51 These values were statistically evaluated by SAS at 5% level.

-41- Table 5. Protein solubility of gamma-irradiated pork loin during storage at 4°C

Packaging Irradiation Storage period (day) type dose (kGy) 0 1 3 7 0 6.52±0.13" 4.92±0.23 4.22±0.24 4.52±0.21 1 6.82±0.25 5.69±0.22 4.95±0.27 5.21 ±0.32 Vacuum 3 7.22±0.21 6.34 ±0.32 5.82±0.22 5. 51 ±0.31 5 7.47±0.16 7.06 ±0.34 6.61 ±0.23 5.58±0.27 10 7.80±0.17 7.77±0.18 6.92±0.16 5.96±0.25 0 6.43±0.21 5.25 ±0.22 6.06±0.22 5.81 ±0.21 1 6.26±0.18 6.49±0.21 5.99 ±0.22 6.76±0.28 Air 3 6. 68 ±0.22 7.22 ±0.29 7.37±0.22 6.08±0.17 5 6.84±0.23 7.11±0.18 7.28±0.17 7.11 ±0.21 10 7.28 ±0.24 7.76±0.16 7.37±0.32 6.63±0.23 These values were statistically evaluated by SAS at 5% level.

Table 6. Purge loss of gamma-irradiated pork loin during storage at 4°C

Packaging Irradiation Storage period (day) type dose (kGy) 0 1 3 7 0 20.82±0.76i; 23.04 ±0.87 25.19±0.68 25. 26±0.64 1 21.19±0.58 22.46 ±0.82 24.88±0.68 25.19±0.65 Vacuum 3 21.75±0.35 23.18±0.76 25. 53±0.37 26.13±0.78 5 22.35±0.86 24.36±0.57 26. 52 ±0.54 27.44±0.81 10 22.43±1.02 26.48±0.46 26. 75±0.74 27. 39 ±0.69 0 18.61 ±0.54 19.73±1.14 20.15±0.99 22. 54 ±0.88 1 19.82 + 0.56 21.18±0.95 20.23±1.20 21.53 + 1.17 Air 3 20.06±0.75 22. 39 ±0.87 21.36 + 1.21 23.12 + 0.96 5 20. 54 ±0.71 19.19±0.84 24. 36±0.98 23.42±0.87 10 21.12+0.64 24.25 ±0.59 24. 50±0.86 25.17 + 1.06 These values were statistically evaluated by SAS at 5% level.

—42- Fig.

fe Horowits Yook ^ collagen nebulin5| endomysium^

4

(A) (B) sarcoplasm myofibrils sarcoplasm myofibrils M0135 10 0135 lOkGy M0135 10 0135 lOkGy

Fig. 8. Electrophoretic patterns (SDS-PAGE, 10% acrylamide) of sarcoplasmic and myofibrillar proteins extracted from gamma-irradiated pork loin. Pork loins vacuum-packaged (A) and air-packaged (B) were irradiated at the dose of 0,1, 3, 5 or 10 kGy. Concentration of protein was adjusted into 2 mg/fnL with an extracting buffer. M and numeric numbers on the gels indicatemolecular weight of standard marker and irradiated dose, respectively.

-43- o

I © o

(0 o (0

Storage period (day)

Fig. 9. Shear force values of gamma-irradiated pork loin during storage at 4°C. Pork loins vaccum-packaged (A) and air-packaged (B) were irradiated at the dose of 0,1, 3, 5 and 10 kGy.

-44- 1-3.

7}. 0, 1, 3, 5 Si 10 kGyS 44^1 17M 2^^S^7fe Fig. 102 M- 0, 1, 3, 5 Si 10 kGyS oj-e). ^^^#7fe 44 0, 4.12, 5.34, 9.26 Si 14.74 meq/kg.5.5. &7} £-*M AP, a-Toe, BHA Si AP + *>«H 44^ S^W^l-i- 4

A^ ^*||*l&2.f ^^1%^^; AP>AP + a-Toc>BHA> c- ^r 10 kGyS. 44^1 S^W^l-i- 4 5.7]^Sf# 44 61.1, 54.1, 43.4 29.3% >. Duncan's multiple range tests]

Sjtf 5.7] 10 4 a-Toe, BHA, AP c-Toc ^7}^S] 4^i^#7fe 4 4 10.42, 8.34 6.76 meq/kgSH »1*H AP ^; 5.74 meq/kg^.5. cj-g- ^>5f AP^ ascorbic acid^

GRAS (Generally Recognized As Safety)•g-^.S. H4 cflA}A| ascorbic acid^ palmitic acidS

thiobarbituric 0.5 2.0 malonaldehyde^ malonaldehyde }. Lee 0-10

A^ AP>BHA>AP + a -Toc> a -TocS} ^^.S ;^.^ AP71- ^Sf# 4^^M1 ^^fl*>Sic>3. *f^K Lee linoleic 3300

fe 1.0X108 M-lsec-13. a -Toc^cf

AP7} c-

Fig.

392.43 meq/kg^ 10

-45- 18 -! —•— Control -O- AP T Toe -V- BHA 15 -•; -•— AP +Toc

| 12 - s^ b

9 •

1 $ • a a. 3 •

3 5 10 Irradiation dose (kGy)

Fig. 10. Effects of antioxidants on lipid oxidation of lard detected immediately after irradiation with 1 ~1O kGy of gamma-ray. Peroxide mean values within the same storage periods with different italic letters were significantly different(p<0.05).

420

5 10 15 20 25 30 Storage period (day)

Fig. 11. Effects of antioxidants on lipid oxidation of lard during storage at50t;. Peroxide mean values within the same storage periods with different italic letters were significantly different(p<0.05).

-46- BHA>AP + a-Toc>Toc>AP^ ^AS. i^E}^*1! 30^ *j#>M °lihc- 44 89.9, 86.9, 72.8 51 62.1*£] 2fA>^# ^ «H## ^WlSto. olij. ^ ;£:zHr $-*}$>) *f^ f^*}t>3L ^^^1 ^ ^>SW|*1 BHA7} 7}^ 2. AP + a-Toe ^ ^7^5] Jg-fofls. BHAS]

Lee -^ 2f BHA7}

an]-* ^^-S ^4^1}. Park

0.02% BHTJiLt} ^ ^^^O]^T;>3. I^^C}. a*> Kang citric acid

Fig. 12-15^; -i>i^H>^14-i- ^17}*} ^^1# 1-10 >. 1-10

fe 415.43-426.57 meq/kg

Duncan's multiple range tests] JiL-g-

•g: BHA>AP+ a -Toc> a -Toc>AP^ ^^.S. ^M^i:}. ^, 10 37^51 ^^ ^^4^7f# ufEMfe A]7l^ ^(426.57 31.26, 33.88, 84.59 ^ 103.27 meq/kgAS 92.7, 92.1, 80.2 5J 75.8%^]

a-Toc^

a-Toe ^2]-^ AP7f 5.71-i>Sl- ^4^# #3- a-Toe

^ ^4^i W H i^3L2^7> ^7] trfj^^l £<£ ^AV^JO] AP + -Toe £#flt ^>^ ^f 44^ H li 4^ ^gl >M ^4

-47- 420 -

10 15 20 25 30 Storage period (day) Fig. 12. Effects of antioxidants on lipid oxidation of lard during storage at 50°c after irradiated with 1 kGy of gamma-ray. Peroxide mean values within the same storage periods with different italic letters were significantly different(p<0.05).

-48- 420 -

10 15 20 25 30 Storage period (day)

Fig. 13. Effects of antioxidants on lipid oxidation of lard during storage at 50°c after irradiated with 3 kGy of gamma-ray. Peroxide mean values within the same storage periods with different italic letters were significantly different(p<0.05).

-49- 420 -

0 5 10 15 20 25 Storage period (day) Fig. 14. Effects of antioxidants on lipid oxidation of lard during storage at 50°c after irradiated with 5 kGy of gamma-ray. Peroxide mean values within the same storage periods with different italic letters were significantly different(p<0.05).

-50- 420 -

10 15 20 25 30 Storage period (day)

Fig. 15. Effects of antioxidants on lipid oxidation of lard during storage at 50 °c after irradiated with 10 kGy of gamma-ray. Peroxide mean values within the same storage periods with different italic letters were significantly different(p<0.05).

-51- Yang -§-(150)^- %Mf£}- -T^HI 0.02% a-tocopherol JEE-fe 0.01% 8 -tocopherolofl AP (148) ^ ^£1- ^7}A]?1 ^ -R-£7l^H S^siacfca. *>£!}. S Cort 6l|-b £•*] ^ -f*H4 o^5:3}7} &&^ Tappel -^(151)<^1 ^m^ linoleic acid emulsion^ tocopherol2} -?<£*]•£ 7\$] ^ t^M- ascorbic acidSfe ujf^*] a.

1-4. #

7K

# 1-22| g Whitehair

iron-porphyrine prosthetic heme groups trfl ^^5]^ nitrosyl ferrohemochromogen^l

Table I4 fe W ^ ^^^ ^ saSd^>. 3 . 5

f. Polyphosphate7f

iron-porphyrine §^So|| $4*fe 1^4^1 24 nitric oxide &x}7\ £^*>?H -^^l N-nitrosamine^-# N-nitrosamine#

Table 8 g 9^ 1 O>^A>^^ ^7}^ 3j:7il^o| 0.6I oM 1.79 tfl^dog number)^ 4

-52- Table 7. Color index of gamma-irradiated pork loin ham with different NaN02 contents

Color Irradiati NaN02 on dose Lab (PPm) (kGy) 0u 10 20 30 0 10 20 30 0 10 20 30

0 66.70 66.65 66.46 66.83 12.42 11.83 11.23 11.87 6.35 6.24 6.32 6.21

0 3 67.23 67.36 67.23 67.02 15.47 15.29 15.48 15.45 6.16 6.02 6.37 6.18

5 69.32 67.85 68.85 67.78 18.03 18.35 18.15 18.13 6.13 6.16 6.14 6.23

0 67.12 67.32 67.12 67.15 14.14 13.97 13.77 13.87 6.41 6.36 6.16 6.37

50 3 67.54 67.18 67.82 67.34 16.17 16.08 16.18 15.67 6.22 6.35 6.30 6.32

5 69.44 68.56 68.73 68.04 18.49 18.36 18.21 18.04 6.46 6.48 6.43 6.40

0 67.57 67.27 67.55 67.43 15.36 15.27 15.87 15.63 6.44 6.56 6.57 6.50

100 3 67.82 68.04 68.24 67.62 16.82 16.63 16.56 16.51 6.35 6.27 6.38 6.45

5 69.53 68.19 68.18 68.32 18.57 18.43 18.33 18.23 6.64 6.60 6.63 6.58

0 67.85 68.23 68.31 67.78 16.28 16.24 16.37 16.42 6.50 6.43 6.41 6.57

150 3 68.13 68.33 68.32 68.05 17.56 17.02 17.07 17.47 6.65 6.69 6.79 6.58

5 69.72 68.16 68.36 68.53 18.69 18.58 18.51 18.35 6.84 6.81 6.62 6.71

0 68.31 68.72 68.48 68.21 18.30 18.19 18.26 18.27 6.78 6.72 6.54 6.70

200 3 68.67 68.45 68.46 68.33 18.46 18.27 18.54 18.36 6.70 6.81 6.75 6.81

5 69.78 68.29 68.31 68.78 18.76 18.57 18.47 18.45 6.96 6.88 6.83 6.84

1( Numeric number indicates storage periods at 10°C.

-53- Table 8. Total aerobic count of gamma-irradiated pork loin ham with different NaNO2 content (log number in CFU/g)

Storage period (day) NaN02 Irradiation (ppm) dose (kGy) 0 10 20 30

0 1.79 3.76 5.68 8.93

0 3 NG1' 0.86 1.93 3.83

5 NG NG NG NG

0 2.11 3.99 6.11 8.18

50 3 NG 1.76 2.85 3.32

5 NG NG NG NG

0 0.83 2.90 5.04 7.87

100 3 NG 0.91 2.73 3.04

5 NG NG NG NG

0 1.62 3.93 5.77 8.49

150 3 NG 0.98 1.92 3.32

5 NG NG NG NG

0 0.61 2.77 6.23 8.65

200 3 NG 1.79 1.89 3.59

5 NG NG NG NG

NG indicates no growth on plates.

-54- Table 9. Anaerobic count of gamma-irradiated pork loin ham with different NaNO content (log number in CFU/g) storage period (day) NaN02 Irradiation (ppm) dose (kGy) 0 10 20 30 0 NG" 2.59 3.76 5.36 0 3 NG 1.04 1.89 3.23 5 NG NG NG NG 0 NG 2.87 3.79 5.72 50 3 NG NG 1.63 3.49 5 NG NG NG NG 0 NG 1.92 2.68 4.23 200 3 NG NG 0.34 2.72 5 NG NG NG NG 0 NG 1.51 3.69 4.73 150 3 NG NG 0.26 1.99 5 NG NG NG NG 0 NG 0.91 2.94 4.71 200 3 NG NG 1.89 1.97 5 NG NG NG NG NG indicates no growth on plates.

3-5 kGy

TBA ^# MH ^^t ^}, 4ol #A

10)

11).

^^^1(46,47,152,153.156)

-55- Table 10. TBA values (O.D values at 538 ran) of gamma-irradiated pork loin ham with different NaN02 contents during storage at 10"C

Storage period (day) NaN02 Irradiation (ppm) dose (kGy) 0 10 20 30 0 0.185 0.212 0.236 0.254 0 3 0.198 0.227 0.245 0.286 5 0.211 0.253 0.287 0.330 0 0.189 0.203 0.228 0.249 50 3 0.194 0.226 0.253 0.278 5 0.207 0.241 0.271 0.312 0 0.186 0.186 0.209 0.235 100 3 0.197 0.210 0.229 0.281 5 0.224 0.238 0.268 0.299 0 0.181 0.192 0.213 0.231 150 3 0.191 0.212 0.245 0.263 5 0.212 0.234 0.262 0.284 0 0.176 0.194 0.207 0.215 200 3 0.182 0.201 0.218 0.247 5 0.192 0.217 0.231 0.267

Table 11. Sensory evaluation of gamma-irradiated pork loin ham with different contents

NaNCfe (ppm) Irradiation dose (kGy) 0 50 100 150 200

0 1.76*1' 3.65* 3.73a 4.27" 4.36C

Color 3 3.84" 4.08" 4.19" 4.28" 4.57C

5 4.72C 4.67C 4.54C 4.65C 4.53C

0 4.36a 4.28a 4.11a 4.23a 4.37a

Texture 3 4.14a 4.39a 4.78" 4.06a 4.41a

5 4.37a 4.36a 4.85" 4.17a 4.23a

0 3.13a 3.78a 4.36a 4.53" 4.57"

Flavor 3 4.62" 4.36" 4.43a 4.31" 4.54"

5 4.55" 4.57C 4.51a 4.36" 4.47"

!> Mean values of sensory scores followed by different letters in same row means significantly different at p<0.05.

-56- 2.

r Fig.

k; 6.05 log cycle(CFU/cm2H&.ov)-, l, 3, 5 kGy 44 4.10, 2.74, 1.64 log cycled. #nRI 24Adaotol f^f^H tc}-B> *.^, 10 kGy *fel^Mfe ^#£]^1 $|SU^K S^v tio^^l n ^-71 S^^ Hl^FF-Sl ^g-f ^Hv 5^4 8.83 log cycled T-Mufl^ji l kGy 7.67 log cycled ^Bfuflo] o^l ^-?H #7|M *lfe 3 kGy S4^r *HV 20^i4|# 10 3 log cycle $5.*]

f^ Fig. 174 ^>. ^#M ^71 i

7.07 log cycled lo.^ 1 kGy S4n4r 5.16 log cycled ^M°\ ^ 1.9 log cycle ^£5] ^K j£t> ^I^-S^^-^ H]^AH4- 6.54 log cycle, 1 kGy ^4n4r 4.33 log cycled v}B}uflc^ HI^H^ Hlsfl <* 2.2 log cycle

&J^, 3 kGy O|AO1

. TBA7}5^ 4€ TBA7} ^^^ Fig.

4

-57- I to u 2 - OkGy lkGy 10 kGy > No growth on plates 3 kGy 5 kGy H 10 Vacuum

S3

1s s DC O 6 -

4 -

2 -

10 kGy > No growth on plates 0 -

0 1 10 20 30 Storage period (day) Fig. 16. Effect of packaging methods, air and vacuum, and gamma irradiation on the growth of total aerobic bacteria in chicken legs during storage at 4°C. Chicken legs were packaged and irradiated at the dose of 0,1, 3, 5 or 10 kGy.

-58- Air

6 -

4 -

s 2 -

3 kGy > No growth on plates 1 0 - S 8 Vacuum o | 6 - a 3 4 -

2 -

OkGy 3 kGy > No growth on plates 0 - lkGy

0 1 10 20 30 Storage period (day) Fig. 17. Effect of packaging methods, air and vacuum, and gamma irradiation on the growth of coliform group in chicken legs during storage at4°C. Chicken legs were packaged and irradiated at the dose of 0,1, 3, 5 or 10 kGy.

-59- smith Bhattacharya fe Kim

fe Table

oxymyoglobin# metmyoglobin

metmyoglobin5]

myoglobin5] 10 kGy

WlJ2.*>7l ^*H heme pigment^ metmyoglobin #%*£ (Table 12). ZL^u}, oxymyoglobin^ oxymyglobin^ 4

Table 134 £ 6> 80%

tC>B>

(17,140-142)

-60- 0.00 0 1 10 20 30 Storage period (day)

Fig. 18. Effect of packaging methods, air and vacuum, and gamma irradiation on the changes of TBA values in chicken legs during storage at 4°C. Chicken legs were packaged and irradiated at the dose of 0,1, 3, 5 or 10 kGy.

-61- Table 12. Relative concentration of heme pigments and Hunter's color values of the gamma-irradiated chicken in the condition of air-containing packaging (A) or vacuum-packaging (V)

Packaging Irradiation dose (kGy) type 0 1 3 5 10 A 0.3471' 0.362 0.378 0.393 0.403 Myoglobin V 0.386 0.396 0.404 0.413 0.419 Heme A 0.327 0.343 0.364 0.375 0.404 Oxymyoglobin pigment V 0.282 0.304 0.323 0.344 0.353 A 0.057 0.059 0.062 0.063 0.064 Metmyoglobin V 0.058 0.061 0.062 0.062 0.067 A 57.52 58.07 58.36 58.48 59.12 Lightness (L) V 56.23 56.46 57.18 57.42 58.35 Hunter's A 11.72 13.63 15.18 16.25 18.23 color Redness (a) V 12.82 14.97 16.74 18.12 19.35 value A 6.23 6.28 6.35 6.51 6.54 Yellowness (b) V 5.92 5.95 5.94 5.97 6.07 ^Samples were tested in triplicate and repeated 5 times. The obtained data were statistically evaluated by SAS program and recognized significant differences in the range of p<0.05.

Table 13. Protein solubility (mg/mL), cooking loss {%) and shear force values (Kgf/cm2) of the gamma-irradiated chicken in the condition of air-containing packaging (A) or vacuum-packaging (V)

Package Irradiation dose (kGy) type 0 1 3 5 10 X) Protein A 4.33±0.23 4.82±0.21 5. 07 ±0. 24 5. 23±0.17 5.20±0.25 solubility V 4.30±0.21 4.40±0.19 4. 99±0. 18 5. 17+0.16 5.22±0.32 Cooking A 15.54 + 0.14 15.86±0.17 15. 92±0. 16 15. 84 ±0.21 16.05+0.18 loss V 15.92±0.08 16.04 ±0.23 16.,13±0. 09 16. 19 ±0.25 16.72±0.08

Shear A 4.54±0.21 4.76±0.31 4.,80±0. 17 4. 63 ±0.27 4.51 ±0.18 force V 4. 72±0.32 4.63±0.24 4.,60±0. 16 4. 55 ±0.24 4.48±0.16 °The obtained data were statistically evaluated by SAS program and recognized significant differences in the range of p<0.05.

-62- (49,50)

3.

3-1. 7]^ -z]

80.0%, 0.2%, 0.6%,

3-2.

7}. *\ Texture analyser^ ^«B ^*> force-time a^^^fe Table 14ofl ufE 104.37S. 1*^ 2%^ fiber 3.

curve 1355.96^ 2%

lfeisfl, back extrusion Probe7]- 3£l§o>^; afl curve

-60.56^-S. 1% ^ 2% -54.94 ^ -49.26 a.

SL3. work of adhesion^. -746.95S.

2%

-63- Table 14. Rheological properties of jams prepared with refined dietary fiber from ascidian tunic Firmness Consistency Cohesiveness Resistance to flow/ (g) (g-s) (g) viscosity (g-s)

Control 104.37±0.65a 1355.96±26.92a -60.56±0.85a -746.95±11.28a

\% fiber added 88.37±1.71b 1160.44±30.08"" -54.94±0.89a -690.99±12. 73aB

2% fiber added 84.86±1.88b 1095.85±28.5l" -49.26±0.92a -612.19 + 17.21° value of sensory scores followed by different alphabet in same row means significantly different at p<0.05.

Brookfield viscometer

non-newtonian - O S 4=-§- A? Al ol Ai -&-6] thixotropic gel2] ^Efl-sL 3^f-tl-2| gel matrix-g-

gel matrix^ Aj-o) Afo] o| back extrusion test

t^r Table 13.87, 1% ^7}5-o] 15.83, 2% ^7f5-o| 16.01S.

5.69, 2% ^7}$o| 5.61 ©1 Six:}. ©1

Table 164 ^K 4 x]S.7^6\] -©-^^©1 *H(P

-64- 400 -

300 -

o

200 -

100 - • Control o 1% fiber added v 2% fiber added

0

Table 15. Hunter's color values of jams prepared with refined dietary fiber from ascidian tunic

Hunter's color values Samples

Control 13.87 ±0.32" 15.81±0.36B 4.93±0.32a

\% fiber added 15.83±0.20a 16.58±0.33a 5.59±0.35a

2% fiber added 16.01±0.22a 17.77±0.30a 5.61±0.22a

1JMean value of sensory scores followed by different alphabet in same row means significantly different at p<0.05.

-65- Table 16. Sensory evaluation scores of jams prepared with refined dietary fiber from ascidian tunic Sample Control 1% fiber added 2% fiber added oarameters Color 3.605atl) 4.305" 3.905"

Flavor 3. 505" 4.205" 3.605"

Taste 3.305" 4.505" 4.005"°

Texture 3.605" 4.105" 3.905"

Spreadibility 4.105" 3.705" 4.005" Overal1 acceptabi1i ty 3.105" 4.505" 3.405"" 1JMean value of sensory scores followed by different alphabet in same row means significantly different at p<0.05.

A 9-3WM>H3 <%## #£ S^tfkKtexture)<160)2}

2% ^M

^ 4

3-3.

#slell- 44 0, 5, 10% %7}i(Y *iB}$] TPA fe Table 17^- ^}. &3.S.S>) ^^-, ^-^7}^?-^ 2092 g, 10% ^7H?-fe 1481

ttfl

a

-66- 44 o, 5, 10% Table 18-Sf }. L &$) 24.63, 5% 32.03, 10% 36. 255.

l b

0, 5, 10% Table 192J- *M(p<0.05), ofl

(mouthfeel )-§r

Table 17. Texture profile analysis of jellies prepared with refined dietary fiber from ascidian tunic Texture parameters Samples Adh es ven ss Hardness(g) / ! f Springiness Cohesiveness Gumminess \ B * ° ) Control 2092.48±107.92" 76.68±4.75 0.97±0.01 1.23±0.02 2569.31 ±111.23 5% f b er ad je d 1768.28 ±78.48 47.81 ±1.09 0.98 ±0.00 1.24±0.03 2166.34±81.92 10% fiber added 1481.69±55.69 45.31 ±1.31 0.99±0.01 1.26±0.02 1857.82±57.36 i) Means ± SD; 10 measurements on 3 different samples.

Table 18. Hunter's color values of jellies prepared with refined dietary fiber from ascidian tunic Hunter's color valuesU) Samples

Control 24.63±1.25U) -1.30±0.23 3.97±0.32 5% fiber added 32.03±1.03 -1.78±0.26 8.55±0.29 fiber added 36.25±1.12 -1.92±0.35 11.78±0.31 "L: Degree of lightness (white+100 <^ 0 black) a: Degree of redness (red+100 «-> -80 green) b: Degree of yellowness (yellow+70 <-> -80 black) Means ± SD; 10 measurements on 3 different samples

-67- Table 19. Sensory characteristics of jellies prepared with refined dietary fiber from ascidian tunic Sample Sensory Parameter Control 5% fiber 10% fiber added added Color 3.505M 4.005a 4.105' Flavor 3.405' 3.505' 3. 905' Taste 3.705' 3.805' 3.905' Texture 3.305' 3.605a 3. 805' Overal1 acceptability 3.205" 3.805' 4.105' Mean value of sensory scores followed by different alphabet in same row means significantly different at p<0. 05.

7l7fla| texture profile analysis^] H|J2.S{[# nfl,

7}3LS. ofl^fe 4 Ani, 10*

3-4.

farinogram 20% farinogram^r Fig. 20^f farinogram^ Table absorption)^- Table ^°1, 100% 63. . 10%, 20% 64.5%, 65.8*3. 100%

farinographofl r(damage starch)^

l^arrival time)^ 20% 0.5^A5. 100%

-68- Farinograms witMtamMUMumuum- illllillllllilllillililllilll

Extensograms

mrmmimmiiiuHHiihm

Amylograms

Contarol 10% fiber slurry added 20% fiber slurry added

Fig. 20. Farinograms, extensograms and amylograms of wheat flour dough prepared with dietary fiber refined from ascidian tunic

-69- Table 20. Farinogram characteristics of wheat flour dough prepared with dietary fiber refined from ascidian tunic (14%, moisture basis)

Farinogram characteristics Samples Water Arrival time Development Stability Weakness Valorimeter absorption (min) time (min) (B.U) value (*) (min) Control 63.0 1.3 3.5 20 15 68 10% fiber slurry 64.5 0.5 1.2 20 15 61 added 20% fiber slurry 65.8 0.5 1.5 20 20 64 added

!^development time)£ 100% 117HMH 3.5^-, 20%

100% ^7}^-^]A-] 15 B.U. u}E}u}x] ^5^6.14 20«

^^3]- vital gluten strengthener)

] valorimeterfe valorimeterS. 7fl^>tl: farinogram^

Valorimeter$& 100% ^7}^-^A-| 68^ ^# i

extensogram ^ %, 10% ^ 20% 44

-70- Table 21. Extensogram characteristics of wheat flour dough prepared with dietary fiber refined from ascidian tunic (14%, moisture basis) Extensogram characteristics e n , , "T. „.,, - . i \ Resistance to Area under Samples absorp-tion R/E Extension(mm) extension(B u} curVe(crf) 45min 135min 45min 135min 45min 135min 45min 135min

Control 60.1 3.89 6.20 157 142 610 880 123 148

fiber slurry added 61-2 3"79 5-89 153 H0 580 820 120 135 sfui/added 62"3 3"78 5"92 148 130 560 770 116 130

extensogram^c: Fig. 20^]- ^p$ttt'K Extensogram ^-^^^l t|*> *?l^Hr Table

resistance/extensibility (R/E)U|-^-

20% 44 ^7>*>5sl-& 4# H]ja. ^ 157 mmofl>M 148 mmS., ^^^^J-Jt-b 142 B.U.oiH 130 B.U.S, 2 2 $] ^# I413E*>3. 91^ ^^11^^^ 123 cm oM 116 cm S. ^^^^t ^f, Oxif 20% ^7>*f9l-i- ^-T-^S, -il^S-fe 142 mm

-a-frifc. 0%^- 20% 3.78S. 13frg- ^

ough strengthener)

-71- Table 22. Amylogram characteristics of wheat flour dough prepared with dietary fiber refined from ascidian tunic (14%, moisture basis)

Amylogram characteristics Sample Gelatinization Temperature at max Max. viscosity temperature (°C) viscosity (°C) (B.U) Control 61 92.5 850 10% fiber slurry added 61 92.5 815 20% fiber slurry added 61 90.2 760

Table 23. Determination of firmness on white breads prepared with dietary fiber refined from ascidian tunic during storage at 20°C (unit:g) Storage periods (day) Sample 0 1

Control 224.409±10.2AaiU 302.682±14.25Ab 333.659±15.62Ac 404.686±15.27Ad 501.156±19.08

10% fiber Ba Bb Bc Bd Bl slurry added 201.330±9.8 290.166±12.35 300.041±11.26 363.019±14.35 394.549±13.73

20% fiber Ca Cb Cc Cd slurry added 194.343±9.2 255.088±10.36 263.523±10.79 302.935±11.10 330.264±16.29° 1)Mean±SD: 10 measurements on 3 different samples. A"c)Mean value of sensory scores followed by different letters in same column means significantly different at p<0.05. a"e)Mean value of sensory scores followed by different letters in same row means significantly different at p<0.05.

amylogram 0-20% amylogram^ Fig. 202} temperature), 3lS]-7U^l^£.(gelatinization temperature), ure at max. viscosity), ^JL^JEXmax. viscosi amylogram &: Table 22^ ^^K ^JL^ife ^7\] ^-fr^ #^S] 0%$} 20% , 850 B.U.olH 760 B.U. 6 . Amylograph^ $.£$) ^^ O\

fe 10%

-72- -b 20%

#s]e)l- 44 o, 10, 20% irmness) £Sfe Table 232f ^c>. ^7]

501.156 g, 394.549g, 20% 330.264

Avrami Fig. 21 Avrami Table 24ofl . Avrami ^Dl), o] ^^

control y = 1 .001 2x - 0.5112 R* = 0.9051

10% y = 0.9003x -0.2661 H* =0.7309 20% y = 0.8378x -0.274 R* =0.77

Log t

Fig 21. Plot of log[^n(El-Et)/(El-Eo)] vs. log t for white bread prepared with dietary fiber refined from ascidian tunic.

-73- Table 24. Avrami exponent (n) and time constant (1/k) of white breads prepared with dietary fiber refined from ascidian tunic during storage at 20°C

Samples Avrami exponent (n) Time constant (1/k)

Control 1.0012'" 1.3049

10% fiber slurry added 0.9003" 1.6245

20% fiber slurry added 0.8378° 1.6673 i)Mean value of sensory scores followed by different alphabet in same column means significantly different at p<0.05.

Table 25. The qualities of white breads prepared with dietary fiber refined from ascidian tunic Qualities of white bread Samples Water Proofing Loaf Loaf Specific Loaf score absorptio time volume weight volume External Internal n(%) (min) (mL) (g) (mL/g) score score Control 60'" 60 2280s 485' 4.70' 9.0' 9.0' 10% fiber slurry added 64" 60 2200' 495" 4.44' 8.5' 8.8' 20% fiber C c slurry added 68 60 2100" 505 4.16" 8.2" 8.5" value of sensory scores followed by different alphabet in same column means significantly different at p<0.05.

Table 26. Sensory characteristics of breads prepared with dietary fiber refined from ascidian tunic during storage at 20°C Storage Sample Sensory Parameters period 10% fiber 20% fiber (day) slurry added slurry added 0 4.2±0.02au/'!' 4.5±0.03a 4.3±0.03a Color 2 4.3±0.05a 4.2±0.06a 4.0±0.06' 5 4.0±0.03' 4.2±0.02a 4.2±0.04a 0 4.2±0.07' 4.5±0.03a 4.3±0.12a Texture 2 3.5±0.10" 4.2±0.09' 4.3±0.09a 5 2.5 ±0.08" 3.7±0.11a 4.0±0.06a 0 4.5±0.02a 4.3±0.07a 4.0±0.03a Taste 2 3.4 ±0.02" 4.0±0.05a 4.2±0.06a 5 2.7 ±0.07" 3.7±0.08a 4.0±0.10a 1)Mean±SD: 10 measurements on 3 different samples. Mean value of sensory scores followed by different alphabet in same row means significantly different at p<0.05. Score : 5;exellent, 4:good, 3;acceptable, 2;unacceptable, llpoor

-74- 1.3049, 1.6245, 20% %7}^-7\ 1.6673.2-3. 20%

}^ Table 252}

- loaf volume ^ 10% ^7WH^ SJ^:^external characteristics) dni, 20% ^7f9-

f^ Table

-75- ^

0157 100% • »»£&•••

100%

7S1

- KFDA^ 100% ( '00.

100% 4 TV 331

100% -g"*H- W Project

100%

100%

-77- •

65-300^$^

117H

i] H7fl

1999^ 10^ 26

$1 77fl

2000id

-78- , 1999\1

300^

7ms. -jfS.

-79- -81- 1. Brewer, M.S., Ikins, W.G. and Harberts, C.A.Z.: TBA Value sensory characteristics and volatiles in ground pork during long-term frozen storage : Effect of packaging. J. FoodSci,, 57, 558-561 (1992) 2. Gill, CO. and Penney, N. : The effect of initial gas volume to meat weight ratio on the storage life of chilled beef packaged under carbon dioxide., Meat Sci., 22, 53-63 (1988) 3. Raccach, M. and Henrickson, R.L.: Storage stability and bacteriological profile of refrigerated ground beef from electrically stimulated hot-bonded carcasses. J. Food Prot., 41, 957-960 (1978) 4. Bendall, J.R.: Electrical stimulation of rabbit and lamb carcasses, J. Sci. FoodAgric, 27,819-821 (1976) 5. Dickson, J.S. and Anderson, M. E.: Microbiological decontamination of food animal carcasses by washing and sanitizing systems : A review. J. Food Prot., 55, 133-140 (1992) 6. Smulder, F. J.M. and Woolthuis, C.H.J.: Immediate and delayed microbiological effects of lactic acid decontamination of calf carcasses - Inflence of conventionally boned versus hot-boned and vacuum-packed cuts. J. Food Prot. , 48, 849-852 (1985) 7. Anderson, M.E. and Marshall, R.T.: Interaction of concentration and temperature of acetic acid and solution on reduction of various species of microorganisms on beef surfaces. J. Food Prot., 52, 312-315 (1989) 8. Unda, J.R., Molins, R.A. and Walker, H.W.: Microbiological and some physical and chemical changes in vacuum-packaged beef steaks treated with combinations of potassium sorbate, phosphate, sodium chloride and sodium acetate. J. FoodSci., 55, 323-326 (1990) 9. FAO/WHO/IAEA. : Code of Good Irradiation Practice for Prepackaged Meat and Poultry (to control pathogens and/or extend shelf life). ICGFI Document No. 4, Vienna (1990) 10. Thayer, D. W. : Wholesomeness of irradiated foods. Food Technol., 48, 58-67 (1994) 11. Byun, M.W.: Application and aspect of irradiation technology in food industry. Korean J. FoodSci., Ind. 30, 89-100 (1994) 12. Laleye, L.C., Lee, B.H., Simard, R.E., Carmichael, L. and Hoi ley, R.A. : Shelf life of vacuum- or nitrogen-packed pastrami : Effects of packaging atmosphere, temperature and duration of storage on microflora change. J. FoodSci., 49, 827-831 (1984) 13. Kim, I.S., Min, J. S., Lee, S.0., Shin, D.K., Lee, J.I. and Lee, M. H. : Physico-chemical and sensory characteristics of domestic vacuum packed pork loins for export during chilled. Korean J. Anim. Sci., 40, 401-412

-83- (1998) 14. Murano, P.S., Muran, E. A. and Olson, D.G.: Irraadiated ground beef : Sensory and quality changed during storage under various packaging condition. J. FoodSci., 63, 548-551 (1988) 15. Lebepe, S., Molins, R.A., Charoen, S. P., Farrar IV,H. and Skowronski, R. P. : Changes in microflora and other characteristics of vacuum-packaged pork loins irradiated at 3.0 kGy. J. FoodSci., 55, 918-924 (1990) 16. Taub, I.A., Robbins, F.M., Simic, M.G., Walker, J.E. and Wierbick, E. : Effect of irradiation on meat proteins. Food Technol. 33, 184-193 (1979) 17. Lee, M., Sebranek, J. and Parrish, F. C. Jr. : Accelerated postmortem ageing of beef utilizing electron-beam irradiation and modified atmosphere packaging. J. FoodSci., 61, 133-136, 141 (1996) 18. Fox, J.B. Jr., Lakritz, L. Hampson, J., Richardson, R., Ward, K. and Thayer, D.W.: Gamma irradiation effects on thiamin and riboflavin in beef, lamb, pork, and turkey. J. Food Sci., 60, 596-603 (1995) 19. Olson, D.G.: Irradiation of food. Food Technol., 52, 56-64 (1998) 20. Kang, I.J. , Kwak, H. J., Lee, B.H., Kim, K.H., Byun, M.W. and Yook, H.S. Genotoxicological and acute toxicological safeties of gamma irradiated beef, (in Korean). Korean J. FoodSci. Technol., 30, 775-780 (1998) 21. tt^f^^^H^i : *l#-r^-S. 1990^(1991) 22. ^A^- : -fr*H#. tR*J#W£tI^(5), t-^H^W, P. 94 (1992) 23. £•££• : *l-§-8-*l*J <&h ^BjcflSj-Jl ##Jf. M&. P. 20(1994) 24. Frankel, E.N. : Lipid oxidation. Mechanism, products and biological significance. J. Am. Oil Chew. Soc., 61, 1908-1911 (1984) 25. Shamberger, R.J., Andreone, T.L. and Wills, C.E.: Antioxidants and cancer. IV. Initiating activity of malonaldehyde as a carcinogen. J. Nat'l. Cancer Inst., 53, 1771-1774 (1974) 26. Shamberger, R.J., Shamberger, B.A. and Wills, C.E.: Malonaldehyde content of food. J. Nutrition, 107, 1404-1407 (1977) 27. Scott, G. : Enzymatic oxygen removal from packaged foods. Food Technol., 12, 7-11 (1958) 28. Hedrick, T.I. and Glass, L.: Chemical changes in milk during exposure to fluorescent light. J. Milk Food Technol., 38, 129-132 (1975) 29. Nawar, W.W.: . In Food Chemistry. 2nd.sed., Revised and Enlarged., Fennema, O.R. (Ed.), Marcel Dekker, Inc., New York, U.S.A., p. 140-157 (1985) 30. Sherwin, E.R.: Antioxidants for vegetable oils. J. Am. Oil Chem. Soc., 53, 430-433 (1976) 31. Barnen, A.L.: Toxicological and biochemistry of BHA, BHT. J. Am. Oil Chem. Soc., 52, 59-64 (1975) 32. Peers, K.E., Coxon, D.T. and Chan, H.W.S. : Autooxidation of methyl

-84- linoleate: The effect of antioxidants on product distribution. J. Sci. FoodAgric, 35, 813-817 (1984) 33. Lee, K.H.: Effects of ascorbic acid and ascorbyl palmitate on the photooxidation. Ph.D. Thesis, Chungnam National University, Korea (1998) 34. Wills, E.D. : Effects of antioxidants on lipid peroxide formation in irradiated synthetic diets. Int. J. Radiat. Biol., 37, 403-407 (1980) 35. Pierson, M.D. and Smoot, L.A.: Nitrate, nitrite alternatives and the control of Clostridium botuninum in cured meats. CRC Critical Reviews in Food Science and Nutrition, CRC Press, 10,141 (1982) 36. Bunin, G.R., Kuijten, R.R., Boesel, C.P., Buckley, J.D. and Meadows, A.T.: Maternal diet and risk of astrocytic glioma in children: A report from Childrens Cance Group (United States and Canadas). Cancer Causes Control, 5,177-184. (1994) 37. Gary, M.W. : Food: Its role in the etiology of cancer. In Food and Cancer Prevention: Chemical and Biological Aspects, p. 3-11. In K. W. Waldron, I. T. Johnson, and G. R. Fenwick (ed.), The Royal Society of Chemistry. Thomas Graham House. Science Park, Cambridge. (1993) 38. Gray, J. I.: N-nitrosamines and their precursors in bacon: A review. J. Milk Food Technol., 39, 686-690 (1976) 39. Magee, P. N. and Barnes, J.M.: Carcinogenic nitroso compounds. Adv. Cancer Res., 10, 163-166 (1967) 40. National Academy of Science: Alternative to the current use of nitrite in foods. Natl. Acad. of Sciences, Natl. Acad. Press, Washington, D.C.(1982) 41. National Academy of Science: The health effects of nitrite, nitrate, and N-nitroso compounds. Natl. Acad. of Sciences, Natl. Acad. Press, Washington, D. C.(1981) 42. Peters, J.M., Preston-Martin, S., London, S.J., Bowman, J.D. and Thomas, D. C. : Processed meat and risk of children leukemia (California, USA). Cancer Causes Control, 5,195-202(1994) 43. Sarasua, S. and Savits, D. A. : Cured and broiled meat consumption in relation to childhood cancer: Denver, Colorado (USA). Cancer Causes Control, 5, 141-150 (1994) 44. Shahidi, F. and Pegg, R.B.: Nitrite-free meat curing systems and the N-nitrosamine problem, p. 82-86. In Waldron, K.W., Johnson, I.T. and Fenwick, G.R. (ed.), Food and Cancer Prevention: Chemical and Biological Aspects. The Royal Society of Chemistry. Thomas Graham House. Science Park, Cambridge.(1993) 45. Shahidi, F., Pegg, R. B. and Shamsuzzaman, K.: Color and oxidative stability of nitrite-free cured meat after gamma irradiation. J. Food Sci., 56, 1450-1452 (1991) 46. Shults, G.W., Cohen, J.S., Howker, J.J. and Wierbicki, E. : Effects of

-85- sodium nitrate and sodium nitrite additions and irradiation processing variables on the color and acceptability of corned beef briskets. J. Food Sci., 42, 1506-1509 (1977) 47. Szczawinski, J. and Szulc, M. : The effect of irradiation on antibacterial efficacy of sodium nitrite in cured meat. In Abstracts of papers presented at the working group on food irradiation, XlXth annual meeting of the european society of nuclear methods in agriculture (ESNA), 29 August-2 September 1988, Vienna, Austria. Radiat. Phys. Chem., 34, 1013-1030 (1989) 48. Whitehair, L.A., Bray, R.W., Wechel, K.G., Evans, G.W. and Heiligman, F. : Influence of intramuscular fat level on organoleptic, physical, and chemical characteristics of irradiated pork. I. High-temperature short-time pre-irradiation heat treatment. Food Technol. , 18, 108-114 (1964) 49. WHO: Report of the WH0/WAVFH round conference on the present status of the Salmonella probelm (prevention and control), Bilthoven, The Netherlands 6-10 Oct. 1980, VPH/81/27 (1981) 50. IAEA: Irradiation of poultry meat and its products. A compilation of technical data for its authorization and control. ICGFI on the FAO/IAEA/WHO, IAEA-TECDOC-688 (1993) 51. Schneeman, B.0.: Dietary fiber. Food Technol., 43, 133-136 (1989) 52. Selvendran, R.R., Stevens, B.J.H. and Du Pont, M.S.: Dietary fiber: chemistry analysis, and properties. Adv. Food Res., 31, 117-121 (1987) 53. Choi, B.D., Kang, S.J. and Lee, H.: Quality improvement of rainbow trout with pigments and enzymatic hydrolysates of ascidian tunic. J. Korean Fish. Soc, 29, 345-356 (1996) 54. Hwang, J.K.: Physicochemical properties of dietary fibers. J. Korean Soc. Food Sci. Nutr., 25, 715-719 (1996) 55. Spiller, G.A.: Dietary fiber in human nutrition. 2nd ed., CRC Press, London (1992) 56. Anderson, J.W.: Plant fiber in foods. HCF Nutrition Research Foundation, Inc., Lexington, Kentucky, USA (1986) 57. Englyst, H. : Classification and measurement of plant polysaccharides. Ani. Feed Sci. Technol., 23, 27-30 (1989) 58. Przybyla, A.E. Formulating fiber into foods. Food Eng. 60, 77 (1988) 59. Rao, M. A., Van buren, J.P. and Cooley, H.J.: Rheological changes during gelation of high-methoxyl pectin/fructose dispersions: Effect of temperature and aging. J. Food Sci., 58, 173-176 (1993) 60. Hou, W.N. .and Kim, M.H.: Processing of low sugar jams from fig pulp treated with pectinesterase. Korean J. Food Sci. Technol., 30, 125-131 (1998) 61. Cho, M.K. and Lee, W. J.: Preperation of high-fiber bread with barley

-86- flour. Korean J. Food Sci. Technol. , 28, 702-706 (1996) 62. Hwang, J.K., Kim, J.T., Cho, S.J. and kim, C.J.: Characteristics of water soluble fractions of wheat bran treated with various thermal processes. Korean J. Food Sci. Technol., 27, 934-938 (1995) 63. Wang W.M., Klopfenstein C.F., and J.G. Ponte, JR.: Effects of Twin-Screw Extrusion on the physical properties of Dietary Fiber and other components of whole wheat and wheat bran and on the Baking Quality of the wheat bran. Cereal Chem. , 70, 707-711 (1993) 64. Kim, Y.S., Ha, T.Y., Lee, S.H. and Lee, H.Y.: Effect of rice bran dietary fiber on flour rheology abd quality of wet noodles. Korean J. Food Sci. Technol., 29, 90-95 (1997) 65. Kang, K.C., Baek, S.B. and Rhee, K.S.: Effect of the addition of dietary fiber on staling of cakes. Korean J. Food Sci. Technol., 22, 19-25 (1995) 66. Lee, Y.H. and Moon, T.W.: Composition, water-holding capacity and effect on starch retrogradation of rice bran dietary fiber. Korean J. Food Sci. Technol., 26, 288-294 (1994) 67. Kim, C.H., Chang, H.G., Hah, D.M., Yoon, J.0. and Shin, H.S. : Relationship between mixograph properties and bread quality of korean wheat cultivars and breeding lines. Korean J. Food Sci. Technol., 16, 223-227 (1984) 68. Rhee, C. A. •" Study on rheological properties of dough and whole wheat bread-baking test of wheat variety "Cho-Kwang." Korean J. Food Sci. Technol., 15, 215-219 (1983) 69. Kim, Y.H.: Rheological properties of dough added with wheat bran. J. Korean Soc. Food Sci. Nutr., 27, 1125-1131 (1998) 70. Kim, S.K., Cheigh, T.W., Kwon, D'Appolonia B.L. and Marston P.E.: Rheological and baking studies of composite flour from wheat and naked barley. Korean J. Food Sci. Technol., 10, 11-15 (1978) 71. Kaeferstein, F.K.: Food irradiation and its role in improving the safety and security of food. In Irradiation and combination treatments. 1BC Technical Services Ltd. (1990) 72. Lambert, A.D., Smith, J.P. and Dodds, K.L.: Shelf life extension and microbiological safety of fresh meat: A review. Food Microbiol., 8, 267-297 (1991) 73. Codex Alimentarius Commission: Codex general standard for irradiated foods and recommended international code of practice for the operation of radiation facilities used for the treatment of foods. CAC/VOL. XV, FAO, Rome (1984) 74. Byun, M.W.: application and aspect of irradiation technology in food industry. Food Sci. Ind., 30, 89-100 (1997) 75. Todd, E.CD. : Social and economic impact of bacterial food-borne disease and its reduction by food irradiation and other processes. In Cost-benefit

-87- Aspects of Food Irradiation Processing. Proceedings of a Joint FAO/IAEA/WHO Aymposium, Aix-en-Provence, France, March, 1993. IAEA, Vienna, p. 19-49 (1993) 76. Palumbo, S.A., Maxino, D.R., Williams, A.W., Buchanan, R.L. and Thayer, D. W. : Starch ampicillin agar for the quantitative detection of Aeromonas hydrophila. Appl. Environ. Microbiol., 50, 1027-1030 (1985) 77. Brackett, R. E., Hao, Y. Y. and Doyle, M. P. : Ineffectiveness of hot acid sprays to decontaminate Escherichia coli 0157:H7 on beef. J. Food Prot., 57, 198-203 (1994) 78. Cutter, C.N., Siragus, G. R.: Efficacy of organic acids against Escherichia coli 0157:H7 attached to beef carcass tissue using a pilot scale carcass washer. J. Food Prot., 57, 97-103 (1994) 79. Fu, A.H., Sebranek, J.G. and Murano, E.A.: Microbial and quality characteristics of pork cuts from carcasses treated with sanitizing sprays. J. FoodSci., 59, 306-310 (1994) 80. Anon: The microbiological safety of irradiated food. Report of the Board of the International Committee on and Hygiene of the International Union of Microbiological Societies. Copenhagen (1982) 81. Lambert, A.D., Smith, J.P. and Dodds, K.L.: Combined effect of modified atmosphere packaging and low-dose irradiation on production by Clostridium botulinum in fresh pork. J. Food Prot., 54, 94-101 (1991)

82. Lambert, A.D., Smith, J.P. and Dodds, K.L.: Effect of headspace C02 concentration on toxin production by Clostridium botulinum in MAP, irradiated fresh pork. J. Food Prot. , 54, 588-592 (1991)

83. Lambert, A.D., Smith, J.P. and Dodds, K.L. : Effect of initial 02 and C02 and low dose irradiation on toxin production by Clostridium botulinum in MAP fresh pork. J. Food Prot. , 54, 939-944 (1991) 84. Yook, H.S.: Effect of gamma irradiation on the microbiological, biochemical, morphological, nutritional, toxicological and food processing characteristics of beef. Ph.D. Thesis, Chungnam National Univ., Korea (1999) 85. Yook, H.S., Lee, K.H., Lee, J.W. Kang, K.0. and Byun, M.W. : Effect of gamma irradiation on lipid oxidation of korean beef. Korean J. Food Sci. Technol., 30, 1179-1183 (1998) 86. Kilcast, D.: Effect of irradiation on vitamins. Food. Chem., 49, 157-164 (1994) 87. Thayer, D.W., Fox, J.B. and Lakritz, L. : Effects of ionizing radiation on vitamins. Thorne, S (ed.), In Food Irradiation. Elsevier Applied Science Publishers, London. Chapter 11, 285-325 (1991) 88. Fox, J.B.Jr., Thayer, D.W. and Phillips, J.G.: An exponential model equation for thiamin loss in irradiated ground pork as a function of dose and temperature of irradiation. Bad. Phy. Chem., 34, 957-961 (1989) 89. Giddings, G.G.: The chemical safety of irradiated foods. In: Finley, J.W., Robinson, S. F. and Armstrong, D. J. (ed.) Food Safety Assessment. ACS Symposium Series 484. The American Chemical Society, p. 332-345 (1992) 90. World Health Organization: Safety and Nutritional Adequacy of Irradiated Food. WHO, Geneva (1994) 91. Radomski, J.L., Deichmann, W.B., Austin, B.S. and Macdonald, W.E.: Chronic toxicity studies on irradiated beef stew and evaporated milk. Toxicol. Appl. Pharmacol., 7, 113-121 (1965) 92. Van Logten, M.J., Devries, T., Van Der Heijden, C.A., Van Leeuwen, F.X.R., Garbis-Berkvens, J.M.M. and Strik, J.J.T.W.A.: Long-term wholesomesness study of autoclaved or irradiated pork in rats. Report No. 617401-001, The National Institute of Public Health of The Netherlands (1983) 93. Kim, D.J., Lee, J.W., Yook, H. S. and Byun, M. W.: Effect of gamma irradiation on glycolysis, ATP-disappearance, and Proteins on Beef. Food Sci. Biotechnol., 8, 19-23 (1999) 94. National advisory committee on microbiological criteria for foods: Generic HACCP for raw beef. Food Microbiol., 10, 449-488 (1993) 95. Thayer, D.W.: Extending shelf life of poultry and red meat by irradaition processing. J. Food Prot., 56, 831-833, 846 (1993) 96. Kotula, A.W.: Variability in microbiological samplings of chickens by the swab method. Poultry Sci., 45, 233-236 (1966) 97. Hampson, J.W., Fox, J.B., Lakritz, L. and Thayer, D.W.: Effect of low dose gamma radiation on lipids in five different meats. Meat Sci., 42, 271-276 (1996) 98. Turner, E.W., Paynter, W.D., Montie, E.J., Bessert, M.W., Struck, G.M. and Olson, F.C.: Use of the 2-thiobarbituric acid reagent to measure rancidity in frozen pork. Food Technol., 8, 326-330 (1954) 99. Wahisa, T. : The method of preservation on meat product. Japanese J. food ind., 18, 105-108 (1975) 100. Krzywichi, K. : The determination of heme pigments in meat. Meat Sci., 7, 29-36 (1982) 101. Wagner, J.R. and Anon, M.C. : Effect of frozen storage on protein denaturation in bovine muscle. II. Myofibrillar ATPase activity and differential scanning calorimetric studies. J. Food Technol., 21, 9-18 (1986) 102. Hill, H. D. and Straka, J.G. : Protein determination using bicinchoninic acid in the presence of sulfhydryl reagents. Anal. Biochem. , 170, 203-208 (1988) 103. Seideman, S.C., Carpenter, Z.L., Smith, G. S. and Hork, K.E.: Effect of degree of vacuum and length of storage on the physical characteristics of

-89- vacuum packaged beef wholesale cut. J. Food Sci., 41, 732-735 (1976) 104. Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head of T4. Nature, 227, 680-685 (1970) 105. Claeys, E., Buts, U.R. and Demeyer, D. : Quantification of beef myofibrillar proteins by SDS-PAGE. Meat Sci., 39, 177-193 (1995) 106. Liu, A., Nishimura, T. and Takahashi, K. : Structural weakening of intramuscular connective tissue during post mortem ageing of chicken Semitendinosus muscle. Meat Sci., 39, 135-142 (1995) 107. SAS: SAS User's Guide, Statistics, 6th edition, SAS Institute Inc., Cary, NC, U.S.A. (1988) 108. Lee, K. H., Jung, M.Y. and Kim, S. Y. : Effects of ascorbic acid on the light-induced riboflavin degradation and color changes in skim milk. J. Agric. FoodChem., 46, 407(1998) 109. Jung, M.Y.: Effects of carotenoids and tocopherols on the chlorophyll sensitized photooxidation of soybean oil. Ph.D. Dissertation. Ohio State University, Columbus, Ohio, U.S.A. (1989) 110. A. O.C.S. : Official Methods and Recommended Practices of the American Oil Chemists' Society, 4th ed., American Oil Chemists' Society, Champaign, IL., Cd 8-53, (1990) 111. Harrigan, W.F. and M.E. McCance. : Methods of anaerobic culture, p. 59-64. In W. F. Harrigan (ed. ), Laboratory Methods in Food and Dairy Microbiology. Academic Press Inc., Ltd. London. (1976) 112. Civille, G.V., Szczesniak, A. S.: Guidelines to training a texture profile panel. J. Texture Study, 6, 19-28 (1973) 113. Faulks, R.M. and Timms, S.B.: A rapid method for determining the component of dietary fiber. FoodChem., 17, 273-287 (1985) 114. Hyvoen, L. and Torma, R. : Examination of , sugar alcohols and artificial sweeteners as substitutes for sucrose in strawberry jam. Product development. J. Food Sci., 48, 183-185 (1983) 115. Cock, P. de and Vanhemelrijck, J.: Predictive rheology for texture design of starch based emulsified sauce. FIE '95 conference proceedings, pp 215-221 (1995) 116. Herman, H.F., James E. W. and Szczesniak A.S.: The texturometer-A new instrument for objective texture measurement. J. Food Sci. , 28, 390-396 (1963) 117. Skerede, G.: Color quality of blackcurrant syrups during storage evaluated by hunter L, a, b values. J. Food Sci., 50, 514-525 (1985) 118. Sherman, H. : Industrial rheology, pp. 371-390. Academic press, New York, USA (1970) 119. Kim, C.H., Chang, H.G., Hah, D.M., Yoon, J.0. and Shin, H.S.: Relationship between mixograph properties and bread quality of korean wheat cultivars

-90- and breeding lines. Korean J. Food Sci. Technol., 16, 223-227 (1984) 120. Rhee, C. A. Study on rheological properties of dough and whole wheat bread-baking test of wheat variety "Cho-Kwang. " Korean J. Food Sci. Technol., 15, 215-219 (1983) 121. Freedman, L. and Francis, F.J.: Effect of ascorbic acid on color of jellies. J. Food Sci., 49, 1212-1213 (1984) 122. Tehchien D. Chou, Jozef L. Kokini: Rheological properties and conformation of tomato paste pectins, citrus and apple pectins. J. Food Sci. , 52, 1658-1664 (1987) 123. Paraskevopoulou, A. and Kiosseoglou, V.: Texture profile analysis of heated-formed gels and cakes prepared with low cholesterol egg yolk concentrates. J. Food Sci., 62, 208-211 (1997) 124. American Association of Cereal Chemists(AACC). Approved method, The Association, st. Paul, Minn. sec. 54-21 (1985) 125. American Association of Cereal Chemists(AACC). Approved method, The Association, st. Paul, Minn, sec. 54-10 (1985) 126. American Association of Cereal Chemists:(AACC). Approved method, The Association, st. Paul, Minn. sec. 22-10 (1985) 127. American Association of Cereal Chemists:(AACC). Approved method, The Association, st. Paul, Minn. sec. 74-09 (1985) 128. Hwang, J.K., Kim, J.T., Cho, S.J. and kim, C.J.: Characteristics of water soluble fractions of wheat bran treated with various thermal processes. Korean J. Food Sci. Technol., 27, 934-938 (1995) 129. Kim, S.K. and Pyun, Y.R. : Staling rate of cooked rice stored at 21 °C and 72°C. Korean J. Food Sci. Technol., 14, 80-81 (1982) 130. Pyler, E. J.: Physical and chemical test methods. Baking science technology. Vlo. II, 591-895, Sosland Pub. Co. Merrian Kansas, USA. (1979) 131. Smith, N.L., Tinsley, I.J. and Bubl, C.E.: The thiobarbituric acid test in irradiation sterilized beef. Food Technol., 14, 317-320 (1960) 132. Bhattacharya, M., Hanna, M.A. and Mandigo, R.W.: Lipid oxidation in ground beef patties as affected by time-temperature and product packaging parameter. J. Food Sci. , 53, 714-717 (1988) 133. Kim, S.M., Lim, S.D., Park, W.M., Kim, Y.S., Kim, Y.B. and Kang, T. S.: A study on the establishment of shelf-life of imported beef according to packaging method. Korean J. Anim. Sci., 32, 413-416 (1990) 134. Jaye, M., Kittaka, R. S. and Ordal, Z. J. : The effect of temperature and packaging material on the storage life and bacteria flora of ground beef. Food Technol., 16, 95-100 (1962) 135. Egan, A.F. and Shay, B.J.: Significance of lactobacilli and film permeability in the storage of vacuum-packaged beef. J. Food Sci., 47, 1119-1123 (1982)

-91- 136. Jhu, L.G. and Brewer, M.S.: Discoloration of fresh pork as related to muscle and display conditions. J. Food Sci., 63, 763-767 (1998) 137. Clarke, R. and Richards, J.F.: Effect of y -irradiation on beef myoglobin. J. Agr. Food Chew., 19, 170-174 (1971) 138. Kwak, H.J.: Studies on the improvement of preservation and wholesomeness of meats by gamma-irradiation. Ph.D. Thesis, Sejong Univ., Korea (1998) 139. ICGFI: Irradiation of red meat. IAEA-TECDOC-902, IAEA, Vienna, p. 19-20 (1996) 140. Filali-mouhim, A., Audette, M., St-louis, M., Thauvette, L., Denoroy, L. , Penin, F., Chen, X., Rouleau, N., Le Caer, J.P., Rossier, J., Potier, M. and Le Maire, M.: Lysozyme fragmentation induced by y -radiolysis. Int. J. Radiat. Biol., 72, 63-70 (1997) 141. Kume, T. and Matsuda, T. : Changes in structural and antigenic properties of proteins by radiation. Radiat. Phys. Chem., 46, 225-231 (1995) 142. Hajos, G., Matrai, B. , Szerdahelyi, E. and Orsi, F. : Differences in the electrophoretic patterns of soluble pork proteins as a consequence of pig rearing conditions. Meat Sci., 41, 77-87 (1995) 143. Horowits, R., Kempner, E.S., Bisher, M. E. and Podolsky, R.J. : A physiological role for titin and nebulin in skeletal muscle. Nature, 323, 160-164 (1986) 144. Yook, H.S., Lee, J.W., Lee, K.H., Kim, M.K., Song, C. W. and Byun, M. W. : Effect of gamma irradiation on the microstrueture and anaerobic metabolism of post-mortem bovine muscle. J. Sci. Food Agric., In Press 145. Lee, K.H., Yook, H.S. Lee, J.W., Kim, S. and Byun, M.W. : Effects of antioxidants on oxidation of tallow by gamma irradiation. Korean J. Food Sci. Technol., 31, 7-12 (1999) 146. Lee, K.H., Jung, M.Y. and Kim, S.Y.: Quenching Mechanism and Kinetics of Ascorbyl Palmitate for the Reduction of the Photosensitized Oxidation of Oils. J. Am. Oil Chem. Soc. , 74, 1053-1056 (1997) 147. Park, Y.B., Park, H.K. and Kim, D.H.: Oxidative stability of deep-fried instant noodle prepared with rapeseed oil fortified by adding antioxidants or by blending with palm oil(in Korean). Korean J. Food Sci. Technol., 21, 468-471 (1989) 148. Cort, W.M.: Antioxidant activity of tocopherols, ascorbyl palmitate and ascorbic acid. Their mode of action. J. Am. Oil Chem. Soc., 51, 321-324 (1974) 149. Kang, D.H., Park, H.K. and Kom. D.H. : Oxidative stability of deep fried instant noodle prepared with ricebran oil fortified by adding antioxidants or by blending with palm oil. Korean J. Food Sci. Technol., 21, 409-411 (1989) 150. Yang, J.H., Chang, Y. S. and Shin, H.S.: Relative effectiveness of some

-92- antioxidants on palm oil and beef tallow by AOM tests. Korean J. Food Sci. Technol., 20, 563-566 (1988) 151. Tappel, A.L., Brown, W.D., Zalkin, H. and Maier, V.P.: Unsaturated lipid peroxidation catalyzed by hematin compounds and its inhibition by vitamin E. J. Am. Oil Chem. Soc., 38, 5-9 (1961) 152. Whitehair, L.A., Bray, R.W., Wechel, K.G., Evans, G.W. and Heiligman, F. : Influence of intramuscular fat level on organoleptic, physical, and chemical characteristics of irradiated pork. II. Low-temperature long-time pre-irradiation heat treatment. Food Technol., 18, 114-119 (1964) 153. Shahidi, F., Rubin, L.J., Diosady, D.L. and Wood, L.F.: Preparation of the cooked cured-meat pigment, dinitrosyl ferrohemochrome, from hemin and nitric oxide. J. Food Sci., 50, 272-273 (1985) 154. Lee, S.H. and Cassens, R.G. : Nitrite binding sites on myoglobin. J. Food Sci., 41, 969-972 (1976) 155. Diehl, J.F.: Radiolytic effects in foods, p. 195-208. In Josephson, E. S. and Peterson, M.S. (ed. ), Preservation of Food by Ionizing Radiation, vol. 1. CRC Press, Boca Raton, FL. (1982) 156. Pearson, A.M. and Bratzler, L. J. : The effects of pre- and post- inactivation storage on irradiated beef and pork. Food Research. 25, 687-691 (1960) 157. Raphaelides, S. N., Ambatzidou, A. and Petridis, D. : Sugar composition effects on textural parameters of peach jam. J. Food Sci., 61, 942—946 (1996) 158. Femenia, A., Lefebvre, A.C., Thebaudin, J. Y., Robertson, J.A. and Bourgeois, CM. : Physical and sensory properties of model foods supplemented with cauliflower fiber. J. Food Sci., 62, 635-639 (1997) 159. Chen, J.Y., Piva, M. and Labuza, T.P.: Evaluation of water binding capacity(WBC) of food fiber sources. J. Food Sci., 49, 59-63 (1984) 160. Lyon, B. G., Robertson, J.A. and Meredith, F.I.: Sensory descriptive analysis of cv. Cresthaven peaches-maturity, ripening and storage effects. J. Food Sci., 58, 177-181 (1993) 161. Tehchien D.C. and Kokini, J.L.: Rheological properties and conformation of tomato paste pectins, citrus and apple pectins. J. Food Sci., 52, 1658-1664 (1987) 162. Szczesniak, A.S.: Classification of textural characteristics. J. Food Sci., 28, 385-389 (1963) 163. Blanshard, J.M.V. and Lillford, P.: Food structure and behavior, pp.3-8. Academic press, New York, USA (1987) 164. Sych, J., Castaigne, F. and Lacroix, C. : Effects of initial moisture and storage relative humidity on textural changes of layer cakes during storage. J. Food Sci., 52, 1604-1607 (1987)

-93- 165. Kim, H.K. and Kim, S.K. : Wheat and Milling Industrial. Korea wheat and Flour Industrial Association, Seoul, pp. 107-110 (1997) 166. Kim, H.K. and Kim, S.K. : Wheat and Milling Industrial. Korea wheat and Flour Industrial Association, Seoul, pp. 184-185 (1997) 167. Hoseney, R.C., Hsu, K. H. and Junge, R.C.: A simple spread test to measure the rheological properties of fermenting dough. Cereal Chem. , 56, 141-144 (1979) 168. Kim, H.K and Kim, I.S.: Wheat and flour. Korea wheat and Flour Industrial Association, Seoul, pp. 107-110 (1997) 169. Byun, M.W., Yook, H.S., Lee, K.H., Lee, J.W. and Kim, D.H. : Dietary fiber from marine products, refining process there of and the manufacture of functional food containing the dietary fiber. Korean Patent{99-43469) and Japanese Patent{^11-318946) (1999)

—94- 0|8fl "

Improving the Public Understanding of Food Irradiation

-95- Part I

Public understanding of irradiated foods via mass communication

-97- CONTENTS

I . Introduction 103

II. Research Problem 107 1. Conceptualization 107 2. Measurement Design 108

III. Methods Ill 1. Sampling • Ill 2. Questionnaire 112 3. Survey Procedure 113

IV. Results 121 1. Contents of Impressions 121 2. Forms of Impressions 128 3. Attitudes of Irradiated Food 133 4. Sources of Impressions 139 5. Media for Exposure and Focus of Attention 140 6. Sources of Trusty Information 142 7. Accuracy of Knowledge 145

V. Summary and Conclusions 149

"VI. Suggestions 151

W. Reference 155

Appendix 156

-99- 4 1 # 103 4 i 103 4 2 103

4 2 # 107 107 107 4 3 108 1. -108 2. 109 3. 109 4. 110 5. no

Ill Ill 1. Ill 2. Ill 3. Ill n2 1. 112 2. 112 113 1. 113 2. 113 114 H4 2. 117

-101- 4 # ^^-^2} 121 *ll 1 1 ^l^B-8- 121 1. ^2pS! 121 2. gq%3\ 121 12|

133 2. 7fl^tg;g$ofl 51*1 SA>^2f 134

3. ^l^fl-g-^- Bfl£^.o]^ «1J2. 136 139

I|^ 3 4^ 140 1. Jt#^S 140 2. ^^S. 142 142 144 145

4 f149

6 ^ 1 ti 151

7 # ^JL^d 155

-¥- 156

-102- 1 3- M

12*1 •§•

1997\d

understanding)#

nfl-f

1) t>7ie1lA]§- 1999. 12.

103- *]*!(knowledge) Ml*l Efli(attitude)

^^-°l-g-(persuasion theory)^ >3L

cfl*} sfl«|si xl^o} ^j[o|s ZL^eHl cflsfl

£ ZL ^g£7f ^^l^^il 13% ^ H Jit} C-l 4^ 8% ^^^^S. 1^*>3. ZL# ^-°J5] 70%

K o|

a]7|-^(nonvalue) A^#

'^ *> n>

n|

2) Richard F. Carter and Keith R. Stamm (1993), How we thought about the Gulf War, In B. L. Greenburg and W. Gantz (eds.), Desert Storm and the Mass Media (Cresskill, NJ: Hampton Press), pp.152-165.; Richard F. Carter and Keith R. Stamm (1994), The 1992 presidential campaignand debates: A cognitive view, Communication Research, Vol.21, No.3, pp.380-395.; ^«}-=r (1999), '3J*1

138-167^.

-104- <§•§• 7>el?lt;K o. -&-%£ 67}x]s. M-E^K^jjLisi 7>^A *J-^). $ «I*I|fe 6>^|-^7(|(inside-outside relation)!- 7]-e]7lfe Sl'tfW -R-^l JE fe *M>^*I -fi-^2, -^ *Nfe ^4 $1^3 ASl^ ^]#7fl( before-after relation)!- 7^1*lfe 9l^*\ -fHg3 JEfe 6J^4 -fr1§4, ZLZ]3. M] ^4fe -n-^l-^^Ksimilarity & difference relation)!

7}

Ji.

Hj-JL Zl

}. o]%o]

ZL ZL

-105- 2 S-

Sa

^s.^ 4

'Bfl£(attitude)'

-107- o]e.7|f =14. '^(impression)'£

D.

o 1. o 2.

0 3. o 4. o 5. gi-AFAi5A|.Ai .o)| in 0 6. o 7. 0 8.

-108- el (category)

2.

^fr&7fl(inside-outside relation)

-after relation)

3.

1)

2)

3) Seung Hee Wie, Catherine H. Strohbehn, & Cathy H. C. Hsu (1998), "Iowa Dietitians' Attithdes toward and Knowledge of Genetically Engineered and Irradiated Foods," Journal of the American Dietetic Association, Vol.98, No.ll, pp.1331-1333.

-109- BJ1S7]- -8-^47} 4^1 EH£7}

4.

°x>

5. 9-4*1 A}

4

cfl

-no- iLS. 44

1995\1 ti v ^^(multi-stage stratified sampling) o ^-^- l,2007fl^

15-20^

4 S^(systematic

8 44 i267fl^ 16

2.

13711

l^-^, 471

3.

4) 1995 (-*!•§•: %-A%, 1996) 5) let, ^

6)

-111 l > .Xt ^«l7l<£| *§^ A 352*3 389*3 900*3 ««* (39.1%) (43.2%) (17.7%) (100.0%) 85*3 95*3 40*3 220*3

^1H14 ^ 44

4 30

^-fl-1, 1-2)^ %• 174^ -g^-2-

44^0] 371

2. '

7W '7}

-112- 1.

. 24

Ml-g-

7]

2.

47}

^] 7]

fe 1999\1

113- . A

52.6^, 47.4*3. . 1995^

31.2*3 2,

63.1*# 44^K ZLe|3.5 40^4 20.9%, fe 4«+ol 50.7%, cfl^4l# Sfe 4*W 4.3*3. 47} ^*9^ 55.0%!- 44^4. o)^^- H]§11

—114— (12) -§-#4

»d£.^ Jf3 % 597 51.4 52.6 52.6

538 46.3 47.4 100.0 n 1135 97.8 100.0 - missing 26 2.2 - -

o'«l 1161 100.0 - m 20-294 363 31.3 31.9 31.9 ?! 30-394 354 30.5 31.2 63.1 °! 40-494 237 20.4 20.9 84.0 *& 504 ^l^ 182 15.7 16.0 100.0 J1136 ' 9T 9 100.0 _

missing 25 2.1 - -

1161 100.0 - -

131 11.3 11.6 11.6

379 32.6 33.5 45.0

tu# m^ *m 574 49.4 50.7 95.7 m 49 4.2 4.3 100.0 1133 97.6 100.0 -

missing 28 2.4 - -

1161 100.0 - -

-115- *£* M»

304 26.2 26.2 26.2

97 8.4 8.4 34.5 r¥#iiiil 60 5.2 5.2 39.7

34 2.9 2.9 42.6

61 5.3 5.3 47.9

: :: i r;;?;;•;;•• : -»/" -W - 33 2.8 2.8 50.7

17 1.5 1.5 52.2 h: Hail 201 17.3 17.3 69.5 w 20 1.7 1.7 71.2

..... •:.-:.-;'

< : [ ' £jtj:^£i'••••':•••••'•'' -'-- '-'• 38 3.3 3.3 74.5

49 4.2 4.2 78.7

1 : .. ". '. .. .lA:'.: :]:]:]::^:^'--'^.:-:^^ 52 4.5 4.5 83.2 : : • • ;i;-i = i•'.r-:= ^ • •"•': ."•-." :•••:;••;

1 •'••:•. :",-". "••--- . ^i:':!!1.!!;^-: 57 4.9 4.9 88.1

• :'. ::i: •••••;' :•• • •":'• 81 7.0 7.0 95.1

'. ' • " • -^i-i: ii'iisii'iii:!!! i::- 57 4.9 4.9 100.0

1161 100.0 100.0 -

.. '• !:•::.••:•: :•:. "• ' : •. •:'::'-.-"

-116- 2. 1) 220^ 54.3%, 30^7} 32. 90.9%^ 56.4%,

4 > 9-# &H * 1 0.5 0.5 0.5 194 99.5 99.5 100.0 XI 195 100,0 100.0 - «> 20-294 95 48.7 54.3 54.3 # 30-394 64 32.8 36.6 90.9 °> 40-494 15 7.7 8.6 99.4 # 504 ol-tf 1 .5 .6 100.0 175 89.7 100.0 - missing 20 10.3 - - 195 100.0 - - «fl# JE-fe 4*} 110 56.4 85.3 85.3 19 9.7 14.7 100.0 129 66.2 100.0 - missing 66 33.8 - - 195 100.0 . - -

3 10 5 9 ^^fl^-9- 11 17 #49- 2 2 8 11 nl AT! 'J. 7 5 2 > t »-VJ T3 —^ 6 #S9- 11 ^^19- 5 10 ^9- 11 3 9-S9- 5 O O | 6 ^ o'-9- 4 7 5 # 257119- 16 17 195 ^

-117- 2) '-YWM

30 26 12 8 12 6 18 YMCA^«| 21 11 7 # 107f #*ff 151^

39.1%,

20^7} 67.5%,

':£. ¥3 * 59 39.1 39.1 39.1 92 60.9 60.9 100.0 151 100.0 100.0 - # 20-294 102 67.5 67.5 67.5 # 30-394 38 25.2 25.2 92.7 S> 40-494 8 5.3 5.3 98.0 # 504 °l^ 3 2.0 2.0 100.0 ^1 151 100.0 100.0 _ 5 3.3 3.3 3.3 ^fi# afe 4^ 130 86.1 86.1 89.4 tfl«|€# SEfe-aiW 16 10.6 10.6 100.0 151 100.0 100.0 -

-118- 3) •KB* . 4

, 4 4 4 ZL

(8.7%)

(1,161^) 561^ (48.3%) 1,060^ (91.3%) 499^ (43.0%)

85^ (43.6%)

1,50713 <195'g) 64^ (32.8%) 110^ (56.4%) 46^ (23.6%)

46^ (30.5%)

(151^) 55^ (36.4%) 105^ (69.5%) 50^ (33.1%)

-119- 1.5077B

'0104'

4 7W

as

57B ^^.6.

2.

(1)

Safe 4thS:

-121-

3*}(*fl§4f)

*iis*, ^^u w#, «j^^, -um, ^-^ ^ ^-^^ ^7> ,^•^4. ^A^^i:^, fS, 71^^, 7lE}

^U^ sg7} ^171U^^^

^g-, ^HVi^, ^^-^^1, -¥-ii|^i,

-2.^.7ltgo>j^.3^fi;H^'iI.^^.-¥-n},

X-ray, <&, ^4^, ^VS*]S

71 B>

^# ^^ ^^/^. ^#. ^>, 4^, (^-^H)^^AI#

^«t/nh¥-^i, ^^/^a.,«, 2^^, ^^/

-122- v in CM CM m CO CO Ho»' F)O • * Hjl

S g * a :«. <% A .ii •: . : 1 CM CO CO 1 CO to 1 :• ' ;' 1 4 1 2 10 . 20 . i :i 24 . ig1 :i in 1ft CO ,_, ' co!.' CM m : m 1 ( ] ::^! •o -. SO ir ;:«=: 'if t)i :W: g & d & & & «; g 1 & 1 ! ] 00 1 m CO CM CM CO :l -•':'- 0 :: 10 .

38 . Mi "S A « M "CM: CM OS to in CO !*»' CM : - cs -$< 1 ^; m:% * S« as $ s ••r A A CM T—1 $ IS ill ,^i VMt 1 1 •^ s •-i 1 : ••£* o 1 00 •»!" 00 CM CO CM ii! it 11ii.:.: ,' CO CO en w N

; » M ft & c^ c^ »• s S c^ « 0 CM CM 1 CM CO H ' > CO- 13 . 1 3 29 . CM =Si. 0)0 A CO 00 CM O CO ,_, cr> CM CXI ^* *; a. F|P iS*:.: 1 ^_, :^: : re- ii 4* & M. cS A & A eg A w OO to <£> CO CO CO • M 1 3 1 3 »-* 1 8 || I ii;I

in 0 LA CO 00 - CO 10 CO ft Wi 1—( i'iCM'I ^: •iiifl: : • « '\M M\ a A & A- CO en It 0 CO CO •^ CO lift"- ;••*! 1 —• •": i " Si ;eoh 1 2

tJis Si] .•:.. v:^ en iMi S3 OJ CO 0 $ S3 LO 1 Hi en i; :i: Hi siftlj 11 S C^ A CO ii! g :*i a s s co CM 00 CM CM .-* 0O CO CO* i.i^:>; 53 I • 1 NIBS' 1 liSfji ii i 1 CM m CO 0 c- s CM CO

19 1 CM 1 t« 11 7 w :cS is f m.:•:.... t: as CM s § •A' g £ IS $ A c^ S i§i in t- CM m en 1 i$t O O • •'•: 12 . i 43 . *""* *-< »—1 V CM ii'.":-:' ; f •;'i i ••• CM c- en ir> 00 in ^f en JoOi] CO -^ IK i:O- -"Mi-: tin : # ij'i::.i. . i •!<••!-!"• '^•Viii & c^ & :|^:i: i^i '-if1: CM OO a 10 -tfl 00 10 c- •«< a :O>":"; i.S: ! •W : :» : ':>'' ill : ':K : B). •3T •f t «>r Hi 0 •i-i '•'•!-• !:•:;:! k 'f t $n •w K gu i)r SB *u '••'•:•'''•.' 0 M I »B SB ota" s» ,1 11 ftft iiiiii. IF 0 11)HI0 ijijijii If nr '•'^••: 1 ^ ota HJT SB °^ mo WJ •R-J •«• PK SB fi>l •££ ^ Bit ^ •<| "5T #1 ?r "5" '•••••:h 0- oJ 1*> IBi r ot^ J)o 1J Bill Is" H! •Sr Ts •;<" ^Sii 1 V> %° V I g>n i :^.i 5 3 p H|a n|o Jig! ii^:: I J sKiii w w o» T T J|o •^ u 1R0 ;.;§=.; (t|B o» H|D -< ••< m Kjo •

hi:.! 50 K

-123- ^- 12.2*3.

44 48.0*.5j- 43.0%^^.^, 31.9*3. #113 5.0*3, 8.3% 5.6% 3, 2.9*51

^ 5.1*3 2= 52.385, df=22,

(2) 195-?-3 fe 85^, 43.6*Sit|-. 8.7*51

35.4% vll^l 43.2%S ^13AS 3Stlt:>.

Ufl, ^-S JiL*lt:K

12.2%, 44 6.1%, 3.4%,

18.6*3 14.6%

-124- *>o|7> . JE,

EL7\)

(3)

irfl 29.3^1 Hj

7}^ 32.0^, ^^ 38.8%^

2)

44 25.6%^- v\

-125- LO CM f: CO » o CO CO '"• 8

z & .»» A $ CM A A A f CM CO CO CO 1 1

••:••:•.• 1 0 1 2 S 1 4 i:.•"•''•:• i a B to CO :e»* cn CM CM CO CM CO -s< CM

1 :g A A if A A IS A A A CO © A CM OO CM 00 CO CO • m •—• 1 • | 2 CO a 3 2 in co to CM CM s in

s se & iS oo" ©• CO CM' CM CO ' 1 10. 0 i in CO W 00 CM ;o. 00 — CM CM in in ?! t A fi :A- A IS :A A 4 A A i i••*-:;: CO CO CO CO IO 00 CO CO CO CO t o t- CM —• cn en Si i ifi: CM CO CM to in in CO CM CM ~< CO

If •|: s in cn A A IS A IS •j$ o 00 *|. 00 mi r-t CO CM CD A 1 1 s in © in 00 CM CO i "• n tst 00 »-c

•<§•

: ••;;: •a 1 Si IS A A A IS A A A 2 A A A 1 CO CM CO oa CD -a- 1 1 •* a w —• 1 4 S3 s CO CM -< cn in CO in C35

••<"%• SinB i| W A IS A IS ft CM s? cn in •w' oo" in Tl.' s 1

MP >< "&0 W w ° 0)=

1 :.• ; fs- Is 'a 3 V •go 5 3 % to ifln iS c t 1 1 "W tr W o. o" K?" a. 01 1 w 1 •a? IP o M|n IS" 2> S r s ••; • rb < •

is" HlflW P "iS" 5° tV IS

-126- (2) 4

44 15.3*3. °1 32. . JEE, fe 5.3%

= 53.776, df=22,

4

(15.3*)ol,

(3)

-b 4 X-ray,

%•§•

2= 35.130, df=22,

-127- 1.

2= 24.091, df=10, 23.2%^ t}§

}. ojofl 45.5%S

7}^ ^.t§3ol 46.9%S 7^

20.0%

o]7}

-128- CM CO c- <-H 0> o c CM Hi* in Bl "ijJ ^0 ^B o

ft fy & *—i & S oo CM o

•N w 14 . 24 . 46 . 8 C<1 II

•O1 in o in If r T—1 S aj p J * 4J #> o o o o c§ os' 1 •^< 00 CO 00 CM o aT CO CM 1—1 CO

CO i-H CM in co *> CM i-H II

3i o> fi en CO CM oo' •«!<' i -*- 5 46 . 28 . 8

CO ,_, r—1 CO CO c CO i-H s| P

* in co »—1 £ s oo 1*1 C s ^ in CO CM in o •*!< i-H 8 a II*

i-H CO i-H CM a S co *» o Bi "pJ i-H

4J #> T-H CO 00 s 11 ft co' i -go in co in T-* i—l a CO CO 1-H 8 S3

^, CM en l-H co CO CM in s CO —' CM «P oo IP 1

i 1.2 % 7.3 % co' 25.6 % 1 3 39.0 % 23.2 % o CM in c in CM 14 1 I 49 9 a} T>» 8 V "ft" i*> CO cb ft ft s in CO 12 . «j * 33 . 22 . i-H 8 8 3 ' if in co m CM »—1 CO i—1 a co CO CM § i-H i—4 LO o" t° W 3"

co CO in CO 00 co in in 1 o 1 CO i-H CM i-H •< o 8 r-H t» •<

M • <; , W M / S /\ i - ; t it- II . : A in sM *» « ca -c o o" ON V VI CO a, % W % %

-129- 2)

14.3*3. t\^

27}

18.622, df=10, 4

H)

45. 46.9%

^. 9.1*3. 20.076, df=10,

2.

. 4

44 22.6%^}

^14 • s^aiHi ul*B "^ ^3 43- - 4

-130- CM CO | 1 »—I CM s

ft * 1 co" to" 2.0 % r-4 3 24.5 % 8 o II p o to ^, CM to a •* •RE p § CM o" w

5 to o CO B , df= l Zo CM 13 . 45 . 25 . 8 o a o" CM .—t CM in o in CM II »—I 5- 49 9

W & ft ft o in en 1 16 . a. 22 . 8

rH m o in 1 t T—1 S J cS s "0 2 s & S s oo CO CM i 3 28 . 8 s nj-j I n" 1—1 ft p co co 1>- •g CO CM CO oo o i—t o^ i to in i-H 11 . 35 . 39 .

8 26 3 p in r-i in CM 00 II CM to 1—* CO i—i s co ? 1 in s? 5S 5« C>3 ^* o T—1 o in co i 14 . 32 . 30 . 1—4 8 00 •^< CO i—i CM to 1—1 •* w 1- !> 6 & ft ft ft CM B K co' CM" co" M-" 1 8 46 . a 8 =.04 5 ft CM o> (O ,_, CO C»—M * in CO 1—4 CM CO oo p *j *" o" i—i •RE II

jj *< 5« o CM to CM 'O CM T—«« i %o 1—4 co CM 39 . 5. 23 . 25 . 8 to CO 1—4 -p oo to in in t-H CO 1—4 8 II 1 o i-H

CO * S 3» 1 8.8 % to' in 5.1 % o CO 1—1 CM t—4 o

m '••i 03 m . -co" u t li it al-J •«•• in CO < < ** **i ft #!iliiifi O-H^P'Hjiii o" -— *—• CM m S° 35° a <^ Ojr °¥

-131- 14

Total turn Col% 41.9% 58.8% 53.8* 27.8% 30.0% 40.0% 46.8% 60.0% 66.7% 39.9% A > B Cnt. 13 10 7 32 3 4 37 6 4 116

•$2) Col% 9.7% 11.8% 7.7% 13.0% 20.0% 20.0% 12.7% 16.7% 12.4% B > A Cnt. 3 2 1 15 2 2 10 1 36

Col% 25.8% 29.4% 30.8% 30.4% 30.0% 20.0% 26.6% 20.0% 16.7% 27.8% A -> B Cnt. 3 5 4 35 3 2 21 2 1 81

Col* 2.6% 1.3* 1.4% B -> A Cnt. 3 1 4

Col% 22.6% 7.7% 25.2% 20.0% 20.0% 12.7% 20.0% 18.2% A = B Cnt. 7 1 29 2 2 10 2 53

Col% .9* .3% A =/= B Cnt. 1 1

Total Col% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

Cnt. 31 17 13 115 10 10 79 10 6 291

x'c- 5.576, df=6, p=.472 x'= 2.286, df=10, p=.994 x'= 3.795, df=8, p=.875

* p^O.05, two-tailed.

-132- ti VA < s 15 > o Hi^ -m ns. (. ) $£&* Total #*w 2.23 2.07 1.87 2.10 F=2.026, Ql 225 (97.0) (1.09) (0.98) (0.87) (1.01) p=.134 3.39 3.45 3.84 3.50 F=1.788, Q2 221 (95.3) (1.50) (1.29) (1.26) (1.38) p=.17O 4.73 4.52 4.33 4.57 F=2. 662, Q3 225 (97.0) (0.69) (1.00) (1.40) (0.99) P=. 072 2.07 1.93 1.78 1.95 F=1.391, Q4 221 (95.3) (1.08) (0.90) (0.82) (0.97) P=.251 2.75 2.55 2.49 2.62 F=.602, Q5 224 (96.6) (1.57) (1.33) (1.70) (1.70) p=.549 * p^0.05, two-tailed.

Qi. Q2. Q3.

04. Q5.

-133- 1-fe 1.873.

3.845L ^^O| 3.45,

M) 4.73, 4.33.6.S. ^ ^,

0.09-0.16

2.75, 2.554} 2.

2.

. o)

4s.

88.9%S.

41.7%,

527fi

-134- 16 >

< X 17 > ^6o*4 4^*1] Total Col % Count Col % Count Col % Count Col % Count 69.5% 41 73.2% 41 72.1% 31 71.5% 113 ^§3} JLZ2]- 10.2% 6 8.9% 5 7.0% 3 8.9% 14 10.2% 6 12.5% 7 4.7% 2 9.5% 15 1.7% 1 - - 9.3% 4 3.2% 5 -s-*i4^4 1.7% 1 - - - - .6% 1 7>^-i] 3.4% 2 - - - - 1.3% 2 7]B> - - - - 2.3% 1 .6% 1 3.4% 2 5.4% 3 4.7% 2 4.4% 7 100.0% 59 100.0% 56 100.0% 43 100.0% 158 100.0% 1161 100.0% 195 100.0% 151 100.0% 1507 •X =17.228, df=14, p=.244 (p^O.05, two-tailed).

70%

95.6*7}

oil- 7^ 4 95%

-135- 232^ 5| 71.e*o|r:>. n.

lBit*

*> 35.6%^ 32.

18 >

^-^§ 6 18 41 65 101 64.4* 1 17 39 57 85 67.1* 1 9 34 44 46 95.7* 8 44 114 166 232 71.6*

3.

Ji-b 3g7},

7}^- ^^ Sic}. 2 X-ray,

-136- 19> EflSL

Col % Count Col % Count Col % Count Col % Count .9% 11 1.9* 1 .7% 9 3.8% 2 .6% 8 3.7% 48 .9% 2 3.8% 2 91$.^ 3.2% 41 2.7% 6 3.8% 2 #w 1.1* 14 31 &* .6% 8 1.9% 1 91^ .6% 8 H^ .2% 3 1.9% 1 7M .3% 4 .4% 1 •Us* 22.5% 291 27.1% 61 44.9% 71 ^^ 4.6% 59 4.9% 11 12.7% 20 -¥•33 .9% 12 .9% 2 1.9% 3 .6% 8 .4% 1 .6% 1 3.9% 50 3.6% 8 1.3% 2 ^# 1.1% 14 A% 1 9\^A 1.5% 19 .9% 2 10.1% 16 .2% 2 .4% 5 .2% 3 .4% 1 .9% 11 .9% 2 1.3* 2 ^171^ 1.0% 13 .4% 1 3.8% 2 . 5% 6 #5 4.3% 55 2.7% 6 19.2% 10 .5% 6 .9% 2 1.9% 1 .5% 6 .9% 2 11.5% 6 2.2% 29 5.8% 13 23.1% 12 .2% 3 5.8% 3 1.5% 20 1.3* 3 1.9* 3 CH^-AI .4% 5 1.2% 15 1.8* 4 .6% 1 .3% 4 1.3* 3 1.9% 3 .2% 3 .4% 1 .2% 2 1.9% 3 .2% 2 .6% 8 .4% 1 1.3* 2

137- < a 19 > MHf) («* Col % Count Col % Count Col % Count Col % Count 2.2% 29 2.2% 5 2.6% 34 2.7% 6 1.0% 13 1.8% 4 1.9% 25 2.2% 5 .6% 8 1.0% 13 2.2% 5 1.8% 23 2.7% 5 1.3% 2 w v o 4^i 2.7% 35 1.8% 4 9.5% 15 X-ray 3.1% 40 2.2% 5

n 2.9% 37 6.2% 14 1.5% 20 A% 1 1.6% 21 .9% 2 2.5% 4 1.5% 19 2.2% 5 .6% 1 .2% 3 1.3% 3 .2% 2 2.3% 30 4.4% 10 .7% 9 ^7]d^7] .2% 3 .8% 10 1.0% 13 3.8% 2 .8% 10 2.7% 6 .6% 1 .2% 3 .3% 4 .4% 1 .9% 11 .9% 2 ^-if/^^-^l 1.7% 22 3.8% 2 ^^ .2% 3 .4% 1 .2% 3 .4% 1 71B} 3.3% 43 2.2% 5 TiV "^ 9.5% 5 4.3% 7 100% 1291 100% 225 100% 52 100% 158 - 1507 - 232 - 232 - 232

19971]^

-138- 20

-7 Id 711

Sl^J-24 367fl 2871) 6471)

E|J£S4 257ft 77fl 3271]

69.4% 25.0% 50.0%

3.

(nonvalues)

4,

'ao^Hr

3.6%, 7. IB&CK

-139- 21 >

4*l*}-*3t>a|| Total Col * Count Col % Count Col % Count Col % Count 7.5% 6 17.9% 10 2.4% 1 9.6% 17 TV/411: 63.8% 51 57.1% 32 52.4% 22 59.0% 105 8.8% 7 16.1% 9 16.7% 7 12.9% 23 13.8% 11 5.4% 3 21.4% 9 12.9% 23 #<3/^*14^ 1.3% 1 3.6% 2 7.1% 3 3.4% 6 71 B> 5.0% 4 - - - - 2.2% 4 100.0% 80 100,0% 56 100.0% 42 100.0% 178 - 1161 - 195 - 151 - 1507 * **= 21.894, df=12. P=.O39 (p^0.05, two-tailed).

A

TV, TV7}

24.4* fe TV51

TV

9.8%!-

-140- a 22

Gol ••'•%.. Count

4.3% 9.1 16 5.! 6.6% 31

41.1% 76 33.5% 55 24.4% 29 34.2% 160

17.8% 33 20.1% 33 22.7% 27 19.9% 93

4.! 1.2% 4.2% 3.4% 16

1.6% 3.0% 5J 3.0% 14

8.1% 15 11.0% 18 5.9% 8.5% 40

9.7% 18 9.1% 15 10.0% 12 9.6% 45

2.7% 0.6% 5.1 2.6% 12

1.6% 1.7% 1.1%

0.5% 0.2%

0.8% 0.6%

2 3.1 8.4% 10 4.3% 20 liii: 1.1% 4.9% 1.7% 2.1 12

3 1 2.4% 4.: 3.4% 16

Total 100.0% 185 100.0% 164 100.0% 119 100.0% 468

82 70 43 195

— 141— 2. 1477)1

TV*] ti

4^ 33. m %3W1 Total Col 56 Count Col % Count Col % Count Col % Count

7.9% 8 12.8% 10 3.0% 2 8.2% 20

41.6% 42 34.6% 27 28.8% 19 35.9% 88

19.8% 20 25.6% 20 22.7% 15 22.4% 55

1.0% 1 0.0% 0 1.5% 1 0.8% 2

2.0% 2 1.3% 1 6.1% 4 2.9% 7

6.9% 7 12.8% 10 10.6% 7 9.8% 24

9.9% 10 3.8% 3 6.1% 4 6.9% 17

4.0% 4 4.5% 3 2.9% 7

1.0% 1 1.5% 1 0.8% 2

1.0% 1 0.4% 1

.•'•• '. • : •:. •••' •'

i • i: ' "•""".-.• ^f*r?J •" '4-;.;::;L 1.3% 1 0.4% 1 • • • •'• . • • •>: •K::i: 1.0* 1 1.3% 1 10.6% 7 3.7% 9

1.0% 1 6.4% 5 1.5% 1 2.9% 7

3.0% 3 0.0% 0 3.0% 2 2.0% 5

Total •"^.•^••' 100.0% 101 100.0% 78 100.0% 66 100.0% 245

- 58 - 51 - 38 - 147

S.S.

-142- 24

* «

2.61 2.95 2.20 t o 0

5 4 5 * t o I O 0 (1.04) (0.92) (0.92) O 0 3.73 3.87 3.44 F=8.123, 2 1 2 (1.02) (0.89) (0.88) p=. 000* 3.77 3.70 3.97 F=3.133, 1 2 1 (1.08) (0.87) (0.80) p=. 044* 3.70 3.63 3.29 F=l 1.406, 3 3 3 (1.02) (0.85) (0.97) p=. 000* 2.00 2.33 1.77 F=15.811, it -TT- T?t VnS "~ft *S5 6 6 6 (0.98) (0.90) (0.88) p=. 000* 2.62 2.54 2.54 F=.751, 4 5 4 (1.03) (0.83) (0.90) P=. 472 * p<:0.05, two-tailed. ]}$]

2.6io} Sit:}. 4iH]*} 2.20^LS }7l) ^Sl l 3.73, 3.44^

•8:

3.773} 3. nfl 3.70, ^ 4 67M 1.77

2.545. 2.62Sit:}.

-143- 4 2.03, 44 2.003} 1.85S. 44 2.20, 2.693. ^nB^A>7> 3.7\]

25

2.03 2.00 1.85 2.20 2.08 1.84 2.69 2.22 1.78 F=.549, p=.578 F=2.936, p=.O54 F45.736, p=.000*

A}^^# ^^> ^^> 2.03 2.20 2.69 2.00 2.08 2.22 1.85 1.84 1.78 F=27.490, p=.000* F=.749, p=.474 ft. 080, p=.923 * p^O. 05, two-tailed.

4

o]n]

-144- 26 > <3

4,

Silt:}. o)e|*>

4

i

64.6%, 28.1*3. 13.4%, 44 13.

-145- < a 27:> &* i *\* l (A|-

Id =§^ sm- A £* A SM- 78.2% 5.0% 16.8% 100.0% 91.8% 4.7% 3.5% 100.0% 87.0% 4.3% 8.7% 100.0% Ql X*= 7.231, 79 5 17 101 78 4 3 85 40 2 4 46 df=4, p=.124 60.4% 3.0% 36.6% 100.0% 76.5% 3.5% 20.0% 100.0% 69.6% 2.2% 28.3% 100.0% X*= 5.259, 02;;: 61 3 37 101 65 3 17 85 32 1 13 46 df=4, p=.262 30.7% 34.7% 34.7% 100.0% 51.8% 37.6% 10.6% 100.0% 34.8% 43.5% 21.7% 100.0% X*= 15.735, 31 35 35 101 44 32 9 85 16 20 10 46 df=4, p=.003* 72.3% 9.9% 17.8% 100.0% 82.4% 10.6% 7.1% 100.0% 78.3% 13.0% 8.7% 100.0% Q4 X*= 4.278, 73 10 18 101 70 9 6 85 36 6 4 46 df=4, p=.370 76.2% 5.9% 17.8% 100.0% 83.5% 9.4% 7.1% 100.0% 73.9% 19.6% 6.5% 100.0% X~'= 11.205, 135 77 6 18 101 71 8 6 85 34 9 3 46 df=4, p=.O24* 48.5% 5.9% 45.5% 100.0% 58.8% 8.2% 32.9% 100.0% 71.7% 4.3% 23.9% 100.0% Xz- 7.463, Q6 df=4, p=.113 - •.. 49 6 46 101 50 7 28 85 33 2 11 46 ; :J:i: :::: 43.6% 28.7% 27.7% 100.0% 63.5% 23.5% 12.9% 100.0% 37.0% 45.7% 17.4% 100.0% X*- 14.547, •Q7!; 44 29 28 101 54 20 11 85 17 21 8 46 df=4, p=.006*

;•:••:••:::;•: 58.6% 13.3% 28.1% 100.0% 72.6% 13.9% 13.4% 100.0% 64.6% 18.9% 16.5% 100.0% - 414 94 199 707 432 83 80 595 208 61 53 322 * p<0.05, two-tailed.

QI. m Q2. Q3. Q4. Q5. Q6. Q7. H

91.8^7} 7%.2%7\

5.0%7}

28.3%,

82.4%, 83.5%, 70%cflS. 13. 19.

-146- 71.1*5. 58.8%, 48. 5*5.

4 45.7%ofl o\M.

9. 77fl 13.3%,

4 ^

-147- *\\ 5 3"

44 43.6*5} 30.

2. 61-

3. . 698)5} . 0*5)0]

Jg-f-S.

4. 32.6*ofl olH.5]

5.

7} 3.7]}

6.

4^°) to safe 4$

safe

-149- oj a.^ ^ %o]i>}3.

9. rsfl TVif

oil ^^r

". 4 71^1 7l

10.

11.

12.

18.9%S.

44

-150- 6S

2.

38.8*14 4

3. 'irradiated food'

-151- o) -g-o

4.

•§•

5. o|

nfl, ^^. %-g-l

6. §iig(source)°.

o|#

-152- 7. ^4, 4^*11 4

fe 4

-153- (1999), '^*1<>J olnl^l^ 4

ro^^^jjLj t 45^ 4151(^-^185:), 138-167^. (1999 o 43-451, 79-110^. (1993), , Richard F. Carter, & Keith R. Stamm (1996),

]%$. (1998), r1995 ^ITHT^ #^A> ^"^J H#: ^f-^I^, 1996).

Bruhn, Christine M., Howard G. schutz, & Robert Sommer (1986), "Attitude Change Toward Food Irradiation Among Conventional and Alternative Consumers," Food Technology, Vol.40, No. 1, pp. 86-91. Byun, Myung-Woo, Il-Jun Kang, Han-Ok Cho, Joog-Ho Kwon, Seong-Ai Kim, Hong-Sun Youk, & Hyun-Ja Lee (1994), "Consumers' Perceptions and Attitudes Toward Irradiated Foods, " Foods and Biotechnology, Vol.3, No. 2, pp.89-93. Carter, Richard F. & Keith R. Stamm, (1994), The 1992 presidential campaignand debates: A cognitive view, Communication Research, Vol.21, No. 3, pp.380-395.

; (1993); How we thought about the Gulf War, In B. L. Greenburg and W. Gantz (eds. ), Desert Storm and the Mass Media (Cresskill, NJ: Hampton Press), pp.152-165. Cramwinckel, A. B. & D. M. van Mazijk-Bokslag (1989), "Dutch Consumer Attitudes Towards Food Irradiation," Food Technology, Vol.43, No.4, pp. 104-110. Schutz, Howard G., Christine M. Bruhn, & katherine V. Diaz-Knauf (1989), "Consumer Attitude Toward Irradiated Foods: Effects of Labeling and Benefits Information, " Food Technology, Vol.43, No. 10, pp.80-86. Wie, Seung Hee, Catherine H. Strohbehn, & Cathy H. C. Hsu (1998), "Iowa Dietitians' Attithdes toward and Knowledge of Genetically Engineered and Irradiated Foods," Journal of the American Dietetic Association, Vol.98, No.11, pp.1331-1333.

-155- 2)

2. 4

3.

-156- 4. '#4*1 14

(4 n*y

t:>A}

O1?!

5. o. el

6. ^-SlJL 7] 7fl

7.

(2) 7B

8. 14

9. 14

14

-157- 2) 3)

4) 5) li.

(1) (2) (3)

2) 3)

5)

6)

7)

8) 12.

1) 1—2—3—4—5 2) 1—2—3—4—5 3) 1—2—3—4—5 4) 2}*|-7l 1—2—3—4—5 5) 1—2—3—4—5 6) 1—2—3—4—5

-158- 13. safe

*>i4 1>.

1) 1—2—3—4—5 2) 3.^- 1—2—3—4—5 3) 1—2—3—4—5 4) 1—2—3—4—5 5) -8-31*1 1—2—3—4—5 6) 1—2—3—4—5

-159- ZL

4. 2.4

, 71

pre-test^M

1) 1—2—3—4—5 2) 1—2—3—4—5 3) t 4iy14 1—2—3—4—5 4) 1—2—3—4—5

-160- 5) 71

5.

1) 1—2—3—4—5 2) 1—2—3—4—5 3) 1—2—3—4—5 4) >le| 1—2—3—4—5 5) 1—2—3—4—5

6-1.

4) ^ (

«•

6-2.

. (

6-3. 4

-161- 6-4. -§-^7}

-162- B

2. )•§•

3. '

(4

)fe (*>H

4. 2:4

-163- 1) 1—2—3—4—5 2) 1—2—3—4—5

3) i—2—3—4—5 4) 1—2—3—4—5 5) 7]^ 1—2—3—4—5 6) 1—2—3—4—5

5.

fe

2) 1—2—3—4—5 3) ^4 1—2—3—4—5 4) 1—2—3—4—5 5) 1—2—3—4—5 6) 1—2—3—4—5

«•

6-1.

«•

6-2. -§-#47} -4 &7J7HJ4A). ( 4)

-164- )£ MS.

6-3. trfl

-§- . ( 4) fe^l a

7B

6-4.

±3. . ( 4) ^

)^r MS. a

-165- (1) (2)

2) (1) (2) ~ 294 (3) 304 ~ 394 (4) 404 ~ 494 (5) 504

3)

(2) (3) (4)

4) (1) (2) (3) (4) (5) (6)

5) (1) (2) (3) (4) (5) (7) (8) (9) do) (ID (12) (13) 7lB>

-166- }B. A 1.

2.

*«*

3. -a-^'d^'M ^l^:^ ^°1 uov4^i 24 <^1#^-

— • 2}-4 3)B|) ^g-^ tt)^-e|-^C]-^ O| ^^|o]| sfllg-

4.

u-4-a

5.

^1-^llS. ^-a-^ ^s.5. "11-T- ^7^4 •n"4tt 7A .II '

6. •Q-%^V^*\ IE|^-^ 7A°] ^•4'^i 2:4 -i{ •§" Sj-

# 4. 18'4'ii 24 ^l^"3}" ^^^fl-3! ^-^-i: ?^fe-

4^1 °1 •S'^l'^l *flx3"^a-14.

-167- # (1) (2) (3)

1

2

3

4

5

6

7

8

9 TV iSf55.

10

11

12

13

14

15

16

17 TV H.e>n}

18

19

20

21 7)B}

-168- 2>

1) ^^ 154 (10.2*) 0101 -S~g-*M-(47, 253), , olf-4(125), , 283), «U271) 0102 £el(6, 65), # #4(259), (262) 0103 ^# ^ $14(102),

0104 7fB^(20), ^^(52), ^1^(53), , 369), $3(163), ^#(234),

0105 0106 0107 T^JSLX] SJt:K8), H30), (384), #^^£ 0108 ?!•& ^ 51^X211), 41^(246) 0109 S.fe ^#<^1 «Ho>^ 0110 %^*}c}(14) / ^$^(189) /

2) 474 (31. 5%) 0201 , 235), (80), , 324) 4(229). -8-^(150), <&&*M #4(304) 0202 #^^(114) / ^1^^(373) / sl«B(386) 0203 1-^>CH46), •i-tl(145, 186),

0204 (270) 0205 ^t^Hl6), -f-acKSO), -f-^ 4(181), 0206 7l-f^(38), 414(63), ^4(136), 342), 1^(182), 4i^S-M(237), $^^-(249), ^1 1^)214(275), S|=l(284),

0207 4«L4(81), 0208 -f-4^(78, 103), Hi3^3}(277), ^1^1^(165), , 197, 309) 0209 71^^(254), 4^4(319) 0210^A$ * J=:^(73), ol#*l tt4(9D, ^7}^ (176), ^4(327) 0211 0212

-169- -7K337)

3) 18 (1.2*) 0301 7)^(139), (250) 0302

2. 100 (6.6*) 0401 (255), (300), 1^(314, 353), 0402 ^(370) 0403 0404 ? , JS. ^(207), ^(345), 0405 -S-sH-t ^^1(331),

2) ^-^^ JL3^ 59 (3.9*) 0501 390) 0502 0503 , 71^(115), 0504 , 1HH367) 0505 0506 ^^7X161), 0507 -i]*§^-(274) 0508 -f-^HH 106)

3. ^§ 1) ^^ 109 (7.2*) 0601 *)#(2), #(357) 0602 4^-(69 , 3.71(88), ^-(297), , iK364) 0603 2H1(58, 343), ), 0604 , 48), ^-(124),

0605 , -8-71^(166), #(226),

2) T^^-g" 14 (0.9) 0701 #(291) 0702

-170- 3) 23 (1.596) 0801

(215),

4. 1) 132 (8.8*) 0901 4-§-(272),

0902 X-ray(17), 0903 0904 ^H , 388), (51), , 387),

2) ^fe / 45 (3.0*) 1001 o 7, 375), 1002 -f «Kl44), 1003 *||S =1^.(379) 1004

3) «o 42 (2.8*) 1101 (190),

1102 ^44(42), , EJj<>o>

5. 7lB> 121 (8.0*) 1201 4*^ ^^(82), 4^(126, 381), *|Bl(152), 71^(187), 4^4(299), 71 #(340), 1202 WJ;^( 155), 7fl^(220), 1^1(320) 1203 »SS(133). 4(), 1204 ^^(112), -¥-3H(233) 1205 ^(79), ^(109) 1206 ), 1207 ^(87), , ^(147), ^#(157), ^(286), 1208

-171- Part II

Public understanding of irradiated foods via education

—173- CONTENTS

I . Introduction 181

II. Status of technical development 183

III. Contents of research 185

III—1. Consumer attitude to irradiated foods 185

1. Introduction • 185 2. Materials ans Methods • 185 1) Survey method 185 2) Quest ionnair • 186 3. Results and discussion : 186 1) Demographic attributes 186 2) Safety of irradiated food 188 (1) Hazardous materials in the foods 188 (2) Consideration to irradiated foods • -188 (3) Understanding about irradiated foods 193 (4) Concerns in the purchasing food labeled with irradiation 193 ® Quality 193 (2) Freshness 193 (3) Price 199 (5) Intention for purchasing 199 (6) Foods required for irradiation 204 (7) Institute for certificating the safety 204 (8) Conditions for purchasing of irradiated food 204 (9) Safety of irradiated food 208 (10) Relationships between purchasing intension & consumer attitude 208 4. References 213

-175- Ill—2. Biological safety and quality characteristics of red pepper treated with gamma irradiation 217 1. Introduction 217 2. Materials 218 1) Red pepper 218 2) Sample treatments • 218 (1) Gamma ray irradiation 218 (2) UV irradiation 218 (3) Sterilization • 218 (4) Fumigation 218 3) Analytical methods 219 (1) Color measurement 219 (2) Carotenoids 220 (3) Water content 221 (4) Proximate chemical composition 221 4) Changes of color value with different storage time 224 5) Microbial growth test 224 6) Histidine content in red pepper extracts 225 7) Ames test 226 3. Result and Discussion 229 1) Quality of irradiated red pepper 229 2) Changes of quality in irradiated red pepper 232 3) Microbial growth on red pepper extract media 235 4) Free Histidine content 241 5) Ames test 242 4. References 244

IV. Research achievements and contribution 245

V. Usages of research results 247

-176- f| 1- # M s. ;..., 181

2 # ^-a-^ 7l#7H^ ^% 183

3 # g^fli* ^ ufl-g- *i ^ 185

4 1 ^ ^Hi 2^H#°fl ^t> 4ial*} S^SL^N 3>«f iAf^^t 185 1. AJS. 185

2. 45- 91 ^^ 185 7\. SAfijf^ 185

^. ^^r^l^ 9"^ • 186 4. #711^ • 186 3. <£-?- £2j- 91 ^-# 186

186 ^?fl 4^ Hfl ^^1 B^ ^^^1 ^H 188 (1) AI^ ^«J4*^ tH?> ^-^^S. 188

(2) «o>Af^^A} 4]§ofl cfl*> -f 3) 188

A (3) »M& 24 -!f1 ^t> <&*\SL • 193

(4) ^A>A1 ^AfSA) A]=.^ §^oj| Cjj«f 3f^£ 193 193 193 ) f3 199

(5) ^-^}^^ 199 (6) ^4^4?? €At> *]# 204 (7) 3A^1 cjft> 91^-7}^- : 204 (8) ^4 ^1^5] ^-^1^ • 208 (10) -?ti^*oM ^w]^>5] °A^3\2] ^7(1 208 4. ^JL^d 213

-177- ^ 1. 214

1. 4 •§• • 217 2. ^ 43 218 7>. 3.^7}^- 218

-L-}. 3.^7}Jf-2\ #54 B| ao^ 218

(1) #aRI 24 218 (2) 3.-^7}^-^] 4^)^i(UV)2:4 *£*£ 218

(3) JL^-7}-f-£| 7]-

224 224 o\. JL-^-7}^- ^-§-^^1 Histidine ^J^S-^ 225 4. Ames test 226

3. ^^ ^ 3-% 229 7)-. ^n|-*l2:AJ- JL^-7}^-$\ #^^l^f •• 229 (1) ^S. % Carotenoids ^-^^[Sf 229

(4) nl^-iH^ ^^^^ 231 232 235

-178- Histidine #*g= 241

4. Ames test 242

4. .^-JL-g-^i 244

# & £$ l H^ H 245

247

-179- M

. 7)

A] ol

ofl

1987^

^S lOkGy i87fl

\°.S. o]6]]

3. 10)

-181- -182- "Ell O s\

1921V1

€- 24 3:44 safe

1980^

10 *>

-^-5. 10 kGy 10-70 Kgy) AI=. 10 kGy

. 1987o]efl

-^s 10 184

-183- 7}4

Stic}. Brandt 1986^ # 1267B5] Webbed^ x\*\ "Food Irradiation: Who wants it?"

•1969\i

1998^ 4^ 30^

2. 7}.

^-S 1998^ 4 O]3f.6\ ^^ 91 t:}. 1998V1

# 93^5] 43.3.^

-185- til*!

SAS

3. 7K

2]- U-A^O} 23%, 77% 28%, 30%, 46-6044 68*7> 43%-

18-2947]- 34%, 30-4544 44%, 46-6044 17*# *H 62%# ^W^rf^o.^ j^^^^^. rfl#ol#o| ^5) 88%

24%, 200-300^^

-186- 1.

VS. Hi*

53 23 49 53 176 77 44 47 229 93

18/flol*} 2 1 0 0 18-29 62 28 31 34 30-45 67 30 40 44 45-60 92 41 16 17 60*fl°14 _ _ 5 5 223 92

154 68 35 38 y]3L 71 32 57 62 225 92

1 1 1 1 62 28 6 7 65 29 4 5 92 42 48 55 4 0.02 29 33 224 88 m

96 43 9 10 £14^ 28 13 21 24 J2.^-4 6 3 10 11 23 10 24 27 4^7} 9 4 1 1 62 28 25 28 224 90

43 19 12 14 100-150 36 16 14 17 150-200 62 28 19 23 200-300 56 25 24 29 25 11 14 17

222 83

-187- (1)

50%, <^47> 44% &1>

19«S.

(2) 3)

^ *H 7\

(Fig. 2)

30% o|

-188- o 1—f 74 0 or 66 9 i—4 01 2 57 6 27 7 n) CM' o 1—1 o CM o 122 * 481 * 818 * 050 * 640 * N L.2 6 ,59 6 me of co CO CO o co' co'

ft o co CO CO 00 en 15° co co r-1 CM r—4 CO o CO co CM oo in in CO CO nl T TO" co O"5 O5 LO o in en r—4 ^_ ^o CO CO co i—i CM

fr CM in CM oo or 1°. s in s; 8 i—i

I-H CO co 1—4 T 8 in in co CM

co in o m

oo 1—4 00 CO CO 1° co in c^ co co in in CO CM o T co in CO co in

CO 1—1 co m in CO in 0 in 00 CM CM •># co s Die or co V CM i—t in co o o V co in co

CO ^_ oo en in uo in CO co co ft CM co 00 CM •^ o in T op H CM 1—4 CM 35 °r T in CM CM in CO —• CM nl CM in o oo CM ft "go CM co CM CM in O or CM CM CM CM T—1 CO in en I! T i—t '10 31 CO oo CO CM CO in CM

V n «T 7c° W ol J B T T w 1 T rl J v\ of •* in 1KJ ^ 5" '~T7~ '—1 o *S "0 o «T V ft V "1° W) ^!r V a •«° ^° 0 CM' Jff> a o^ # CO CO CO 81 ui «•

-189- Fig. 1.AI^O|

-190- S3. °J d^4 <

12 °il x X2 43(81. 13) 10(18.87) 20(40.82) 29(59.18) 0.182 3.643 138(78. 41) 38(21.59) 25(56.82) 19(43.18) 0 0 0 0 19-29 41(66.13) 21(33.87) 18(60.00) 12(40.00) 30-45 58(85.29) 10(14.71) 8.696* 18(47.37) 20(52.63) 4.920 46-60 76(82.61) 16(17.39) 6(33.33) 12(66.67) 2(66.67) 1(33.33) 2(40.00) 3(60.00) 1(100.00) 0 0 0 50(87.72) 7(12.28) 2(50.00) 2(50.00) 52(75.36) 17(24.64) 4.841 0 4(100.00) 9.471 71(76.34) 22(23.66) 26(61.90) 16(38.10) 3(60.00) 2(40.00) 12(36.36) 21(63.64) 83(84.69) 15(15.31) 5(71.43) 2(28.57) 24(88.89) 3(11.11) 10(50.00) 10(50.00) 1(33.33) 3(27.27) 2(66.67) 9.312 8(72.73) 14(60.87) 9(39.13) 9(37.50) 15(62.50) 10.393 7(70.00) 3(30.00) 0 1(100.00) 47(75.81) 15(24.19) 16(59.26) 11(40.74) 30(67.77) 13(30.23) 8(66.67) 4(33.33) 100-150 30(83.33) 6(16.67) 6(40.00) 9(60.00) 150-200 51(83.61) 10(16.39) 3.748 10(52.63) 9(47.37) 5.186 200-300 46(80.70) 11(19.30) 12(50.00) 12(50.00) 18(75.00) 6(25.00) 6(40.00) 9(60.00) *: P<0.05 70 yj3 4i '* (

60 11 21th 50 )] -^l 40 oH-g-oil

30 2|5H «7|fe 0|7h« 20

10

0

Fig. 2. U #o||

-192- (3) 4)

3. safe *flfe Safe ^^. ZL

(4)

-2947f 36%, 34%, 45-60417} 26%^ Vf 44 48%, 41%, 19-294lfe i^-^i^ 13«6ff-H J2. 23%, 30-45414 22xofl^ 3.-%- ^ 58%S, 46-604lfe iL-%- ^

A

(Fig. 4) -f 3

33%

60*51 76%^ ^ 7>*>$Jx:K4

37%- 8-47% fecf"7f 42-67%-

-193- 4 . 3-^Q 25: 35- 15- 25: 35- xz u-^ 3(5. 56) 48(88. 89) 3(5. 56) 1(2.04) 47(95. 92) 1(2. 04) 1. 509 0. 912 ° "H^ 4(2. 27) 162(92. 05) 10(5.68) 0 43(97. 73) 1(2. 27) 0 1(100.00) 0 0 0 0 19-29 4(6.45) 49(79.03) 9(14.52) 0 30(100.00) 0 30-45 3(4.41) 62(91.18) 3(4.41) 19.448* 1(2.63) 36(94.74) 1(2.63) 3.184 46-60 1(0.00) 91(98.91) 1(1.09) 0 17(94.44) 1(5.56) 604 o 1(0.00) 3(100.00) 0 0 5(100.00) 0 0 1(100.00) 0 0 0 0 2(3.51) 53(92.98) 2(3.51) 0 4(100.00) 0 4(5.71) 58(82.86) 8(11.43) 9.601 0 12(100.00) 0 3.619 1(1.08) 89(95.70) 3(3.23) 1(2.38) 39(92.86) 2(4.76) 0 5(100.00) 0 0 33(100.00) 0 CO 1(1.02) 94(95.92) 3(3.06) 0 0 0 3(11.11) 24(88.89) 0 1(5.00) 18(90.00) 1(5.00) 0 4(100.00) 0 0 11(100.00) 0 17.086 5.558 0 21(91.30) 2(8.70) 0 24(100.00) 0 43 7\ 0 10(100.00) 0 0 1(100.00) 0 3(4.84) 52(83.87) 7(11.29) 0 26(96.30) 1(3.70) 4(9.30) 34(79.07) 5(11.63) 0 11(91.67) 1(8.33) 100-150 2(5.56) 34(94.44) 0 1(6.67) 14(93.33) 0 150-200 1(1.64) 58(95.08) 2(3.28) 15.577 0 19(100.00) 0 8.068 200-300 0 54(94.74) 3(5.26) 0 23(95.83) 1(4.17) 0 22(91.67) 2(8.33) 0 15(100.00) 0

25:: 35:: P<0.05 #*: P<0.01 25 35

0 L_

Fig. 3.

25: 35:

-195- 5-1.

13 m<&3tffl x' 13 xz 14(25. 93) 28(51. 85) 11(20. 37) 1(1. 85) 2(4. 08) 17(34. 69) 28(57. 14) 2(4. 08) AA i^i *-* ^ 1. 999 7. 667* 55(32. 16) 88(51. 46) 23(13. 45) 5(2. 92) 6(13.64) 22(50. 00) 16(36. 36) 0 18^-l]o|*} 1(100.00) 0 0 0 0 0 0 0 19-29 22(35.48) 30(48.39) 8(12.90) 2(3.23) 4(13.33) 18(60.00) 7(23.33) 1(3.33) <*)^ 30-45 23(33.82) 28(41.18) 15(22.06) 2(2.94) 16.,635 3(7.89) 13(34.21) 22(57.89) 0 11.620 46-60 23(25.84) 55(61.80) 9(10.11) 2(2.25) 1(5.56) 6(33.33) 10(55.56) 1(5.56) 60^1 °]s£ 0 0 1(100.00) 0 0 2(40.00) 3(60,00) 0 0 0 1(100.00) 0 0 0 0 0 19(35.19) 31(57.41) 4(7.41) 0 1(25.00) 1(25.00) 2(50.00) 0 17(24.29) 41(58.57) 10(14.29) 2(2.86) 15. 617 1(8.33) 6(50.00) 5(41.67) 0 14.462 32(34.78) 39(42.39) 17(18.48) 4(4.35) 5(11.90) 22(52.38) 14(33.33) 1(2.38) 1(25.00) 2(50.00) 1(25.00) 0 1(3.03) 10(30.30) 21(63.64) 1(1.10) 30(32.26) 50(53.76) 1(11.83) 2(2.15) 1(14.29) 4(57.14) 2(28.57) 0 8(29.63) 17(62.96) 2(7.41) 0 1(5.00) 10(50.00) 9(45.00) 0

1(25.00) 2(50.00) 1(25.00) 0 7 ',7CQ 1(9.09) 4(36.36) 5(45.45) 1(1.11) •ic cqo 7(30.43) 9(39.13) 6(26.09) 1(4.35) 1. I 1(4.17) 6(25.00) 17(70.83) 0 iO. OJO 3(30.00) 5(50.00) 2(20.00) 0 0 0 1(100.00) 0 19(30.65) 30(48.39) 11(17.74) 2(3.23) 4(14.81) 15(55.56) 7(25.93) 1(3.70) 100n>^o1*> 18(41.86) 15(34.88) 9(20.93) 1(2.33) 3(25.00) 5(41.67) 3(25.00) 1(8.33) 100-150 10(29.41) 19(55.88) 5(14.71) 0 1(6.67) 8(53.33) 6(40.00) 0 7}7\}^ 150-200 20(33.33) 32(53.33) 7(11.67) 1(1.67) 14. 686 2(10.53) 9(47.37) 8(42.11) 0 15.892 200-300 14(25.00) 33(58.93) 9(16.07) 0 1(4.17) 10(41.67) 13(54.17) 0 300n>^o|tf 6(26.09) 12(52.17) 3(13.04) 2(8.70) 1(6.67) 2(13.33) 11(73.33) 1(6.67) *: P<0.05 Fig. 4. cfl

-197- S 5-2.

7\$\ ^3} &^-

13(25.49) 22(43.14) 15(29.41) 1(1.96) n 79f\ 2(4.08) 14(28.57) 32(65.31) 1(2.04) Q 1 OQ* 46(26.90) 74(43.27) 44(25.73) 7(4.09) 11(25.09) 10(22.73) 23(52.27) 0 J. liSO 10 ^11 1 ^^ r 0 1(100.00) 0 0 0 0 0 0 19-29 23(37.10) 25(40.32) 12(19.35) 2(3.23) 8(26.67) 7(23.33) 15(50.00) 0 <£^ 30-45 13(19.70) 29(43.94) 22(33.33) 2(3.03) 11.879 2(5.26) 12(31.58) 24(63.16) 0 12.310 46-60 20(22.73) 41(46.59) 23(26.13) 4(4.55) 2(11.11) 4(22.22) 11(61.11) 1(5.56) 60Aflo]^- 2(66.67) 0 1(33.33) 0 0 1(20.00) 4(80.00) 0 ^# 0 1(100.00) 0 0 0 0 0 0 15(28.30) 27(50.94) 11(20.75) 0 1(25.00) 1(25.00) 2(50.00) 0 1 ~~7 £L ^ •?- ^ ?~ C-fl i:^- 23(33.33) 26(37.68) 17(24.64) 3(4.35) 14.271 1(8.33) 4(33.33) 7(58.33) 0 14.462 18(19.57) 42(45.65) 27(29.35) 5(5.43) 8(19.05) 14(33.33) 20(47.62) 0 2(40.00) 0 3(60.00) 0 2(6.06) 5(15.55) 25(75.76) 1(3.03) 26(27.66) 39(41.49) 25(26.60) 4(4.26) 2(28.57) 2(28.57) 3(42.86) 0 S]A}^4 6(24.00) 12(48.00) 7(28.00) 0 2(10.00) 9(45.00) 9(45.00) 0

1 cvl -2-^-*} 0 4(100.00) 0 0 1 A O-3A 1(9.09) 2(18.18) 7(63.64) 1(9.09) 1 H QRO 5(21.94) 8(34.78) 9(39.13) 1(4.35) 11.£O4 2(8.33) 3(12.50) 19(79.17) 0 1 /. OOii A}"^7} 2(20.00) 3(30.00) 5(50.00) 0 0 0 1(100.00) 0 19(30.65) 30(48.39) 11(17.74) 2(3.23) 5(18.52) 7(25.93) 15(55.56) 0 100°];-fJc>|-er} 14(32.56) 16(37.21) 12(27.91) 1(2.33) 3(25.00) 1(8.33) 8(66.67) 0 100-150 14(41.18) 13(38.24) 7(20.59) 0 3(20.00) 5(33.33) 7(46.67) 0 7}7fl4i^-150-200 14(24.14) 28(48.28) 15(25.86) 1(1.72) 12.637 2(10.53) 9(47.37) 8(42.11) 0 14.371 200-300 10(17.86) 30(53.57) 14(25.06) 2(3.57) 2(8.33) 6(25.00) 16(66.67) 0 300^1^ °}*

5-3) "7} 49%, " "7> 32%, "7]$] -f ol 32%S. 19-294^14 " "7} 33%, " " 32%, " 7) 29%, 43%, 39%, 23%, ss. 31%, 23%, 19%, 7}

(5) 6) 4%, 2%,

26%, 36%,

ZLf-

45%, 21x5. 51514. 18-29%,

22%, 25%, 25% ©151^. " 7} 22%, 25%, 24*^

36%, 48%,

-199- i*\

Fig. 5.

-200- 5-3.

1(2.04) 14(28.57) 19(38.78) 15(30.61) 2(4.17) 12(25.00) 25(52.08) 9(18.75) 9.728* 8.694* 18(10.91) 71(43.03) 38(23.03) 18(23.03) 8(18.18) 17(38.64) 13(29.55 6(13.64) 0 0 1(100.00) 0 0 0 0 0 19-29 8(13.11) 30(49.18) 16(26.23) 7(11.48) 5(16.67) 10(33.33) 12(40.00) 3(10.00) 30-45 3(4.62) 21(32.31) 21(32.31) 20(30.77) 19.525* 1(2.70) 12(32.43) 17(45.93) 7(18.92) 11.266 46-60 6(7.32) 33(40.24) 17(20.74) 26(31.71) 2(11.11) 5(27.78) 6(33.33) 4(27.78) 1(33.33) 1(33.33) 1(33.33) 0 2(40.00) 2(40.00) 1(20.00) 0 0 0 0 1(100.00) 0 0 0 0 4(8.16) 19(38.78) 10(20.41) 16(32.65) 2(50.00) 0 1(25.00) 1(25.00) CO 5(7.46) 29(43.28) 13(19.40) 10.00 1(8.33) 4(33.33) 3(25.00) 10.106 o 20(29.85) 4(33.33) 8(8.79) 39(40.66) 24(26.37) 22(24.18) 5(12.20) 14(34.15) 16(39.02) 6(14.63) 1(25.00) 0 2(50.00) 1(25.00) 2(6.06) 11(33.33) 15(45.45) 5(15.15) 8(8.99) 42(47.19) 18(20.22) 21(23.60) 2(28.57) 2(28.57) 1(14.29) 2(28.57) 1(4.00) 5(20.00) 11(44.00) 8(32.00) 1(5.26) 6(31.58) 8(42.11) 4(21.05) 1(25.00) 1(25.00) 2(50.00) 0 0 3(27.27) 4(36.36) 4(36.36) 17.907 16.559 3(13.64) 6(27.27) 8(36.36) 5(22.73) 2(8.33) 7(29.17) 14(58.33) 1(4.17) 0 3(30.00) 3(30.00) 4(40.00) 0 0 1(100.00) 0 5(8.33) 28(46.67) 14(23.33) 13(21.67) 5(18.52) 10(37.04) 8(42.11) 4(14.81) 100^©] *!• 4(9.52) 18(42.86) 11(26.19) 9(21.43) 3(25.00) 3(25.00) 4(33.33) 2(16.67) 100-150 2(6.06) 16(48.48) 8(24.24) 7(21.21) 0 4(26.67) 6(40.00) 5(33.33) 150-200 5(8.93) 24(42.86) 13(23.21) 14(25.00) 3.293 3(15.79) 8(42.11) 8(42.11) 0 16.401 200-300 5(9.26) 18(33.33) 18(33.33) 13(24.07) 1(4.35) 11(47.83) 9(39.13) 2(8.70) 2(9.09) 8(36.36) 6(27.27) 6(27.27) 2(13.33) 3(20.00) 6(40.00) 4(26.67) P<0.05 6. ^^o* 3.-8^ "SSI 13- 23- 33- 43- 53" 63- x* 13- 23- 33- 43- 53- 63- x* 2(3.70) 6(11.11) 14(25.93) 12(22.22) 3(5.56) 17(31.48) 10(2.38) 3(7.14) 15(35.71) 4(23.81) 1(2. 38) 9(21.43) 5(2.86) 1(0.57) 4(123.43) 44(25.14) 6(3.43) 78(44.57) 10(25.00) 1(2.50) 19(47.50) 4(10.00) 0 o. U<24 °^ 6(15.00) 18^1 o]*} 0 0 1(100.00) 0 0 0 0 0 0 0 0 0 19-29 1(1.61) 4(6.45) 16(25.81) 16(25.81) 3(4.84) 22(35.48) 4(14.81) 2(7.41) 15(55.56) 3(11.11) 0 3(11.11)

0 0 2(50.00) 1(25.00) 0 1(25.00) QO OQQ 3(30.00) 1(10.00) 3(30.00) 1(10.00) 0 2(20.00) 2(8.70) 3(13.04) 7(30.43) 6(26.09) 0 5(21.74) oZ.Zoo 7(31.82) 2(9.09) 9(40.91) 0 1(4. 55) 3(13.64) 22-°°6 1(10.00) 1(10.00) 3(30.00) 3(30.00) 0 2(20.00) 0 0 0 0 0 1(100.00) 1(1.61) 2(3.23) 10(16.13) 18(29.03) 3(4.84) 28(45.16) 3(12.50) 1(4.17) 13(54.17) 2(8.33) 0 5(20.83) } 0 4(9.30) 8(18.60) 11(25.58) (6.98) 17(39.53) 2(20.00) 1(10.00) 3(30.00) 0 1(10.00) 3(30.00) 100-150 3(8.57) 0 8(22.86) 9(25.71) 3(8.57) 12(34.29) 3(21.43) 0 6(42.86) 2(14.29) 0 3(21.43) 150-200 0 2(3.28) 21(34.43) 11(18.03) 3(4.92) 2(439.34) 31.367* 3(17.65) 0 8(47.06) 2(11.76) 0 4(23.53) 17.552 "i"'f 200-300 2(3.51) 1(1.75) 9(15.79) 19(33.33) 0 26(45.61) 6(28.57) 0 9(42.86) 3(14.29) 0 3(14.29) 300#«oHi 2(8.33) 0 7(29.17) 4(16.67) 0 11(45.83) 4(28.57) 2(14.29) 5(35.71) 1(7.14) 0 2(14.29)

7} Q^ ^¥^1 ^§i# 7}*]JL &*] £M-. *: p<0.05 **: p<0.01 ***: p<0.001 Fig. 6.

-203- 24%, «^ 25%, 24%#, "* 21%, e^ 15%, 18%

(6) 7) yU 19%, 24%1 56%

15-37%, 43-59%,

13%, 14%, 14%, ZL 34%, 35%#, 45%, -fe^ 28%#, 37%, ^. 36%#

(7)

4 (S 8) WHO7f 3-50%^ ^ fe WH07} 20-75%,

(8) 9)

fe 56%, 30-454^ 62%, 46-604^ •±r 46%, 52%,

67%, 63% 59%, 67%, 42%, 64%, 44

ZLCM 3.x) aov4^i 55%, -4 36%, 7}^ 4 9*51 ^fA ol 52%, -n-4 39%, 7}^

^•§•

-204- 7.

3. Sf ^ 3.

xi!((prob) **!£ Si xz((prob)

^ 10(6.45) 37(23.87) 83(53.55) 25(16.13) 7(17.50) 17(42.50) 14(35.00) 2(5.00) - 4.704 - 5.854 ^ 5(10.20) 18(36.73) 19(38.78) 7(14.29) 14(32.56) 21(48.84) 6(13.95) 2(4.65)

a^ 15(10.20) 46(31.29) 49(33.33) 37(25.17) 13(34.21) 18(47.37) 6(15.79) 1(2.63) - 1.650 - 0.326 ^ 6(12.50) 19(39.58) 13(27.08) 10(20.83) 15(34.88) 22(51.16) 5(11.63) 1(2.33)

CO

o^ 26(12.32) 51(24.17) 64(30.33) 21(9.95) 6(15.38) 23(58.97) 9(23.08) 1(2.56) 1 S04 1 46^ ^ 6(12.24) 14(28.57) 24(48.98) 5(10.20) 9(21.95) 19(46.34) 11(26.83) 2(4.88)

<*|^ 22(13.33) 51(30.91) 71(43.03) 21(12.73) 6(15.38) 22(56.41) 10(25.64) 1(2.56) - 3.346 - 1.151 VH 3(6.25) 13(27.08) 27(56.25) 5(10.42) 9(21.95) 19(46.34) 11(26.83) 2(4.88) 8. 3.£r& 3A* Al^cqoV*! WHO -4 ££4*1 Jf- WHO X* 12(24.00) 13(26.00) 14(28.00) 11(22.00) A 15(34.88) 8(20.00) 7(17.50) 1230.00 36(22.78) 44(27.85) 29(18.35) 49(31.01) U. out 13(34.88) 6(13.95) 2(4.65) 2046.51 5.105 1(100.00) 0 0 0 0 0 0 0 19-29 9(15.25) 11(18.64) 15(25.42) 24(40.68) 5(18.52) 7(25.93) 4(14.81) 1140.74 <&% 30-45 13(21.67) 18(30.00) 11(18.33) 18(30.00) 19.426' 14(42.42) 6(18.18) 1(3.03) 1236.36 16.774* 46-60 23(27.71) 28(33.74) 12(14.46) 20(24.10) 5(31.25) 0 3(18.75) 850.00 60*iH^ 1(33.33) 0 2(66.67) 0 4(80.00) 0 1(20.00) 0 ^# 0 0 0 0 0 0 0 0 14(27.45) 15(29.41) 13(25.49) 9(17.65) 0 1(33.33) 1(33.33) 133.33 13(20.31) 13(20.31) 17(26.56) 21(32.8) 12.873 1(25.00) 0 1(25.00) 250.00 11.946 19(22.00) 27(31.40) 9(10.47) 31(36.05) 14(37.84) 7(18.92) 1(2.70) 1540.54 1(20.00) 2(40.00) 1(20.00) 1(20.00) 12(40.00) 3(10.00) 4(13.33) 1136.67 24(26.97) 27(30.34) 16(17.98) 22(24.72) 1(16.67) 1(16.67) 1(16.67) 350.00 £1441 7(28.00) 7(28.00) 5(20.00) 6(24.00) 4(22.22) 5(27.78) 1(5.56) 844.44 i^-4 1(25.00) 0 0 3(75.00) 5(50.00) 1(10.00) 0 440.00 1 A 3(14.29) 4(19.05) 8(38.00) 6(28.57) 14. oUZ 8(36.36) 1(4.55) 418.18 940.91 11. D1<2 4*t]7} 2(22.22) 2(22.. 22) 2(22.22) 3(33.33) 1(100.00) 0 0 0 C1)*H> 9(16.07) 7(30.36) 9(16.07) 21(37.50) 8(34.78) 15(21.74) 1313.04 1730.00 100^1^°]*} 9(23.08) 7(17.95) 12(30.77) 11(28.21) 3(30.00) 3(30.00) 110.00 330.00 100-150 11(34.38) 6(18.75) 10(31.25) 5(15.63) 4(28.57) 1(7.14) 428.57 535. 71 7}$}^ 150-200 7(12.96) 24(44.44) 7(12.96) 16(29.63) 25.416** 7(38.89) 5(27.78) 0 633.33 11.674 200-300 13(24.07) 13(24.07) 9(16.67) 19(35.19) 8(40.00) 3(15.00) 15.00 840.00 300^°] 5(35.71) IK7.14) 1214.29 1642.86 * : p<0.05, « : p<0.01 3- A- # 3.Sr^ •ail <&&# AeH-8-a•1 4% 41 y\A At X* y\A A%. X* 16(34.78) 28(60.87) 2(4.35) 16(37.21) 24(55.82) 3(6.98) *J77 1 11C ° °^ 42(28.57) 92(62.59) 13(8.84) l. 16(40.00) 22(55.00) 2(5.00) 1. llo 18-MM*} 0 1(100.00) 0 0 0 0 19-29 19(34.5) 31(56.36) 5(9.09) 12(42.86) 13(46.43) 3(10.71) ^^ 30-45 17(32.08) 33(62.26) 3(5.66) 5. 128 15(45.45) 17(51.51) 1(3.03) 9.142 46-60 19(24.05) 53(67.09) 7(8.86) 4(26.67) 10(66.67) 1(6.67) 60^ «1^ 2(66.67) 1(33.33) 0 0 5(100.00) 0 ^# 0 1(100.00) 0 0 0 0 9(17.31) 35(67.31) 8(15.38) 0 2(66.67) 1(33.33) 24^f *t£-tfl# 20(35.09) 36(63.16) 1(1.75) 13.002 7(58.33) 5(41.67) 0 12.597 26(34.33) 46(58.97) 6(7.69) 11(30.56) 23(63.89) 2(5.56) cfl*HJ# 2(66.67) 1(33.33) 0 13(43.33) 15(50.00) 2(6.67) 21(26.25) 53(66.25) 6(7.50) 0 6(100.00) 0 6(28.00) 18(75.00) 0 10(55.56) 7(38.89) 1(5.56) ^ i^-4 0 3(100.00) 0 a 3(30.00) 6(60.00) 1(10.00) 6(33.33) 10(55.56) 2(11.11) y. 31 10(45.45) 11(50.00) 1(4.55) 11.ODO 4^7} 4(40.00) 4(40.00) 2(20.00) 0 1(100.00) 0 tll«H! 20(36.36) 30(54.55) 5(9.09) 9(39.13) 12(52.17) 2(8.70) 100^ ©I*•} 13(37.14) 19(54.29) 3(8.57) 2(22.22) 5(55.56) 2(22.22) 100-150 14(33.33) 20(60.61) 2(6.06) 7(50.00) 6(42.86) 1(7.14) 7M&.^ 150-200 14(26.92) 36(69.23) 2(3.85) 3. 791 5(27.78) 12(66.67) 1(5.56) 11.136 200-300 13(27.66) 29(61.70) 5(10.64) 10(47.62) 10(47.62) 0 30CL^O]Ai 5(25.00) 13(65.00) 2(10.00) 4(28.57) 9(64.29) 1(7.14) 40-100%, 39-100%)7>

(Fig. 7)

5)3.

(9) fe (S. 10) ^^ LM- (0-5%)

ZL1-6114

^ 44-68%,

H±=. (Fig. 8) 45%, <^4 26%, o] ^4 41%,

(10)

n 36% 33%

s. %•£*) $1^°} 7}4 ^71

-208- Fig. 7.

-209- 3. -Or £ 3- -% * z X '1 $>* i c}4 °]^* > X* ^ 2(3. 92) 21(41. 18) 23(45.10) 5(9.80) 11(25.58) 21(48.84) 10(23. 26) 1(2. 33) 6. 223 3. 600 ° <*]•*£ 2(1. 18) 45(26. 47) 101(59.41) 22(12.94) 5(12. 20) 25(60.98) 11(26. 83) 0 i8>MIo|*r 0 0 1(100.00) 0 0 0 0 0 19-29 0 23(39.66) 30(51.72) 5(8.62) 2(7.14) 18(64.29) 8(28.57) 0 £$ 30-45 3(4.55) 18(27.27) 35(53.03) 10(15.15) 9. 233 7(21.21) 16(48.48) 19(27.27) 1(3.03) 6.614 46-60 1(1.10) 24(26.37) 54(59.34) 12(13.19) 4(25.00) 9(56.25) 3(18.75) 0 60Aflol^- 0 1(33.33) 2(66.67) 0 2(40.00) 2(40.00) 1(20.00) 0 0 1(100.00) 0 0 0 0 0 0 1(1.79) 13(23.21) 37(66.07) 5(8.93) 1(33.33) 0 2(66.67) 0 2(2.99) 22(32.84) 35(52.24) 8(11.94) 7. 043 2(16.67) 9(75.00) 1(8.33) 0 21.714* CO -^ 1(1.11) 29(32.22) 47(52.22) 13(14.44) 2(5.41) 23(62.16) 12(32.43) 0 0 1(20.00) 3(60.00) 1(20.00) 10(33.33) 13(43.33) 6(20.00) 1(3.33) 2(2.06) 20(20.62) 63(64.95) 12(12.37) 0 2(33.33) 4(66.67) 0 1(4.00) 9(36.00) 13(52.00) 2(8.00) 3(16.67) 10(55.56) 5(27.78) 0 0 1(25.00) 3(75.00) 0 2(20.00) 5(50.00) 3(30.00) 0 90 1(4.55) 9(40.91) 7(31.82) 5(22.73) 7(31.82) 11(50.00) 3(13.64) 1(4.55) 19.090 0 5(50.00) 2(20.00) 3(30.00) 1(100.00) 0 0 0 0 20(33.90) 34(57.63) 5(8.47) 2(8.33) 17(70.83) 5(20.83) 0 10On>^o|*>1(2.50) 15(37.50) 20(50.00) 4(10.00) 1(10.00) 3(30.00) 5(50.00) 1(10.00) 1(2.94) 13(38.24) 15(44.12) 5(14.71) 4(28.57) 9(64.29) 1(7.14) 0 ^. 150-200 0 19(32.20) 30(50.85) 10(16.95) 16.796 2(11.11) 8(44.44) 8(44.44) 0 19.276 "*" 200-300 0 14(25.00) 38(67.86) 4(7.14) 5(23.81) 10(47.62) 6(28.57) 0 300^^0]Aov2(8.33) 4(16.67) 15(62.50) 3(12.50) 3(21.43) 10(71.43) 1(7.14) 0

* : p<0. 05 Fig. 8.

-211- 11.

3.

b) £^7} ^^7} Af-g-Hlcflx} ^-3^4 ^^x} (Prob)

2(8.70) 1(9.09) 2(2.08) 3(3.16) 0 1(33.33) 1(25.00) 3(25.00) 8(22.22) 3(17.65)

0 1(9.09) 0 3(3.16) 3(8.33) 1(33.33) 0 0 3(8.33) 0

^-6J 6(26.09)2(18.18)14(29.17) 24(25.26)5(13.89) 1(33.33)2(50.00)7(58.33) 13(36.11)5(29.41) 19.399 19.447

^ 6(26.09)4(36.36)8(16.67) 22(23.16)12(33.33) 0 1(25.00)1(8.33) 5(13.89) 1(5.88)

0 0 3(6.25) 5(5.26) 1(2.78) 0 0 0 0 1(5.88)

&-§-9(39.13) 3(27.27) 22(45.83) 38(40.00)15(41.67) 0 0 1(8.33) 7(19.44) 7(41.18) IS., pp. 89-100 2. Schutz.H. G. ,Bruhn, C. M. and Diaz-Knauf, K. V.: (1989) Consumer Attitude toward Irradiated Foods: Effects of Labeling and Benefits Information, Food Technology- October, pp. 80-86 U A 3. ^3L: (1995) »O W24 -lf4 ^u]x} ^^. ^#^-^ ^]13l5l,pp. 25-43 4. QS-^, ^]n]el-:(1998) ^4^^4^#^1 ^R> ^«14^ 6J*]£ ^ ^-§-£<>11 ^*1 ^^.. *R^WWS]xl, 413^ 4^. pp. 175-291 5. Bruhn, C. M and Noell, J. W.:(1987) Consumer In-Store Response to Irradiated Papayas. Food Technology- September., pp. 83-85 6. Pohlman, A. J., Wood,0. B. and Mason, A. C.:(1994) Influence of Audiovisuals and food samples on consumer Acceptance of Food Irradiation. Food Technology- December. , pp 46-49 7. Bruhn, C. M. : (1995) Strategies for Communicating the Facts on Food Irradiation to Consumer. J. of Food Protection, Vol.58, February., pp 213-216 8. Bruhn, C. M.:(1993) Setting the Record Straight About Food Irradiation. Dairy Food and Environmental Sanitation, Vol 13. No. 4. pp. 220-221 9. Bord, R. J. andO'Connor, R. E. :(1989):Who wants Irradiated Food Untangling Complex Public Opinion. Food Technology-October., pp. 87-90

10. ol^Ji:(i998) ^4*1^6] O>^A^ q-^i^. 3.^cD^-j2. #2>Jf,pp. 3_5 11. Bruhn, C. M. :(1989) Consumer Awareness and Outlook for Acceptance of Food Irradiation. Food Technology-July, pp. 93-97

-213- 1.

JiLf^gJEJL © • • • • • • • • • D • • • • • • • • • •

2.

a a

3. 25} 3. °}$-±r

sa^i a a D n © a

4.

D D a

-214- 5. 24*

D D D D D D D D D • • •

D D n n n n

7.

• • • a • D • • • D • • • D • • • D • p • n •

9.

D D D

D D D D

-215- 11.

12. • • • © •

13.

184°l*> © 18-294 ® 30-454 © 45-604 (5) 604 °lAoI-

14. • D

15.

16. © 71E}

17.

18. © 150-

-216- l. M «

°1 80% <>1AO1-O|7] ttfl^ofl 4^^^o| 12~15*7>

•§• ^^^51 §^7> cfl^sic>3) Ethylene oxide ^f-^|el7> -S-^l^lS13-, -^-$## JL^M?]^ #^3. ^B^^l Methyl bromide <%X\ 1992^ $He]-S-^^ ^4 2000\l

el «W 1980\lti oV4^d^4^-e- ^ ^1^A^1 ^It> S4^#:g-i-^€-^l^^(FA0/ IAEA/ WHO Expert Committee on the Wholesomeness of Irradiated Foods, JECFI)7|- "^-it lOKGy

1994^ 1997V1 9-i ^£1^ ^MHH-M FAO/IAEA/WHO

£.(L*a*b*)^t2] ^[ifA|- red carotenoids % total carotenoids^ 6Oco 4 ^l^ ^-A)^# M Bioscreen-C5| frm\ ^# %^l ^1*}

-217- 2.

^ 20*51fe *1# afl^te £ifl*H 15 mesh *1)#

(1) ^ «H 1^> ^-^-7}^- A|S^ 15 NY/PE ^^^1-ofl 20g ^^ ?]s]ol- 7l#6fl ^*1S|^ safe Ao^-§-60Co Qu}& &*}*]<£& o]-8-*f ^°l 5, 10, 20, 30, 40, 50, 100 kGy7f 5\^ X[#T$ 0. Perspex Dosimeter# 4-§-*}

30 60Co 5, 10, 20, 50, 100 kQy7\ -20°C, 4'C, 20°C, 30°C5^ i^ofl^ 37f^^ *1W3>M 1, 10, 20, 30, 45, 60, 75, 90<^^l ^S.(L*a*b*, AE*)9\ Red ^ Total Carotenoids

(2) fe HANAU Q-400medium pressure mercury arc# <>l-§-tr}<^ 20~30cm7iB]

(3) 300mll- \$JL 40°C, 60°C, 80°C, Autoclaving

(4) Sfl^^^l- -^^^S. 4-g-Sfe ^^^1^1 ethylene oxide(EO)i)- methyl bromide(MB), phospine# Aj-g-^^r:}. 3.^7}^-$] E0

chamber^ ^l^l- ^5dt} #^^^ tiov^S 10S] aeration #ti -^^# ^^ ^^^el^*ll0J tb3-a<^^(^rWH 54cmX54cmX54 58g/nf^ %-S.S. 48^1^ ^^(14~20°C) ^^|^^# ^ ^ Clean y ^f-^l^lfe o^-*S. aeration^^c}. Phosphine^ %•£.£. 72^1^1; ^^}3. clean

-218- Buchner funneHH Whatman No.4 c^^-^if Cellite 545 ^4#Sf>i3.S ## <^2f*fc2. 9000 rpm^-S. 1X[^ •§•?> 0.2/am membrane filter^ ^

red pepper powder lOg and added distilled water 100 ml I extraction for 60 min( on a shaker, 40°C) 1 filtering through whatman No. 4 with celite 545 4 ultracentrifugation (9,000 rpm, 60 min)

filtering through 0.2/an membrane filter I extraction(test solution) I growth curve and Ames test

Fig. 1. Flow chart for extraction method of red pepper with different treatment

4-§- 7]&*&<4 45} Yeastif- bacteria^ S. benzoic acid 0.1%, molds sorbic acid 0.1%, pH7} 4.5 <>}?>}<£ nfl yeasts, molds, bacteria^] &3\ sodium sulfite 0.2%, ^-^f4:^-§-AS. 4-§-^fe ^l^-^^^ thiophanate methyl 44

(1) >^£ (L*a*b*) si 3.^.71.3.^ x-|^3:^i 9! 71^(10, 20, 30, 45, 60, 75, 90^)^1 tc>

-219- Minolta chromameter CR- 200

Uniform color spaces (-iH?*14^iK!:)£) *WS 1976^ CIE( Commission Internationale del 'EclairageHl $]?$ ^rQQ L*a*b* Color system^ -*}-§-*]-£• 7)7} 3.A-J Lightnesses)-! tW-llfe L^ lOO(white) ~ O(black), afe +60(red) ~ -60(green), b^ +60 (yellow) ~-60(blue)^ ll)

L = 116 (Y / Yo)I/3 - 16 a = 500 [ (X / Xo)1/3 - (Y / Yo)1/3 ] b = 200 [ (Y / Yo)1/3 - (Z / Zo)1/3 ]

Xo, Yo, Zo : Illuminant C(and 2° observer) : Yo = 100, Xo = 8.072, Zo =118.225 Illuminant D(and 2° observer) : Yo - 100, Xo = 95.045, Zo =108.892

1/2^ 0 KGy $. *n 44 ^i^}^ tos. °J^H ^m ^ safe ^^>^ Table 16fl>M ife 4^ ^>.

Table 1. Difference between two colors in L*a*b* system

0.1 ol^}

0.2 - 0.4

0. 5 - 1. 5

1.5^3.0

3.0-6.0

6.0-12

12.0 O)AOV

Standard plate(white) ^-^«> Crystal CelH] *H^ ^^^W ^#^H H ^^^^ L*a*b*S.

(2) Carotenoid^-

220- £ Carotenoid-ff-SAi 80-855*7} ^^^^om 15-20%$ S.^ Carotenoidsfe 4^^ ^1 ^*H*fe ^4^§.*1 ^ 10071*1 S] tfS Carotenoidl-o . Total CarotenoidJjf^]- red Carotenoid-ff^- Baranyai^f Szabolcs^ Fig. 2^ 3}$

A455 xlt000x575xDx2 Total carotenoid(mg%)= 100,000x10

A455 = 575 : ^ }% 110,000 : capsanthin 50%, capsorubin 10%, ^-carotene 10%,zeaxanthin, lutein, capaxanthin 2J-Z]- 10%S n2-^^ carotenoid -Sr^HI-fi] molar absorption.

Red Carotenoid ^-^g;

Redcarotenoid^/g)-

A510 = 1.07 : 586 : 90% capsanthin, 10% molar absorption D :

(3) n|e}

(4)

Cornig M240 pH meterl- Standard solution(pH 4, 7)±S 2 point Calibration *>J

(14) Digital refractometer RX-5000( a-ATAGO, JAPAN)# 7]7l#

-221- powder sample 0.lg and flushed nitrogen for 3 min transfer into stoppered dark cored flask added 20 mL benzen extraction for 30 min (on a shaker)

settle for 5 min

clear supernatant (5ml) into volumetric flask

made up to 25ml benzene

dilute extract(lOml)

mixing with 96% ethyl alcohol (10ml)

ca.10 mL(into test tube) ca

saturated with powdered untreated diluted solution sodium borohydride 0.D at 510nm (Red carotenoid) reaction for 40 min adding NaOH 0.2g filtering rapidly through Whatman filter paper No.4 collection middle portion 0.D at 455nm (Total carotenoid)

Fig. 2 Flow chart for determination of red and total carotenoids

-222- (Acidity) 10ml# *]*M ^^rS. S\q*b3. sfeSM <>U} <>J} 0.3ml# ^^ ^ 0. IN NaOHS ^^^H 305: °]^ *$3.q& 5]fe iNKpH 8.3)# ^ f^g^S. *]•

Factor x ^-^^cfl^t xinn

* 0.1N NaOH lml ofl malic acid: 0.0067, oxalic acid: 0.045, citric acid monohydrate: 0.070, tartaric acid: 0.0075, sulfuric acid: 0.049, acetic acid: 0.060, latic acid: 0.090

Spectropho- tometer

-711

0.1%-peptone^ 100ml ofl ^3. 20°C,

plate count agar(Difco, Lab)^ colony^# ^|^*H 4^1 colony forming unit(cfu)S. ^

S.3. ^ £^- potato dextrose agar(Difco, Lab)# 4"§-*H 'EK^ 10% tartaric acid

deoxycholate agar(Difco,Lab)-l- o]-§-*! pour plate method16)5. 37*C

-223- (1) , 10, 20, 30, 45, 60, 75, 90^) ^S , 5, 10, 20, 30, 40, 50, lOOkGy)^ 4#£:£(-20°C, 4°C, 20°C, 30"C) PE 4^S#, NY/PE *N§-S#M 4€ 64-^fMl AlS^l t|*> -S|S(L*a*b* Red £ Total Carotenoidl- <£*] 2. Af ^ ^^S. 43 *W SAS

(2)

(1)

Antimicrobial preservatives^] A|^ Bacillus subtilis K 44^ 5^^ cryotubeofl dimethyl sulfoxide 0.09ml^ lml# ^tJ*M -80°C6fl^ JiL^Hrj-isUi slant medium^]

(2)

44^ growth curve

lag phase7> growth)^ ^ }. 4

24 tifl^^^- brothS] \%7\ }^ 37°C

H|6o>-g- 500ml 4 #BfA3.<>lI ^#^ 200mlif slant medium^ nutrient brothel 37°C5. 184^4 24 ^Q *H6

—224- lag phaseJiL-T-B] exponential phaseJS. turning 25}

Histidine 50ml

Table 2. Bioscreen C analytical conditions for growth of bacteria Reader Bioscreen C(200 wells) well volume 400^ measurement filter 600nm shaking regime/intensity Pr&Po/medium shaking time, a(sec) 10 incubation temp 37 °C preheating time 10 min

Ames testofl Microtube

mobile phase buffer A : Sodiumphosphate monobasic(NaH2P04) 17.907g/l,

Sodiumacetate(NaC2H302) 6.804g/l, Acetic acidS. pH 6.4 ~ 6.53. ^# ^f- 0.2/m ^ -g-^ membrane^Bj-i- -f-2J-A]?l

Table 3. HPLC analytical conditions for histidine Apparatus : Gilson 712 HPLC Column : Waters Nova-Pak Ci8(particle size 4//m, 3.9 X 150mm) Detector : Fluoresence detector( AEX= 250 nm / AEm= 250 ran) Column Temp : 25°C Mobil phase : Buffer A, B gradient Injection volume : 10fd

-225- mobile phase Buffer B : Methanol/DIW/Acetoni tri le = 450/450/450 H] •§•.§.

: O-phthaldehyde(OPA) 50mg# methanol lml

. Ames test Ames test-b ^#^ r} r^] ^fl £ ^^ H Salmonella typhimurium# 44^ His" mutants ^x] g histidine(0.5mM) <>1 ^fl^fe 3jifc«1|*Kminimal glucose spotaneous reversion^ $\%\ His+ wild type^.S -4^]^Vt\. o]n| n]

r Hflxjoii ^7>*1| ^$d# 4 AS. revertant^ ^7]- ^7^ nfl-i- mutagen^]B}jl ^^^>t;>. Maron & Ames $. 7}x}$) SHNI-ol mutagen^.5. 41-7fl ^^51^.^ mutagen^ 83«7> 41 Sllfe carcinogeno]efe A>>yo| <^^x)i^A-| A1§^ $) e] o]-g-5jji $X^\2°'21). sallmonella typhimurium ^-^# o]-§-tl: mutagenicity test Ames tested ^-S.7}5. *M, 1997^^1^ Guidance7> nV^o]

(1) ^#2^HHW TA98 TA1535, TA1537, GuidanceoflA-]

(2) 10ml Oxoid nutrient brothel ^*fc2. 37°C mlif 0.2/an mrmbrane filterS 4* ^1?1 Dimethyl sulfoxide(DMSO) 0.09mll- Cryotube^fl \&3. Q ^U^H Dry ice<>1|-*1 ^-f- Aj?l3. -80 °C ^^3L6fl V^o^ Jt^*}SiT:>. Cryotube^lA^ ^Sfofl . Master plated]

(3) €^^ -fr^i^

-226— (7\) Histidine Histidine/biotin-§

Histidine/biotin Colony7>

rfa mutation^^Kcrystal violet sensitivity test) Tester strain-g- 12A]£ afl^tl «Hd yfl^H paper disc ^$M clean %)°) ^7}^ x]l- %6l*>2it:|-. rfa mutation^ gram(-) bacterial 5^ LPS barrier!- ^HHAS. ^^^1^ ^^ 43E^^r TT^HJ- ^r ^L-b crystal violet

Table. 4. Genotypes of the strains used for mutagenesis testing

GENOTYPE TA1537 TA98 TA1535 TA100 TA102

mutation type frame shift frame shift missense missense reversion type Deletion Deletion Substitution Substitution His-tgertallele HisD3052 HisD3052 HisG46 HisG46 HisG428 rfa mutation + + + + + uverB repair system ^uverB .duverB ^duverB ^duverB + R-factorpKM101 - pKMlOl pKMlOl pKMlOl R-factorpAQl - pAQl Spontaneous mutant (2-20) 30—50 (5-25) 120-200 240-320 A'- deletion, +/- : inclusion /no inclusion

Ampicillin resistance test(R factor TA100, TA983]- ^^ R factor ^ Ampicillin resistance R factor^ S-A o^^-cH| cfl«fl %1-AJ- D. o]-^ R factor7} ^-«L>

371C

(ef) uvrB detection test(uv 6 Nutrient agarofl 5#^ ^^ «fl o &.S. $%-%}3. G.E 15W germicidal 33cm non R factor strain $] ^-y- 6^., R factor strain^] 8Ji irradiation A|^ 37°C, 1

-227- colony ^A^-f-l- 3*^Hfrfc uv sensitivity testojc]-. Table. 4 wild type^S-f^ uvrB gene©] deletion SH uvofl $)*} ^cM" ^-^-^ ^r fe 4#£j ^ £^6\} ^sfl A}igS|3L TA102 ^ n>o| ^of^l sit;)., o] >H%t£. clean bench^ uv lamp# 4"§-*M 15, 30, 45, 60, 120, 1802. £^^3. irradiation A|^ UV ^ i ] TA102 ^ *±o) colony#

positive ^ negative control test spontaneous mutation rate(4U" &§• spontaneous mutation (negative control)^- ^•;g-ar}-b ^°1 ^A^t:}. i*> Table ^•oj mutagenofl 5]^> 4 5^^ mutation #7h§-(positive control fe Aminofluorene3} Sodium azide-1-

Table. 5 Positive controls of the strains used for mutagenesis test Symbols for the number of reverants/plate(spontaneous subtracted) Mutagen S9 TA1537 TA98 TA1535 TA100 TA102 Sodium azide

2-Aminofluorene ++++

9-Aminoacridine ++

Daunomycin ++

methyl methanesulfonate +++

2-nitrofluorene +++ -=< 20-100, ++= 100-200, +++= 200-500, ++++=> 500

(4)

Salmonella typhimurium TA100 TA100 10"7 SL5. 3]^*H ^Q tifl6o*^ O.lml-i- JL %•£. 47Ag/plateS.^-Bl ^ U] 2S. 0.2M Na-Phosphate buffer 0.5ml-i- "4°\ 0.5mM Histidine/Biotin l/10«fl Top agar 2ml•§• 7>*M ^ 33:^: 7]S ^j[o| ^ ^^*M nlsl ^>§^^^: minimal glucose agarofi pouringtr}<^ 3g^*>7fl Plate 37°C incubator^! . Salmonella TA

\n

-228- (5) S^o] -friHJ A] ^( Mutagenici ty test) oJ|Hl^A|^*l ^4 3.^7}^- ^#^(1, 0.5, 0.25, 0.125, 0.062ml/ pi ateW 4 M}3,$) ^#ofl 4«l)t- ^}ufe ^£7} MAJEL5. £U^rS6J 47 Ag/ml# £4^ «HI 4-§-^ *|3. ^S-S. *M ^ul 2S. 5^7Jl(lml, 0.5ml, 0.25ml, 0.125ml, 0.062ml )S Maron^} Ames (1983) <^ ^ofl tcfeH ^^-&>5i4. ^4?1 4^^] 4 *Mt> 3L^-7HMq ^ #^^ 5#^ salmonella 3:# 12^1 ^>-^^ 0.1ml# \^31 0.2M Na-Phosphate buffer 0.5mlit Histidine5] %^

4\1% *}£.$] o^ofl tt|.e]. c>e.>|| 43:?> Histidine/biotin# ^j" 45°C-^ Top agarl- 2ml ^3. 3^ ^_£ ^ ^#»1 ^^r ufg- minimal glucose pouring*H 37°C incubator^]A] 48A]^ -^O> ^

positive controls.^ 2-Aminofluorenei|- Sodium azide-g- %\Z\ 100 a Jl^fSS 4^^M ^lSrfl^ 0.1ml ^7>trfe o^^-S. 44 10/i«/plate, 1.5/«/plate ^f£S 5]-E^- *f$d^K negative control^ ^#64-^-S. 4"§"t!: 0.1ml }^^}

3.

(1) Carotenoids lOkGy K 50 3.0 oj^ja

Lightness7f red carotenoid^ 3.

PE/NY UA Table 7^A] Jtfe ufif 40

Carotenoid 80-85%

-229- Table 6. Changes in L, a, b and AE values and carotenoids contents of gamma-irradiated red pepper powder Irradiation Red Total Package L* a* b* AE* Moisture(%) dose(kGy) (mg/g) (mg/g) Zipper 42.30 25.85 19.91 0 46.0 55.5 17.8 Vacuum 42.27 25.34 19.75 0 46.8 59.1 18.6 Zipper 42.43 25.80 20.15 0.2 44.3 54.8 18.7 Vacuum 42.17 25.53 19.70 0.3 45.0 56.2 18.8 Zipper 42.43 26.18 20.35 0.5 43.6 51.8 18.2 10 Vacuum 42.31 25.60 19.66 0.3 46.3 54.4 19.1 Zipper 42.89 26.27 20.91 1.2 39.0 49.5 18.3 20 Vacuum 42.75 25.90 20.54 1.1 42.6 50.4 20.1 Zipper 43.21 26.09 20.90 1.5 39.0 46.3 19.6 30 Vacuum 43.37 26.21 21.41 2.2 40.9 50.6 19.1 Zipper 43.51 25.83 21.81 2.3 33.4 40.5 19.6 40 Vacuum 43.78 26.32 22.09 2.9 36.5 46.0 20.0 Zipper 44.64 24.90 22.94 3.9 26.0 32.3 19.1 50 Vacuum 44.34 26.32 22.94 3.9 35.1 44.2 19.0 Zipper 52.49 12.54 27.64 18.4 2.2 2.8 20.0 100 Vacuum 45.73 26.00 25.29 6.5 25.9 35.9 20.0 AE% : color difference from non-irradiated red pepper

Table 7. Changes in L, a, b and AE values and carotenoids contents by gamma-irradiated red pepper powder with different package Irradiation Package Red Total L* a* dose(kGy) (Zipper) (mg/g) (mg/g) Vacuum 42.27 25.34 19.75 0 46.83 59.06 0 (0.2g/crf) 42.30 25.85 19.91 0 46.03 55.52 Vacuum 45.73 26.00 25.29 6.56 25.94 35.90 100 (0.2g/cnf) 52.49 12.54 27.64 18.46 2.21 2.76 Vacuum 45.12 26.21 25.59 6.56 26.32 32.78 120 (O.lg/cnf) 49.23 13.13 27.85 16.52 2.45 2.44 (0.05g/cnf) 53.21 10.26 27.13 20.35 1.59 2.23 AE* '• color difference from non-irradiated red pepper

-230- (2) ^ Table ±1.25] 10 KGy o|

Table 8. Changes in moisture content of red pepper by gamma-irradiation red pepper Moisture(%) Irradiation dose (kGy) _ Zipper(PE) Vacuum(PE/NY) 18.6 18.6 5 18.7 18.8 10 18.2 19.1 20 18.3 20.1 30 19.6 19.1 40 19.6 20.0 50 19.1 19.0 20.0 20.0

(3) CS]

40°Cl- Table

Table 9. Changes of brix, pH, acidity and vitamin C contents of red pepper by aqueous extraction temperature. Temperature Acidity vitamin C Brix pH ro (asw/w) (mg») 40 4.25 4.86 0.27 3.2 60 4.46 4.90 0.38 3.1 80 4.61 4.85 0.32 3.1 100 4.70 4.84 0.43 3.1 121 4.75 4.82 0.31 2.5

(4) n

fe Table 102} 20kGy o|^^

-231- Table 10. Effect of gamma irradiation and fumigant on the number of microorganisms in vacuum packed red pepper powder Irradiation Total aerobic Coli forms Yeast & molds & fumigation bacteria OkGy 7.2X106 2.6X104 4.2X104 5kGy 1.3X10" 7.2X101 1.7X10" lOkGy 7 3 2.7X10* 20~100kGy 0 0 0 Methyl bromide 9.2X104 10 4.3X10* Ethylene oxide 3 0 0 Phospine 5.7X10° e.sxio* 9.2XlOa

antoarS} -OH, -C00H, Hydroxyethyl g-ofl 5l*fl ^ Ethylene Chlorohydrin(ECH)2f Ethylene

fe ^§-7]Jic} 3tif 10-50 Kmofi

-b #^3;-*-U} total aerobic bacteria, yeast & molds

Phosphine^; ^i DegeschAHl^ 7B^*H Phostoxino] 5fe ) Aluminum phospide(AlPH3 ^ ^EflS. ^^^S^-a]- Epifumeojefe Aluminum phospide7> Phosphine^.5. , 17°C)24)

A1P + 3H20 -»- Al(0H)3 + PH3

(1) Carotenoid^-

-20, 4, 20°C

-232- . Table llofl U^u} ^ ^o) carotenoid^ ^£

Table 11. Changes in L, a, b and AE values and carotenoids contents of gamma-irradiated red pepper powder during 30 days at different temperature Storage temperature Caroteno i d(mg/g) - 20 °C 4°C 20 °C 30 °C L* 40.68 40.86 41.09 39.43 a* 18.81 18.76 18.47 15.43 b* 14.76 14.77 14.91 12.50 .dE* 0 0.2 0.6 4.3 Red carotenoid 38.81 37.49 35.37 31.35 Total carotenoid 46.34 45.09 43.01 38.49 AE* : color difference from storage temperature at -20°C

(2) S^o^ofl W *l W^l *$£. ^ CarotenoicHf- NY/PE

4

^ igBgo] ^4^. Table red carotenoid

Table 12. Changes in L, a, b and AE values and carotenoids contents of gamma-irradiated red pepper powder in different package Package Zipper Vaccuum L 39.88 41.15 a* 17.68 18.05 b* 13.52 14.95 AE* 0 1.9 Red carotenoid 37.96 33.56 Total carotenoid 46.26 40.20 AE* '• color difference from red pepper powder by zipper package

-233- (3) Carotenoids 20 50KGy

5KGy

f. 20KGy S . 50KGy, lOOKGy

^ Table 13^ red carotenoid

Table 13. Changes in L, a, b and AE values and carotenoids contents of gamma-irradiated red pepper powder by different irradiation dose storage period (day) Carotenoid(mg/g) •• 0 5 10 20 50 100 40.16 40.26 40.31 40.20 40.71 40.47 a* 18.13 18.32 18.33 18.22 17.76 16.44 b* 13.83 13.92 13.99 14.08 14.35 15.24 ^]E* 0 0.2 0.3 0.3 0.8 2.2 Red carotenoid 42.86 40.85 39.66 36.55 30.88 20.52 Total carotenoid 51.81 50.56 48.24 48.56 36.61 24.43 color difference from not irradiated red pepper powder

(4) Carotenoid-ffSj Table L*a*b*&o) o] ^ 3.7]} q

Carotenoid

Table 14. Changes in L, a, b and AE values and carotenoids contents of gamma-irradiated red pepper powder by storage period at 20°C. Irradiation dose (kGy) Carotenoid(mg/g) 1 10 20 30 45 60 75 90 L* 42.17 41.08 40.33 41.21 40.00 40.02 39.99 39.35 a* 17.63 17.82 18.35 18.59 18.23 17.79 17.34 17.20 b* 12.89 14.05 14.89 14.87 14.68 14.65 13.88 13.97 2lE* 0 1.6 2.8 2.4 2.9 2.8 2.4 3.1 Red carotenoid 42.88 35.03 35.99 35.72 34.76 34.23 Total carotenoid 53.82 41.93 _ 42.89 43.61 40.43 42.01

-234- (5) ^^ 11.4±0.9% fe Table 15 ^ 162} ^o] ufl-f

X\g. 0. lg 4-]*H ^l^^te Carotenoids

(1) ^ Fig. 3*11 -M ^.^U}if ^ol 25KGy, 50KGy

lag time o] controlofl H]*H 1.5—2»T|

(2)

ZL ^2j- 4J# ^7># ^-^i^A-1 ^g*> 4-§- 7l^%^J 0.1% (Sodium Sulfitefe 0.2%)-£f ^o| 37f*l 5:^ JE^^^M Thiophanate methyl^ ^>

^r Fig. Table 17

d4 Brothel 3 ^^55^1 ^7] 4 3.8X108 °)$Xt\. Fig. 6oflA-| Ji^. n>if ^o 4013, 60°C, 80OC^1A-|^ ^}o|» Ji<>l^l $t9tt^-M- 100°C, 12113 lag phase7f 2«H o]^ H6\z]3. -$#3Hd *M7} 40'C kM 121°C 30§ 7l-

(4) b lag phase7f 20%

-235- Table 15. L, a, b and AY. values and carotenoid contents of gamma-irradiated red pepper powder by vacuum package after 90 days storage at different temperature. Irradiation Temp Red Total L* a* b* H20(%) dose(kGy) TO (mg/g) (mg/g) -20 39.26 18.76 13.87 0 46.27 55.41 11.7 4 39. 53 19.40 14.42 0.8 44.05 53.63 11.7 U 20 39.23 18.59 13.82 0.2 41.31 48.11 10.4 30 36.59 12.90 9.92 7.6 37.39 46.48 14.1 -20 39.82 19.53 14.71 1.3 45.74 56.94 12.0 4 39.37 18.85 13.62 0.3 43.43 52.65 11.9 0 20 39.58 18.86 14.06 0.4 42.46 55.58 11.5 30 36.27 12.02 9.14 8.8 34.40 54.76 13.8 -20 39.33 19.35 14.20 0.7 45.71 54.95 11.4 4 39.30 19.13 14.11 0.4 44.76 51.65 12.4 10 20 39.71 18.99 14.57 0.9 42.52 52.71 10.0 30 36.82 14.41 10.61 6.7 33.90 49.95 13.6 -20 39.57 19.36 14.28 0.8 42.58 46.96 10.7 4 39.11 18.91 13.80 0.2 41.25 46.84 12.7 20 20 39.54 18.86 14.34 0.6 40.78 50.35 11.2 30 36.47 12.66 9.80 7.8 32.96 38.68 14.1 -20 39.92 19.81 15.36 1.9 36.44 45.56 11.0 4 39.75 19.27 14.97 1.3 33.64 42.38 12.7 50 20 39.74 18.44 14.64 1.0 34.02 42.72 11.5 30 36.33 11.69 9.68 8.7 27.85 35.34 14.1 -20 40.65 19.67 15.69 2.7 30.66 37.44 11.9 4 40.05 19.16 15.31 1.7 27.62 34.60 11.2 1UU 20 39.68 17.46 14.51 1.5 26.03 32.91 10.3 30 . 35.85 10.49 8.87 10.2 23.46 29.48 14.7 AE* '• color difference from not irradiated red pepper at -20°C Red/Total: contents of carotenoid

-236- Table 16. Chromaticity and carotenoid contents of gamma-irradiated red pepper powder by zipper package after 90 days. Irradiation Temp Red Total L# a* b* AE* . , H 0(%) dose(kGy) (°C) (mg/g) (mg/g) 2 -20 40.49 20.26 15.69 2.7 44.76 56.72 13.4 4 40.42 19.94 15.19 2.1 40.37 48.22 14.6 0 20 41.15 20.07 16.07 3.2 38.45 45.98 14.4 30 36.33 11.84 9.61 8.6 25.26 32.10 17.7 -20 40.41 19.88 15.11 2.0 41.81 50.83 14.8 4 40.29 19.50 14.88 1.6 39.92 49.26 15.4 5 20 41.36 20.29 16.45 3.7 38.06 46.59 12.2 30 37.06 12.23 10.39 7.7 28.18 36.74 18.8 -20 40.47 19.87 15.36 2.2 41.63 50.08 14.4 4 40.75 19.81 15.71 2.6 39.80 47.36 14.6 10 20 41.23 19.37 15.71 2.8 35.47 42.45 12.2 30 37.29 12.26 10.72 7.5 27.74 34.75 18.5 -20 37.47 19.31 15.35 2.4 41.22 45.33 14.3 4 40.98 19.38 15.47 2.4 38.09 43.26 13.6 20 20 41.86 19.42 16.49 3.7 34.70 40.81 12.5 30 38.19 12.49 10.96 7.0 27.56 33.27 19.4 -20 41.38 19.26 15.76 2.9 33.73 38.03 15.1 4 41.60 18.56 16.06 3.2 29.65 35.40 13.5 50 20 42.35 18.44 16.90 4.3 25.55 30.23 13.1 30 37.83 11.01 10.33 8.6 19.71 24.13 18.4 -20 43.11 17.44 17.61 5.5 20.04 24.82 15.1 4 43.08 16.05 17.43 5.9 14.84 18.76 15.0 1 20 44.43 15.76 18.76 7.7 10.0 12.73 13.8 30 37.80 7.82 9.85 11.7 7.47 10.08 18.5

AE* : color difference from not irradiated red pepper at -20°C Red/Total: contents of carotenoid

-237- i! 2SKGy £•"•!

i! SOKGy ZM

Thiophanate methyl

Sorbic acid

Benzole acid

Propiontc acid I Sodumsullite

12 16 20 24 28 32 36 40 44

Fig. 3 The growth curve of B. subtilis cultivated in red pepper extract with different treatment

I Red pepper{controlJ Thiophanate methyl Sorbic acid Bezoic acid Propionic acid I Sodium sulfite

6hr 12hr 18br 24hr 3Qhr 36hr 42br

Fig. 4.The growth curve of B. subtilis cultivated in the extracts red pepper powder extract added with chemical preservatives and pesticide

-238- i.a

—MO.Mi —WO.004* —«M.OOO«» ~iw,»u —ww.ooa* -*-M».QM» ~tM.ti« — «M>.OOZ% —ns.oooM —MO.MA — »o.oo8« —m.M««

• 3 * »ltttl»««4rj3i3S 3* 4t 4S Incubation time(min) Fig. 5. The growth curve of salmonella TA1OO cultivated in the extracts red pepper powder extract with different preservatives. SS:sodium sulfite, SA:Sorbic acid, BA:Benzoic acid, PA:Propionic acid

Fig. 6 The effect of water extracted red pepper at different temperature on E. coli growth.

-239- (5) EO ECH

1.3xlO~8% 4 Table 173f

Table 17. The rate of microbial growth cultivated on red pepper extract treated with uv, 7-irradiation and addition of chemical preservatives and pesticides Rate of microbial growth at lag phase compared to control Preservatives Treatment E. coli KCTC Salmonella Bacillus Subtilis 2571 TA100 Control - - - - Thiophanate 500ppm no growth no growth no growth methyl 50ppm no effect no effect no effect 0.01% no growth x 3 no growth Benzoic Acid 0.002% no effect no effect no effect 0.01% x 3 no growth X 4 Sorbic Acid 0.002% no effect X 5 no effect 0.0004% no effect no effect no effect 0.1% no growth no growth no growth Propionic Acid 0.01% X 2 x 2 + 0.5 0.002% no effect no effect no effect Sodium Sulfite 0.004% X 2 no growth x 1.5 100°C X 4 no growth x 4 Heat 121TC X 2 X 4 x 2 UV 2 hours no effect no effect + 0.25 Methyl bromide 58g/irf(48hr) no effect no effect no effect Ethylene oxide 0.7g/nf(4hr) no effect no effect no effect phospine 3g/nf(72hr) no effect no effect no effect 25kGy no effect no effect no effect 50kGy no effect no effect no effect y irradiation 100kGy(^l^-) no effect no effect no effect lOOkQy(xl^) x 2 X 1.5 X 2 -: no effect, x number: extent i ori of lag period

-240- eK 3.-^7}^- T^ •el Histidine ^^ ^^^^^ control lOkGy 50kGy lOOkGy MB E0 PH3

Histidine(/4;/mC) 89.9 92.4 90.1 83.9 89.8 95.0 91.3

HPLC-j histidine

OQ histidine

Mt 5.00 1MB 15.10 2S.II 30.01 35M «Jt Retention time(min)

Fig 7. Appearance of histidine peak in the HPLC Chromatogram of dilute red pepper extract

-241- nf. Ames test (l) 3^H!*1^ ^ •3HrS] -fr^a} Wf^ Sftl^ ^3} 5^ JE-Sf Histidineo] frfe- T^ His" mutant <&o] ^A^i^.3., TA 98, 100, 102-S^fe Ampicillin# TA 1023-TC Tetracyclin# ^7}*> »H^)off>^ colony!- ^^£4. rfa mutation testofH-fe S.^ S^M paper disc i^M clean ringo] ^^^^cj-. uvrB gene test-b clean bench ^}^l^i lampoflA-] 10-1803. 4°1^1 2L*}*]£ ASrtf] 2 TA102 ^^ «H colony© ^^*>SElcK ]^ Ames test

(2) Salmonella TA100 #^! o|-g-*> 3.^7}^- ^#<^^ oflHl ^-^^^^2]- (Table 18) ^cfl -^S.(47Ag/plate)6fl>MS ^4^ wl^^H?- S.^ contorl^l Ul

Table 18. Toxicity of salmonella TA100 for red pepper extract Irradiation Negative solid of red pepper extract(mg/plate) dose(kGy) control 47mg 15.6mg 5.2mg 1. 7mg 0. 6mg 0.2mg OKG 20 26 27 28 36 25 25±5 100KG 36 29 26 22 26 21

(3) 3.-^7}^ ^#^5J mutagenicity test Ames test ^(Table 19) Salmonella TA98-3^6fl4 lOOkGy

histidine*) ^r^ mutagenicity *flAl%MH-b top agar^ total histidine top agar#

Table 19. Mutagenicity assay of red pepper extract with gamma irradiation

Negative control(no irradiation) lOOkGy irradiation Strain control 47mg 1.7mg 47mg 1. 7mg TA98 19±3 35 16 43 9 TA100 162±19 276 168 196 157

-242- Histidine mutagenecity test histidine top agar# *H&-*}&-M 57f|

^s. ,Lji_*v ames testfe 4 ^. ^^f Table

revertant^ lOOkGy tfl*H TAIOO^ 37%, TA102 76%, TA1535fe 47%, fe EO, MB, 3.7\] control^] of) §

Table 20. Mutagenicity assay of red pepper extract with different treatment

Tester sample TA98 TA100 TA102 TA1535 TA1537

Negative control 31 ±7 173+4 211 ±5 98±2 29 ±7

SA 1.5/ag/plate 909 ±98 1941 ±63 254 ±1 93 + 9 28 ±4

2-AF l/

OkGy lme 28 ±2 183 + 9 298±9 108±9 35 ±4 OkGy 0.5me 38±2 196 + 1 243 ±23 115±11 36±4

lOkGy lme 31 ±3 187±3 312 + 19 118+9 36±8

lOkGy 0. 5me 40±4 207 ±5 322 ±7 131 + 13 40±3

50kGy lme 34±6 186 + 16 338 ±3 125 + 13 41+5

50kGy 0. 5me 44±2 224 ±9 346 ±20 153 ±4 43±2

lOOkGy lme 32±2 237 + 13 371 ±10 144+6 45±4

lOOkG 0.5me 38±2 223 ±4 335 + 11 115 + 1 35 + 1

MB lme 36 + 1 235±10 316±29 141 + 1 39 ±2

MB 0. 5me 45±2 182±26 324 ±38 127±3 35±5

EO lme 37±4 107 + 14 323 ±5 146 + 11 40±9

EO 0. 5me 40±7 187±16 270 ±23 137 + 7 37±4

PH3 lme 36±4 170 + 10 321 ±7 118 + 2 35±6

PH3 0.5me 40±4 201 ±9 319+32 122±7 38±8

Mean± standard deviation of duplicate runs SA(1.5 /^g/plate) and 2-AF(10#g/plate) were dissolved in H2O

-243- 4.

••(1996) -°-g- ^*L 3(2), pp. 137-143 2. ^-f, ^^d, ^£, £3^-: (1996) %u}& iAH^ltt 71 °J:#*H\ tHH-§-2W*I*l. 28(3), pp. 482-486 3. ^-f, ^Sl, °1*1|3L S«K%:(1986) Ethylene oxide*! ejaj-

*oM!-S.2j ^-^^ #^^7F, *>^-Aj#jf^^x}( 18(6), pp.427-430 4. ^^7l#^ ^ <&^- 7ft 4°J :(1995)"

5. ^ 2f, ^^HM^l-W*!, 3(2), pp. 149-154 6. a-M4 :(1991) ^^JI^7f^-^ ^^1^-^711^, ^#21-^2} 4HJ, 24(4), pp. 46-47 7. o]^^ ^x-]:(i998) i£^H#^ ^^^4^^^-^, JL^tfi^JH#^^-, pp. 3-199 8. ^^§7]"i-^i: (1997) Ji^^-4-T-, P. 338 9. Judie D. Dziezak:(1986) Antimicrobial Agent Food Technology, pp. 104-111 10. #4^. ^ 4^:(1996) ^^ ^^Lig> p> 216 11. Erika Kress-Rogers:(1993) Instrument and sensors for the food industry, Butterwarth Heinemann, pp.45-53

12. ^5| &^-^7}7]6\] *)*} ^^5]-, (^)^H^ ?}V.}3_ZL 13. ^^g-^ i«?:(1997) ^l]7.^ti>4^^, pp.267-269 14. AOAC 15th Edition:(1990) Volume Two, p.918 15. APHA: (1976) Compendium of methods for the microbiological examination of foods, M.Speck(ed), American Public Health Association, Washington, DC 16. Merck: (1996) Microbiology manual. LPRO UBA-V, Product management microbiology, Frankfurter 17.Catalogue of Strains:(1996) Fourth Edition, Korean Collection for Type Cultures, p. 88 18. Peter Lindroth and Kenneth Mopper: (1979) High performance liquid Chromatographic determination of Subpicomole amounts of amino acids by precolumn fluorescence derivatization with o-phthaldialdehyde, Analytical chemistry, 51(1) 19. S]<^#^ ^*]% 71^ 7113: (1994) *KWg*fSl*l. 8, pp. 10-16 20. Doroth M. Maron and Bruce N.Ames:(1983) Revesed methods for the Salmonella mutagenicity test, Mutation Research, 113, pp.173-215 21. Bruce N.Ames, Joyce Mccann and edith Yamasaki:(1975) Methods for Detecting Carcinogens and mutagen with the Salmonella / mammalian - microsome mutagenicity test, Mutation Research, 31,pp.347-364 22. #&3L, ^4-, 3^-Sr- (1984) pp. 188-192

-244- (l) ide, phospine) 100 kGy^M ^ 20 kGy OI^J-^A] L-lEfid:^.^ 50kGy o|^-ofl A^

(2)

(3)

-245- (l)

#e>oiH 44 video 44 (2)

-247- Irradiation of food and drinking water to control parasitic infections

-249- CONTENTS

Chapter 1. INTRODUCTION 255

Chapter 2. STATUS OF ENGINEERING DEVELOPMENT IN THE WORLD 259

Chapter 3. EXPERIMENTAL METHODS AND RESULTS 261

Chapter 4. ACHIEVEMENT OF THE PURPOSE AND CONTRIBUTION 271

Chapter 5. PROGRAM OF PRACTICAL USING FOR THE RESULTS 273

Chapter 6. REFERENCES 275

-251- -S93-

9Z2 9 Ik

£ZZ

IZZ • S\*>[t fab ia Ik

*9Z £92 (2)

£92 te£ ^-&i°v^fP {zr^fr ftt? (I) £92 '2 £92 fc-g- irrp: (6) £92 tv^ fc ft gfe H (8) 292 (Z) 192 -Uric (9) I9Z%& feF tfe (9) 192 192

192 (2) 192 ' feapt- (I) 192 "T 192

6S2 '£ 6Q2 '2 6S2 "i 6S2

2 Ik ZS2 ZS2 9SZ '£ 9S2 "2 992 'I I Ik M

1-

Til

AIDS

yokogawai), fe Ho^^iHeterophyopsis continua) ^

-S.JL(Chai et al., 1997 & 1998)^1

17.6%, 18.8X7} -ff-Sf 29.7%7} i et al., 2000). 119,65045]

-255- 2.2X7} -£.*}, o] 3. $lt.}(Uuh, 1995).

Anisakis spp. )o] ^ *\ <% 3-5^]^

{Diphyllobothriwn Jatum) tiJl# ^-^-

^ 7]$]

7} 91 91

91 71

ojn]

HS -f el

o]

2.

- 71

-256- ^.s. *> -§•-§-

°H1 . 5.

-f el

3.

^-5.^ 0}

4.

471 471 4^- 2.4***1 ^^ 4 71^51

-257- superoxide dismutase(SOD) %<$ ^SE|- ^gS.# ^4*>5it:>. 4 ^1«| ^-n>> apoptosis staining kit# <>l-§-*H ^

-258- *\\ 2

1.

*It:]-. 1993V1 IAEA (international atomic energy agencyH

and Gad, 1997). sporozoitesuf et al., 1998) tachyzoitesofl et al., 1998). &.•%•, et al., 1994; Veit et al., 1995). Jenkins et al.(1998)£ 4^:

2.

3.

2451

-259- (1) &^r

. 4

(2) mixer ^ ^ 37°C

-g-

(3) ^^-i- 37f 3", # non-irradiated control(415), tf^ *H irradiation*! group (425) £ -H-^* ^1?> ^ irradiation*! group(435)^3. U ^^ petri-dishofl

(4) ^Jn °l-ff ^ 10 Gy, 50 Gy, 200 Gy, 500 Gy, 1,000 Gy, 2,000 i^S 44 . 4 5:^ sl^-H-^^ ^7f 5007f|, l,0007l|, 2,0007fl, 3,00071 ^ 5,0007fl

(5)

4 gavage needle^

fe Baermann's apparatus* 4 ^ 6n}e] o]^^

(6)

. 4 :i

-261- TC 20n}e] O|J£OS *fci student's t-test-f o|-g-*}o} cljs^^ u] 3 H S^

(7) # (D SOD (superoxide dismutase) ^^S-^J *}©]

i 30Gy ^A}^-, ^-ti>^ lOOGy 3:^}^ ^ 500Gy ^ 7]^#1- PBSS. 3^H1 4^^ 4 homogenizerS f. 12,000 rpmofl 20^ Lowry et al.(1951)

mg/ml s ^A>*>5ftT:K SOD %^Sfe epinephrine Sitl- (McCord & Fridovich, 1969). 0.1 mM EDTAl- ^-fr^> 50 mM

NaHC03/Na2C03 buffer, pH 10.2 (2.930 ml), 10 mM epinephrine (4Q/d)$) ^]S (20 30°C, 325 nm

Apoptosis

30Gy 245, ^n}^ lOOGy 2A^ U 50Gy 3.7% formaldehyde^. JL^tr^cK ^Afl^ 3.7}6\]

proteinase K (1:50 S|^) 50^# 1^^^ 15^r^> digestion 4^tt^K Background staining^- #<>l7] ^]sfl endogeneous peroxidase (3% H202 in methanol )# 5^^> ^elt>^>, PBSofl 4^^I ^ TDT labeling solution (TdT-dNTP: 50x Cation stock: TdT enzyme: lx TdT labeling buffer = 1:

1: 1: 50) 50 {d-jr &&?> ^Sl*>t:>. o]u^> 37 "c, humidity chamberofl^ incubation^}, lx TdT stop bufferS. 5^^> ^B]*> ^ a}S. PBS5. 2*}3| -#B}«|H^ -i-711- ^l7^tr}^i streptavidin-HRP detection solution (1:50 S]^) 50 joei- >i ^^:t}. PBS S 24^1 4^tl ^ DAB working solution (lx PBS 50 ml, stock DAB 250 fd, 30% H202 1* methyl green solution^-S. 2^-^]

4 dark brown^# 5}-fe -f-^1- apoptosis positive^.

-262- 4

(8)

. 4 ^.

(9)

^: x2-test, student's t-test J£fe SAS , P value7> 0.05 o]-s}^ afl -f}-

4

2.

(1) -?-

>. SI 100 200 Gy

100711^]SJ C3H ni-f-^ -g. ^ 200 Gy 50 Gy 50 Gy 44

(2) SOD

^ 500 1,000

-263- superoxide dismutase(SOD)S] Cs-irradiatorS homogenize, sonication *> %• mg^- SOD^ A|^. 0 Gy 8.48 unit/mg^ 3M 30 Gy 57.3 unit/mg^.5. -^7>*>Sft^.^, 100 62,6 unit/mg, 500 Gy

4. 0 Gy 15.6 unit/mg^lA4 30 QyofHS. 16.8 unit/mgS. , 100 Gy 9.9 unit/mg, 500 Gy 11.2 unit/mgS. (Table 1-4 & Fig. 1-4).

(3) apoptosis apoptotic cello] tegument nHl 30 Gy S^li^ *]£.*} tfts&it 3. ©4 100 Gy 500 Gy ^45-^l^fe tegument* 4 &•& apoptotic , 500 Gy a^^ofl>Mfe apoptotic cello] , apoptosis^ apoptotic cellar cuticle apoptotic cello] «^r ^4-Sl 30 Gy, lOOGy, 500Gy (Fig. 5-8).

5151 4. 471 4€

Apoptosis^

-264- Table 1. Mean(±S.D. ) specific acitivities of superoxide dismutase(SOD) in irradiated Anisakis larvae according to the radiation dose. Activites are expressed a units per mg protein (U/mg).

Radiation protein content SOD activity Specific activity dose (Gy) (mg/ml) (unit/ml) (unit/mg)

0 1.6 + 0.1 59.0 + 11.5 38.9±7.3 30 1.7±0.3 65.5±21.7 40.3±16.9 100 1.5 + 0.1 57.8±14.3 38.2±8.6 500 1.4±0.2 74.9±15.5 51.3±5.8

100 100

80 -

I 60 -

oQ 40 - CO

20 -

030 100 500 030 100 500 030 100 500 Radiation dose (Gy)

Fig. 1. Comparison of the specific activities of superoxide dismutase (SOD) in irradiated Anisakis according to the radiation dose.

-265- Table 2. Mean(±S.D. ) specific acitivities of superoxide dismutase (SOD) in irradiated Neodiplostomum seoulense metacercariae according to the radiation dose. Activites are expressed a units per mg protein (U/mg).

Radiation protein content SOD activity Specific activity dose (Gy) (mg/ml) (unit/ml) (unit/mg)

0 1.4 + 0.2 26.4±4. 4 15. 6±6.5 30 1.4±0.2 29.2±3. 8 16. 7±9.2 100 1.1+0.3 17.2 + 12.3 9. 9±26.3 500 1.1+0.2 15.9 + 3. 1 11. 2+9.6

0.0 030 100 500 030 100 030 100 500 Radiation dose (Gy)

Fig. 2. Comparison of the specific activities of superoxide dismutase (SOD) in irradiated N. seoulense according to the radiation dose.

-266- Table 3. Mean(±S.D. ) specific acitivities of superoxide dismutase (SOD) in irradiated sparganum according to the radiation dose. Activites are expressed a units per mg protein (U/mg).

Radiation protein content SOD activity Specific activity dose (Gy) (mg/ml) (unit/ml) (unit/mg)

0 4.8 + 0.4 11.1+11.5 8.5 + 9. 0 30 6.1±1.5 68.1+24.3 57.3+21.9 100 5.7 + 1.3 68.6 + 15.4 62.6 + 19.4 500 5.1±1.4 51.2±32.3 65.1 ±71.1

140 •

120 -

"3 100 -

J. 80 - T '

•5 60 - to u 1 40- Q.

20 - - 1 0 -

030 100 500 030 100 500 030 100 S00 Radiation dose (Gy)

Fig. 3. Comparison of the specific activities of superoxide dismutase (SOD) in irradiated sparganum according to the radiation dose.

-267- Table 4. Mean(±S.D. ) recovery rates of Neodiplostomum seoulense according to the radiation dose.

Radiation Worm recovery rates dose (Gy) {%)

0 6.3±1.7 30 2.2±1.9 100 4.4±0.6 500 0.0±0.0

,- 8 - as T

rat e i >. 6 - eco v E 4 - - o g

2 - - •

• -!"•' ••' '•*?''• n - 0 30 100 500

Radiation dose (Gy)

Fig. 4 Comparison of the recovery rate of N. seoulense from ICR mice according to the radiation dose

-268- Fig. 5. Cross section of non-irradiated sparganum. Apoptosis stain (x 100). In non-irradiated sparganum, few apoptotic cells were observed, and they were localized to tegument only.

Fig. 6. Cross section of 100 Gy irradiated sparganum. (x 100). Compared with non- irradiated control, a remarkable change was observed in the 100 Gy irradiated sparganum. In addition to tegument, many apoptotic cells existed inside the worm.

-269— Fig.7. Cross section of 500 Gy irradiated Anisakis. Apoptosis stain, (x 100). In 500 Gy irradiated Anisakis, many apoptotic cells were observed inside the worm.

Fig. 8. Irradiated N. seoulense. Apoptosis stain. In the case of N. seoulense, only 100 Gy irradiated group was observed. No apoptotic cells existed in it.

-270- (^)2) (*)

4€ 7^ 30 30

s}ft 7l^

^#

^}ol £*\/ %<& 40 37 •SH«B ^^ ^^ ^6J

100 97

97%

2.

cflft Af-g-%

fe^l -§--§-*> 7>

-271- -273- Akashi M, Hachiya M, Paquette RL, Osawa Y, Shimizu S, Suzuki G (1995) Irradiation increases manganese superoxide dismutase mRNA levels in human fibroblasts. J Biol Chem 270(26): 15864-158659.

Aluja AS, Nuriez F, Villalobos ANM. Use of gamma irradiation to prevent infectivity of metacestodes of Taenia solium in pork. Use of irradiation to control infectivity of food-borne parasites. Printed by the IAEA in Austria. 1993, 23-32.

Braz LM, Amato NV, Carignani FL, et al. Utility of gamma rays in prophylaxis of transmissible malaria by blood transfusion. Rev Soc Bras Med Trop. 1998, 31(6): 549-552.

Chai JY, Han ET, Park YK, Guk SM et al. High endemicity of Metagonimus yokogawai infection among residents of Samchok-shi, Kangwon-do. Korean J Prasitol 2000; 38(1): 33-36.

Chai JY, Han MS, Seo M, Lee SH. Effects of gamma-irradiation on the survival and development of Gymnophalloides seoi in C3H mice. Korean J Parasitol 1996; 34(1): 21-25.

Chai JY, Hong ST, Lee SH (1993) Effects of gamma-irradiation on the survival and development of Clonorchis sinensis metacercariae. Proceedings of the Final Research Coordination Meeting organized by the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agricultre, Mexico City, Mexico, pp. 33-41.

Chai JY, Hong ST, Lee SH (1993) Effects of gamma irradiation on the survival and infectivity of Anisakis larvae. Proceedings of the Final Research Coordination Meeting organized by the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agricultre, Mexico City, Mexicopp. 43-48.

Chai JY, Kim IM, Seo M et al. A new endemic focus of Heterophyes nocens, Phygidiopsis swnma, and other intestinal flukes in a coastal area of Muan-gun, Chollanam-do. Korean J Parasitol. 1997, 35(4): 233-238.

Chai JY, Kim SJ, Kook J, Lee SH. Effects of gamma-irradiation on the survival and development of Metagonimis yokogawai metacercariae in rats. Korean J Parasitol 1995; 33(4): 297-303.

Chai JY, Song TE, Han ET et al. Two endemic foci of heterophyids and other intestinal fluke infections in southern and western coastal areas in Korea. Korean J Parasitol.

-275- 1998, 36(3): 155-161.

Chung YB, Song CY, Lee HS, Kong Y, Cho SY (1991) Purification and characterization of a Cu, Zn-superoxide dismutase from adult Paragonimus westermani. Korean J Parasitol 29(3): 259-266.

Chung YB, Lee HS, Song CY, Cho SY (1992) Activities of scavenging of oxygen radicals in early maturation stages of Paragonimus westermani. Korean J Parasitol 30(4): 355-358.

Dubey JP, Thayer DW, Speer CA, Shen SK. Effect of gamma irradiation on unsporulated and sporulated Toxoplasma gondii oocysts. Int J Parasitol. 1998, 28(3): 369-375.

Gerasimova NG, ?t\ 'gunov AN, Savina NA, Belov AP, The effect of ionizing radiation on various factors of natural immunity of hamsters under normal conditions and during invasion with the cestode, Hymenolepis diminuta, Radiats Biol Radioecol. 1994, 34(4-5): 489-494.

Huh S. Trends and status of parasitic infections in Korea. Korea-China Parasitology Workshop for control activities of parasitic infections. 1995, 9-20.

Jenkins MC, Trout J, Fayer R. Development and application of an improved semiquantitative technique for detecting low-level Cryptosporidiwn parvum infections in mouse tissue using polymerase chain reaction. J. Parasitol. 1998, 84(1): 182-186.

Kasprzak W, Pozio E, Rauhut W, et al. Effect of low dose irradiation on Trichinella isolates. Use of irradiation to control infectivity of food-borne parasite. Printed by the IAEA in Austria. 1993, 55-72.

Kook J, Kim YJ, Seo M, Chai JY. TEM ultrastructure of gamma-irradiated Toxoplaswa gondii RH tachyzoites. Seul J Med 1995; 36(3): 159-165. Kook J, Lee HJ, Yun CK et al. Toxoplasma gondii antibody titers in sera of children admitted to the Seoul National University Children's Hospital.. Korean J Parasitol. 1999, 37(1): 10-16.

Kook J, Oh SH, Yun CK, Chai JY. Effects of gamma-irradiation on intracellular proliferation of Toxoplasma gondii RH tachyzoites. Korean J Parasitol 1995; 33(3): 173-178.

Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 244: 6049-6055.

-276- McCord JM, Fridovich I (1969) Superoxide dismutase: an enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244(22): 6049-6055.

Mostafa BB, Gad HS. Effect of UV-irradiation, gamma irradiation and praziquantel on infected Biomphalaria alexandrina snails. J Egypt Soc Parasitol. 1997, 27(1): 35-46.

Viet P, Bilger B, Schad V et al. Influence of environmental factoes on the infectivity of Echinococcus multilocularis eggs. Parasitology. 1995, 110(1): 79-86.

-277- Studies on the Safety and of Gamma Irradiated Meats

-279- CONTENTS

Chapter 1. Introduction 285

Chapter 2. Status of development of recent techniques 287 Section 1. International trends 287 Section 2. Rocal trends 288

Chapter 3. Contents and Results 289 Section 1. Contents and Methods 289 1. materials and gamma irradiation 289 2. Reverse mutation assay with Salmonella 289 3. Micronucleus test with mice 290 4. Chromosomal aberration tests with CHL cells 292 5. Acute toxicity test 293 6. Subacute toxicity test • 294 7. Nutritional safety analysis 296 Section 2. Results and Discussion 298 1. Reverse mutation assay with Salmonella 298 2. Micronucleus test with mice 298 3. Chromosomal aberration tests with CHL cells 300 4. Acute toxicity evaluation 300 5. Subacute toxicity evaluation 302 6. Nutritional safety evaluation 312

Chapter 4. Achievement of research goals and foreign contributions 321 Section 1. Achievement of research goals 321 Section 2. foreign contributions 321

-281- Chapter 5. Plan of utilization of the results 323 Section 1. Necessity of further research 323 Section 2. Future plans of utilization 323

Chapter 6. References 325

-282- 1 # 4 $ : 285

2 # ^fl • £] 71^4^ ^% 287 287

288

3 # S^fliH^ vfl-§- £ £3} 289 4 1 11 ^^a-§- 9J ao^ • 289 1. ^^4S 91 ^4-il 2:4 289 2. Salmonella typhimuriunh§- o|-g-«> ^-^lS^^o] A)^ 289 3. ^1-W- #^4S# o)-g-«> ^^A]^ 290 4. S-fMf£! Hfl^lSl- ol-8-ft ^^^1 <>]<# 4^ • 292 5. -g-^ ^-^4^ 293 6. °Vi-^ ^-^4^ 294

7. <§6O*«|^ 6>^^J 4^ 296

298 1. Salmonella typhimurium# o|-§-«]; ^.^.|§

6 3. S-JHfS} «H O*^S# ol-g-«> ^4^] o]^j- A]^ 300 4. ^-^^^^7} 300 5. ofi-^^ ^7> 302

6. ^n}^ 2/} 7lH^| <^6O>^ ^>^^7> 312

4 ^

-283- 323

323

-§- yov^l 323 q. 325

-284- *\\ 1 3- M

Sfl-i-(unique radiolytic products: URP)£|

Cl ^O.

FAO/WHO

E. coli 0157OII

sa

safe

(11) ^^^|f winger ^ , Yamamoto Miller ^(13)^ ^I*|B] ^H^ , Brewer ^(14)£ ^l , Gil 13} Harrison'15'^

7} l Mattison

-285- Dickson2} Maxcy(18) 500 9l StaphylococciQ . Ehioba ^(

(20.21)

fe

fe 1997^ ^JI 4.5 kGy, 7 kGy 1.0 kGy

WTO (Codex)

sa oil-

4

4^, ^^ 91

-286- 1970\! IFIP (International Project in the Field of Food IrradaitionWW S4*1#SJ 9}$^ ^SRr ^43*1 ^4<3°1 7J)4Sl& V}. ZL ^ ^43 Al#^ ^Hl7f Sfljg.^. JL^# -frifttaRr ^7]^ &&M. tfl

6o\

707]] V. 1980^1 FAO/IAEA/WHO^ ^4^#^ £*I^6fl ^«> ^g-^^^^SJ (Joint FA0/IAEA/WH0 Expert Committee on the Wholesomeness of Irradiated Food, FECFlH4fe 3 %•<£ ^S lOkGy o]*>s aA>^ Ai§^

CAST(council for agricultural science and technology)^

radiolytic products:

cH*H 1.5-3

t 1993^

13. 4.5 kGy, JL 7 kGy# «!7>*>Si3., ^|*13.7H ^Sfl4fe 7l^^(^i^) ^7i« ^*H 1.0 kGy

-287- -88Z-

P1W6I ' 4- "^-^ Ibpi9661-t66l

fid klK>-fV OATA ui

ftfta

^^ IT4* -Haft

Ik oitt 15 3 g- g

*H ZL ^A| Meat Chopper (Model NO. MN 22 S, FUJI)S 500g*l polyethylene u} ^ ^^j ^1^- S^-*> ^ ice box

ice box ^ 570,000 Ci Co-60)# 8 0.7 lf 3) 7i 10 kGy» 2:44^-^-^, eerie cerous dosimeter(USA) 4 4^-45. lkg# -7O'C

2. Salmonella typhimurium^ oJ-§-»>

5:^^ Salmonella typhimurium LT2 Salmonella typhimurium TA98, TA100, TA1535, TA1537S

4-S-^l §i4 Maron^f Ames(38)^ >#»jofl trj-e} Histidine , Crystal violet # ^, Ampicillin i4|^F UV ^^^, Spontaneous ft ^ 4-§-

4^ 4 4-§-ft Di methyl sulf oxide (DMS0)# 2-Nitrofluorene (2-NF), N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), Sodium azide(SAZ) ^ 9-Aminoacridine (9AA)# 4 4

-289- Nutrient broth# fe Minimal glucose agartij)*]£} 0.5mM^ Histidine/Botin-g-<^ Histidine ^ Top agarl-

^}. S-9 fraction^ ^4%W3£ ^*$*}7] *]sfl Maron

*r95l4. SD711 ejj($, 8^^, ^ 250g)<^l polychlorinated bi Aroclor 1254# corn oiHl 200mg/mlS. S]^*H 500mg/kgS] -g-%*^

0.15M S-9 fraction^ S-9 fraction 0. lml-i- Top agarAj- minimal glucose agartiflx|6]|

TAl005^1- 61-S-*M ^lylAl^# ^r^S^fSi^. Salmonella typhimurium M t!1^7l(2xl09cells/ml)^fl<:>ll <>1S£-^- *> ti^o^ 0.1ml, A)^ 0.1ml, 0.2M Na-Phosphate buffer 0.5ml# test tube<>fl ^^gr 3f- 37°C water bath shaker^lA] 30^^> pre-incubation# »> ^-, Histidine/biotin# Q -f|-*> top agar 2.5ml# 7}*> ^F Q -£-^]tI ^ minimal glucose agartiflx]ofl plating 37°C incubatoroflA] 48Al# ^^V «fl^*f ^ His* 4fl¥

Ames(38)5]

f D. ^ S-9 fraction^

pre-incubation^ofl rcfB> ^.^, 4 minimal glucose agar plateS

3.

ICR nH-^ 25± TO, 55±5%, 21 300-500 LuxS. 12A]# polycarbonate cageofl

-290- L-fe Mitomycin

, 4

mouse-§- jonde#

^, Schmidt Calf serum (24gauge^

A. 2nfi*l 4% Giemsa

10007fli] aJ^HH t:>

Hayashi Hayashi^oil datai]- 2L3L, MNPCE (micronucleated polychromatic erythrocyte)

Ur7}t- Cochran Armitage

-291- 4.

-§-401 Phosphate buffered saline (pH 7.4)1-, Hfe Benzo(a)pyrene-§- Dimethyl- sulfoxideofl ^ Mitomycin

AJ-§-*]: Chinese hamster lung fibroblast (CHL)

Minimal essential medium^] Fetal bovine serum^- 5%5]7(I

&$\&S. %MM 5%^ C027|- ^-^-^fe 37°C W ^ 3

>. S-9 mixture^ (38) a Maron ^ Ames ^ o^°11 n^B> S-9 fraction^- 42^ cfg- S-9 mixture^

1 1 50% ^^Nl^£# 9-*>7l ^l^H Afl3£# lSl-g- 24 5 well plateofl 2.5X10 cells/2mH 5\^ V}^}3- 37°C «L 60~ Dulbeco phosphate buffer saline(DPBS) 2m«S.

. 37°C C02 24A]^> tifl^*I ^ DPBS 2meS 2S] ^]^*fJI methanol £2LX\1[ ^ 5% Giemsa . o|if ^-o] *fe]?> platel- Inverted microscope^. 50% ^^^4 -^£# ^^!*>9it:K o)^2f ^-^r ^^S ^<^?1 «t 50% 23. 3^n$] 6fl^ 10 mM afe

^^1 50%

(without S-9 mixture) ^ ^afl (with mixture)*>S.

-292- 60mm£| tissue culture dish

37°C, CO2 BK*7l<>M 3

4 tissue culture dishofi colcemidl- 1 //Mo] 24*1 ?N

S-9 mixture (20%, v/v), A]^§^ gj f colcemid

0.05% Trypsin-EDTAS. (0.075 M KC1) 5mH ^ ^^]^ 37°C water bath

7> i 44} l^]?l ^ 5% Giemsa

4

±): 5% o]^- 10% n|n>

5. 4nf^^4 <3KH-SJ ^-A^A^l^^r ^-^^^^^1^^-^ 3.A] ^| 94-3^ (1994.

4. 14) r^«m^^ 4=.^Aj^7j (40) (NISR/S0P/GTXH1

44 3-4 ^$] ICR n}^-^ (specific pathogen free)* 4-§-^^-^-^ ^#^^ ^ «f 1^^^^ ^^7l^# 7^^| ^4tl ^§n>^. ^^<^1 ^Vg-*>sac>. ^^^#^r ^:J£ 25 ± 1°C, $£. 55 ± 5%, ^S. 300 - 500 LuxS. 124^1 ^}^g- ^ -^ ^*|7> ^^1^

-293- polycarbonate cageofl 5 n}e|«]

.nf £• §B|fe Zj- 3^ 10

5000 mg/kgj>5. ^^«>Si^.n| o] -g-so^ 3*1(0.5)3. 3.^- 5

10 g^ 0.1 ^ H l SI

(1)

(2)

6. ofg-S ^nH4SA> ^^11-51 ofg-Jg^^ A|^^ ^.^^.^6>^<^^^ 3.X\ 4 94-351 (1994. 4. 14) [2M& -§-51 ^-^4^7l <40) (NISR/SOP/GTX)#

44 3-4 ^$) ICR 4^-^ (specific pathogen free)!- 4"8"*}5i^.^ ^-#^^ ^ <$ l^<&££\ ^^7l^# 7]^ ^7^ •i^M- ^^°1] ^fS-*>3lc>. ^^-§-#^ ^£25 ± It, ^S. 55 ± 5%, 2LS. 300 - 500 LuxS. \^ polycarbonate cage<>1] 5 nfe]^} \£o] A}^^t:>. o]

-294- f ^41 ^ *§&1}$1M l 4 ^ 10 44 4

30 KGy, 10 KGy, 3 KGy ^ 0 KGy^ #%*©-§

^ 200

(1)

(2) ofl 1*1, ^^7U1 ^ nB^ 2$H, ^e]JL ^-^Al 44 ^1^^- 4^8*}£!;}. 2.*} 2*1 4^% ^ol^l'iS 1 ^?151 AfS -a^^> £ -g-^ ^41 eo^ ^-^^^4. (3) in^A}: ^|Af 3

(4) m^-^ ^A^ ^ l^g ^Sj-^-^1 ^A>: £]^4^r ^ 4 Al^f o|uf ajig^ (RBC), «41^-^ (WBC), ^^=H^ (PLT)# Coulter Counter* oj-g-^f) ^.^^^cK ^ ^^^- ^Afe ^41 *> ^^*| V*1*M -§-3.4^1 JL, ^i-a^S-el (3,000 rpm, 15 min)*H ^^: 1^

b.B|l-l- (total cholesterol), -f^*!^ (triglyceride), % ^Sl-x-^I (total bilirubin), blood urea nitrogen (BUN), lactate dehydrogenase (LDH), ^-^-^1, -fi.^1 (uric acid) % Ca (Spotchem 4710) (5) ^el^3]^^ 10% -f 71*1 flH 4-5 um ^J5.5. , Hematoxylin & Eosin

-295- (6) ^TJl^el: S£ ^

7. ^^£: A0AC «o^

(acid value) -fr^]A]S. 5-10g# 200ml*] ^4§e}i36|| 4l*f| ethyletherif ethanol (1:2) 100mL# 7>*H ^^i* . 0.1N KOH ethanol

b(volatile basic nitrogen) a fl J:^ ^7]EB^4I ^eo^ n>i||^> X\S. 10g# ^*H #^-^r 30ml 2J- 20% Trichloro acetic acid 10ml# 7>tb ^w homogenizer# tl ^1 ^^|-f-=l« 100ml 2^«m^. lO^r^V «o^l*t ^ lml-i- conway unit S^-g-7] 5]^

Q.02N H2SO4

^ltio^5] ^#^; Bligh ^ Dyer(43)5] ^^^.S ^#, 100g# ^*H chloroform 4 methanol(l: 2) ^^64 300ml Sj. # *. ^6j <^i|.*>giT:>. «^^# £oj| flasM] £AJ1 ^AfcH] 100ml*] chloroform* 7}%% homogenizing*} ^

^r^^: Morrison^]- Smith(44)*] 0.2g-§; Cap tube^l 41 *H 0.5N NaOH in Methanol -§-^# 3ml

30-40'C o(|^ ^4^1^ 2ml*]

-296- sulfosalicyric acid 1.5g# 7>^V<^ AoV*f ^# membrane filter 3. ^^H -Sl-e]t].g-.2.3. pH 2. 0&.S.

^r ^ evaporator^ system 6300, USA)

subunit 2^^*H- ^-o}.j£7l $1% ^7]95lt;>. ^-, A}£.,%ofl <$ m*$S>l lOmM Tris-HCl buffer (pH7.0)# %7W<* 5-^SttI ^ ^ ^ t>. A)5.^^r 1*-SDS, ls«-ME, 20%-glycerol# ^-fr?> lOmM Tris - 6.8)0.3. -8-«H*>of 100OCO]1A-| i-2^^> 7]- ^ Af-g-^sic}. ^71^^A] § *!!>«•]S 20/^# ^r^J*>Sli3., Gel^ ^^^ separating gel 10%, stacking gel 4.5%S *}$l?.}. $.7}<$%-tL3. ^Bl^l ^«f^#^- Sigma Chemical Co.^fl^ -?-^t> standard proteins (myosin heavy chain, MHC; B-galactosidase, GALAC; phosphorylase, PHOS; bovine serum albumin, BSA; egg albumin, EA; carbonic anhydrase, CA; soybean trypsin inhibitor, STI, ; egg white lysozyme,

°l-§-*H ^^ ol^A^(relative mobilities)^] K}2.} &*}% ^l^^^f gel^ ^S^^r 0.1% Coomassie brilliant blue R-250

^^r ethanol : acetic acid : H20 (3:1:6,

500ml *]?]*\] ^3. ^^># 50ml7}*> ^ watch

cK Ca, Mg, Zn, Fe, Cu, Mn, Co ^ T^HH^r^l (Hitachi z-8100 Atpmic absorption Spectrophotometer), Na2f K-fe- Varian-Spectro AA 300plus AAS, P^- UV-Vis Spectrophotometerl- A}-g-*M 44 ^ 1? *>9i^>(46>. Interference suppressing agents. Cesium chloride(Na, K), Strontium chloride(Ca), Triton x-100# ^-*H3 ^7}^H Table

-297- 1. Salmonella typhimurium-g ©!-§-*}; #nHl ^4(10 kGy) 5J 5. typhimurium TA 98, TA100, TA1535 ^ TA1537ofl ^xr Table 8.3 mg/plate-t 7}

, 10 kGy 0.1-8.3 mg/plate*]

S-9mixture

2-AF 100 7H- 10 kGy

10 kGy

2. vivo -^.S ICR 10 kGy 4 ^ Table

kGy)-i- 625-2,500 , -g-nfl ,0007fl^ ^^^(reticulocyte; 9-(mi reticulocyte MNRET)7> 3.1 -t^ '44 3.5, 4.6, 2.

10 kGy ©1*1-3 mitomycin C^ 26.

-298- Table 1. Mutagenicity of gamma irradiated chicken at 10 kGy against Salmonella typhimurium

Test Cone S-9mix No. of His+ revertants per plate1 compound (mg/plate) TA98 TA100 TA1535 TA1537 Chicken 8.3 + 48±9 104 + 16 37±1 8±4 (OkGy) 2.8 + 52±1 154 + 18 26 ±26 6±4 0.9 + 43±5 126 + 11 23 ±4 8±7 0.3 + 30±5 149 + 11 23±6 8±1 0.1 + 34+4 130+2 23±7 18 + 3 0 + 40±15 131 ±2 27±4 18 + 1

8.3 28±8 96±4 31 + 12 8±5 2.8 30±14 192 ±59 34±8 5±1 0.9 20±l 123 + 16 24±4 11+0 0.3 25±4 124 + 17 28±0 14+4 0.1 18±1 172 + 13 20±l 14±6 0 22 ±4 187 + 12 21 ±4 11+3

Chicken 8.3 + 24±1 111+40 26±1 6±1 (lOkGy) 2.8 + 24 + 1 122 ±22 24±12 8±1 0.9 + 30±ll 161 ±9 33 + 1 5±1 0.3 + 43 ±8 135±7 22±4 7±0 0.1 + 38±6 142+11 33±4 8±6 0 + 40±15 118+17 27±4 8±1

8.3 18±1 150 + 15 16 + 1 4±0 2.8 12±2 112 + 8 21 + 1 3±0 0.9 30 + 16 126±29 28±3 4±4 0.3 25±10 114+28 28±1 6±1 0.1 25+6 139+6 41+8 7±6 0 22 ±4 129 ±20 21 ±4 11+3

2-AFz 0.01 + 2426 ±80 1656 + 98 nea ne 2-AA 0.002 + ne ne 247±17 217 + 15 2-NF 0.01 1474 ±31 ne ne ne MNNG 0.01 ne 1127 + 28 804 ±158 ne 9-AA 0.08 ne ne ne 868 ±102 'Each value represents the mean ± SD of three plates and expressed of revertant colonies per plate 22-AF,2-Aminofluorene; 2-AA,2-Aminoanthracene; 2-NF,2-Nitrofluorene; MNNG, N-methyl-N'-nitrosoguanidine; 9-AA, 9-Aminoacridine were used as positive controls for the corresponding strains. 3ne, not examined

-299- Table 2. Frequency of micronuclei from marrow in mice treated with 10 kGy-irradiated chicken1'

Test compound Dose(mg/kg) No. of mice tested MNRET/1 ,000 RET" D.W. 5 3.1 ± 1.4 Chicken(lOkGy) 2,500 5 2.4 ±0.8 1,250 5 4.6 ± 1.9 6,25 5 3.5 ± 1.3 MMCaj 0.5 5 26.4 ± 4.9 1} Each value represents the mean ± SD of three plates. 2) MNRET:micronucleated reticulocyte; RET:reticulocyte. 3) uuC:mitomycin C.

3. i 24 7jR(10 kGyH 5,000 ^3-8" ^£fe 5,000, 2,500, 1,250 T-^114^1 4^JIfe 997fl MMC(mitomycin C)fe 627^0] 10 kGy 2L*W*8r2\ ^g-f, 1.250 ^g/^L ^pS. ^<^5^& 100 ., $3. -^E

5% n|n>5] ^^^I^ 3). Renner

4. ^5] ICR nFNbofi 4^#^°J 10 kGy ^ 5,000 mg/kgAs ^si^-^, ^-uife 2s.

(Table 4). (Table 4).

-300- Table 3. Chromosomal aberration tests of irradiated chicken at 10 kGy using a Chinese hamster lung cell line

concentration with(+) or Treatment without(-) ctg ctb cte csg csb cse nor total S-9 mixture PBS - - 1 0 0 0 0 0 99 100 Chicken(lOkGy) 5000 - 2 0 0 0 0 0 98 100 2500 - 1 0 0 0 0 0 99 100 1250 - 0 0 0 0 0 0 100 100 MMC 0.2 - 14 6 12 3 2 1 62 100 PBS - + 1 0 0 0 0 0 99 100 Chicken(lOkGy) 5000 + 1 1 0 0 0 0 98 100 2500 + 1 0 0 0 0 0 99 100 1250 + 0 0 0 0 0 0 100 100 B(or)p 50 + 12 6 3 3 1 0 75 100 PBS: phosphate buffered saline, MMC; Mitomycin C, B( a )p: benzo(a )pyrene, ctg: chromatid gap, ctb: chromatid breakage, cte: chromatid exchange, csg: gap, csb: chromosome breakage, cse: chromosome exchang, nor: normal

Table 4. Mortality and clinical signs in ICR mice orally treated with 10 kGy-irradiated chicken Dose No of Days after treatment Clinical Sex Mortal i ty (mg/kg) Animals 1 2 3 4 5 6 7 8 9 10 11 12 13 14 signs 5000 10 00000000000000 0/10 NAD1' 2500 10 00000000000000 0/10 NAD 1250 10 00000000000000 0/10 NAD 625 10 00000000000000 0/10 NAD 313 10 00000000000000 0/10 NAD 0 10 00000000000000 0/10 NAD 5000 10 00000000000 000 0/10 NAD 2500 10 00000000000000 0/10 NAD 1250 10 00000000000000 0/10 NAD 625 10 00000000000000 0/10 NAD 313 10 00000000000000 0/10 NAD 0 10 00000000000000 0/10 NAD 1JNAD : no abnormalities detected.

-301- ig 1, 2).

5). 10 kGy

5iooo 5,000 mg/kg body weight

5.

ICR n}-f>, 10

^ 30 kGy, 10 kGy, 3 kGy ^ 0

n>e] 200 .7] 71-

3).

4

ig. 4).

6), 11X109 ~

9xio12 ~ 10 X1012£) ^ 400X109 ~ 5J

6).

-302- 50 -i 5,000 mg/kg 2.500 mg/kg 1,250 mg/kg 625 mg/kg 313 mg/kg •oo 0 mg/kg DO 10.

0J

0 7 14 days

Fig. 1. Body weights in male ICR mice orally treated with 10 kGy irradiated chicken.

50 -i 5,000 mg/kg B40A 2.500 mg/kg 1,250 mg/kg 0) 625 mg/kg 313 mg/kg •o o 0 mg/kg DQ 10

0J

0 7 14 days

Fig. 2. Body weights in female ICR mice orally treated with 10 kGy irradiated chicken.

-303- Table 5. Incidence of necropsy findings in ICR mice orally treated with lOkGy irradiated chicken Dose No of sex Observations Frequency (mg/kg/ /. \) Animals 5000 10 NGLU 10/10 2500 10 NGL 10/10 1250 10 NGL 10/10 625 10 NGL 10/10 313 10 NGL 10/10 0 10 NGL 10/10 5000 10 NGL 10/10 2500 10 NGL 10/10 1250 10 NGL 10/10 625 10 NGL 10/10 313 10 NGL 10/10 0 10 NGL 10/10 1)NGL : no gross lesion.

-304- 5On

40- Male 3 i £20 Control o CO 3KGy 10KGy 10 30KGy

0 i i i i i i o 10 15 20 25 30 35 Days 50n

40- Female £ 30-I 1 £20 Control o CQ 3KGy 10KGy 10- 30KGy

0 \ i i i i i o 5 10 15 20 25 30 35 Days

Fig. 3. Body weight changes in the ICR mice treated orally with irradiated chicken for 4 weeks

-305- 15 -i Control oCD 3 KGy 10 KGy >. 30 KGy CD ID 10 -

C o "a. I 5 - «c o o •D O O UL

0 i 0 5 10 15 20 25 30 Days

15 -i Control 3 KGy E 10 KGy CO 30 KGy 1 10 - g | CO c 5 -

CD to

0 i 0 5 10 15 20 25 30 Days

Fig. 4. Food and water consumption in the male ICR mice treated orally with irradiated chicken for 4 weeks

-306- Table 6. Hematological findings in the male and female ICR mice treated orally with irradiated chicken for 4 weeks WBC RBC Platelet Sex Dose 10s/L 10VL Control 10.9 ± 3.1 9.2 ± 1.2 375.0 + 43.0 3 KGy 10.4 ±4.3 9.4 ± 1.4 413.2 ± 31.5 Male 10 KGy 11.9 ± 5.2 10.1 ±0.7 408.4 ± 24.9 30 KGy 11.4 ± 4.5 9.7 ± 1.5 420.1 ± 17.5 Control 13.3 ± 1.6 9.9 ± 1.4 454.8 ± 53.7 3 KGy 10.8 ±4.8 9.8 ± 1.2 462.1 ± 64.6 Female 10 KGy 13.1 ±2.4 9.8 ± 1.5 457.5 ± 71.5 30 KGy 12.9 ±4.2 9.9 ± 1.2 447.6 ± 51.3

Table 3 kGy &&-°-i4, blood urea nitogen(BUN)^

Table 7. Serum biochemical values in the male ICR mice treated orally with irradiated chicken for 4 weeks

Parameter Control 3 KGy 10 KGy 30 KGy

Glu 235.6 ± 37.6 217.8 ± 35.7 227.6 ± 41.2 247.1 ± 37.6 T-cho 146.2 ± 12.5 148.2 ± 11.3 144.6 ±8.2 147.4 ± 11.9 BUN 45.7 ± 5.1 48.6 ±4.2 45.9 ±4.9 46.4 ±4.6 T-Bil 0.2 ± 0.2 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 GOP 26.1 ±2.9 26.2 ±4.3 28.5 ±7.5 26.9 ±5.7 GTP 12.8 ±3.7 11.9 ± 6.2 11.0 ± 4.3 13.1 ±6.8 T-Pro 5.7 ± 0.2 5.6 ± 0.3 5.7 ± 0.2 5.6 ± 0.3 TG 212.4 ± 35.8 227.5 ± 42.3 207.5 ± 24.6 214.7 ± 40.1 LDH 968.3 ± 314.6 1028.6 ± 348.7 979.5 ± 412.9 1024.3 ± 467.2 Ca 10.0 ±0.8 10.0 ±0.5 10.1 ±0.5 10.0 ±0.7 Alb 2.8 ± 0.4 2.7 ± 0.1 2.8 ± 0.2 2.7 ± 0.3 UA 2.8 ± 0.3 2.6 ± 0.5 2.7 ± 0.8 2.8 ± 0.5

-307- Table 8. Serum biochemical values in the female ICR mice treated orally with irradiated chicken for 4 weeks

Parameter Control 3 KGy 10 KGy 30 KGy

Glu 218.6 ± 34.9 216.6 ± 27.6 209.5 ± 31.8 221.4 ± 32.4

T-cho 98.6 ± 24.6 94.7 ± 21.9 97.4 ± 22.6 98.5 ± 27.6

BUN 41.2 ±4.6 40.6 ± 3.8 43.7 ±4.8 41.7 ± 5.3

T-Bil 0.2 ± 0.1 0.2 ± 0.2 0.3 ± 0.1 0.2 ± 0.1

GOP 31.6 ±4.2 29.6 ±2.8 30.5 ± 3.4 31.1 ±3.3

GTP 11.5 ± 2.7 11.2 ± 2.1 10.8 ± 1.4 11.0 ± 1.5

T-Pro 5.5 ± 0.3 5.4 ± 0.3 5.5 ± 0.2 5.6 ± 0.3

TG 151.2 ± 41.6 148.8 ± 42.1 152.5 ± 37.6 150.8 ± 35.4

LDH 816.4 ± 234.6 872.7 ± 215.7 821.4 ± 176.8 834.1 ± 211.3

Ca 10.1 ± 0.4 10.2 ±0.5 10.2 ± 0.3 10.2 ±0.2

Alb 2.9 ± 0.2 2.9 ± 0.3 2.9 ± 0.2 2.8 ± 0.3

UA 2.4 ± 0.8 2.2 ± 0.4 2.0 ± 0.5 2.3 ± 0.7

Total cholesterol (T-cho), total bilirubin(T-Bil), total protein(T-Pro)£- tj}^ 3:3} ti]^m &X[ A^r ^M^" 3-Jf- €• *M# W^l &&An}, ZL«M GOT, GPT, TG(total glyceride), LDH(lactate dehydrogenase), Ca, Alb(albumin), UA(uric acid)£ 3.^ ^3r<>fl>M ^Ao^l# ^MOT. 4A^ nH^oflH-fe 7 kGy *\ BUNo] f7

UA ^^(occult blood)# 4^ ^2}^ Table 9^ £t\.

3 kGy 1045I 6-7

-308- Table 9. Urinanalysis in the male and female 1CR mice treated orally with irradiated chicken for 4 weeks Sex Male Female Group control 3 kGy 10 kGy 30 kGy control 3 kGy 10 kGy 30 kGy No. of animal 10 10 10 10 10 10 10 10 Glucose 10 10 10 10 10 10 10 10

Protein trace 10 9 10 10 10 10 10 10 +30 - 1 0 - - - - -

PH. 6-7 9 10 9 10 9 9 10 8 7-8 1 - 1 - 1 1 - 2

Occult - 10 10 10 10 10 10 10 10 Blood + ------

10). , bilirubin ^*h iron ^.o]xl ^$U^f(Fig. 5) spotty necrosis7f

. 6).

7).

-309- Table 10. Macroscopic findings in the ICR mice treated orally with irradiated chicken for 4 weeks Sex male female Group Control 3 KGy 10 KGy 30 KGy Control 3 KGy 10 KGy 30 KGy No.of mice Organ 10 10 10 10 10 10 10 10 Kidney 0 0 0 0 0 0 0 0 Spleen 0 0 0 0 0 0 0 0 Liver 0 0 0 0 0 0 0 0 Stomach 0 0 0 0 0 0 0 0 Heart 0 0 0 0 0 0 0 0 Lung 0 0 0 0 0 0 0 0 Adrenal gland 0 0 0 0 0 0 0 0 Reproductive system 0 0 0 0 0 0 0 0

Fig. 5. Histopathological examination of the liver in the ICR mice treated orally with irradiated chicken for 4 weeks. A: male control group; B: male 30 KGy treatment group; C: female control group; D: female 30 KGy treatment group. H&E staining (X250)

-310- JtBli£Hgi&£;£&*4 I - -

Fig. 6. Histopathological examination of the kidney in the ICR mice treated orally with irradiated chicken for 4 weeks. A: male control group; B: male 30 KGy treatment group; C: female control group; D: female 30 KGy treatment group. H&E staining (X250)

'.' -.:, • '' • . i

Fig. 7. Histopathological examination of the lung in the ICR mice treated orally with irradiated chicken for 4 weeks. A: male control group; B: male 30 KGy treatment group; C: female control group; D: female 30 KGy treatment group. H&E staining (X250)

-311- 3.71,

30 KGy °W

6. ^

fe Table 113} ^cK A]^^, ^^-^^^ ^^^^ ^Bo>n> «^^> ^7f^# ^ ZL 7151

12). #*]•*} SAf3|^ ^7l ^^ ^r7}^ 7.7-8.5

12.41- hHv 8-^*11 oflfe 27.8^ ^-^ ^7># J£°l «1^, 3 kGyif 7 44 8.44} 8.6# i|EH *£# 8^4^!^ 44 17.55f 15. i7||^*H<>fl aj^A^^ 10.8, 3 kGy^: 10.7, 7 kGy^^ 9.8# 44 .13.7, 14.6, 14.7J5.

Lefebvre ^(49)^

Urbain(50)S -B-Bl^^^^- ^S. triglyceridet-f-^^l1^)^ phospholipid*} , 50 kGy^l !4AJ3o^S£ <^7l

HS VBN ^5O^

VBN ^^^Sf# *}3|£ ^2}, dS.7] VBN

JL, 3kGy ^45:^14 fe 34Nmg%l- ^>tflSio.u|- *]-§-.* S-b ^7}*5-# ^*l9i-2.^, 7 kGy SAl^g;-^ 8^7M-E 34Nmg%5. H]3.^ ^^gr ^1# ^BKH^HFig. 8).

-312- Table 11. Changes in proximate composition of nonirradiated and irradiated and chicken

Component Irradiation dose(kGy) <*) 0 3 7 10 Moisture 74.6 75.3 75.4 75.3 Crude protein 29.6 31.0 30.8 30.2 Crude lipid 2.0 2.2 2.4 2.2 Crude ash 1.1 1.1 1.1 1.1 Each value represents the mean of duplicate determinations.

Table 12. Changes in acid value of nonirradiated and irradiated chicken during storage at 5°C and -20"C Storage period Irradiation 5°C (weeks) -20 °C (months) dose (kGy) 0 2 4 8 1 2 4 6 0 8.5 12.4 15.4 27.8 10.8 11.3 11.9 13.7 3 8.3 8.4 11.4 17.5 10.7 10.4 12.6 14.6 7 7.7 8.6 12.7 15.6 9.8 9.9 11.5 14.7 xEach value represents the mean of duplicate determinations and expressed as titration ml of 0. IN K0H.

control 3 kGy kGy

250

200

5.150

o £100

50

Storage period(weeks)

Fig. 8. VBN contents of nonirradiated and irradiated chickens during storage at 5°C

-313- 31Nmg%t-

(Fig. 9). >^. ^SO^S Lefebvre ammonia !.^ Pseudomonas^^ ^^ gram-negative bacteriaofl urea^f o}n)

• control 3 kGy 7 kGy 80

70

60

£50 I 40

30

20

10

0 2 4 Storage period(months) Fig. 9. VBN contents of nonirradiated and irradiated chickens during storage at -20°C

Table >^. oleic acid, palmitic acid, linoleic acid, stearic acid % palmitoleic acid V ^€r oleic acid(^ 38%)3>| >^ palmitic acid7> l-fe 7]$]

Leeiif Dawson(51)^r

^: oleic acidS. palmitic acid, linoleic acid ^r0! &t:]-;iL f>\o\

-314- Table 13. Changes in fatty acid composition of nonirradiated and irradiated chicken (unit:%) Irradiation dose (kGy) Fatty acids : Cont 3kGy 7kGy 14:0 0.74 0.69 0.68 14:1 0.19 0.15 0.20 16:0 24.2 25.3 24.9 16:1 5.80 5.40 5.39 17:0 0.16 0.15 0.16 18:0 7.68 8.79 8.63 18:1 38.8 36.3 36.9 18:2 18.0 17.9 17.9 18:3 0.83 0. 78 0.80 20:1 0.77 0.67 0.75 20:4 2.29 3.15 2.95 22:0 0.49 0.65 0.68 SFA 33.3 35.0 35.0 PUFA 21.1 21.9 21.7 P/S 0.63 0.62 0.61 JEach value represents the mean of duplicate determinations

Table 14 if ^cf. 7}# #o] ;g-§.si ^ alanine°|£Ul v}^^ serine, glutamic acid, glycine, aspartic acid^r-J5-.5L ^#£]SiJL, lysine, threonine, leucine ^%-S. ^^^ Q&^&ity. Mott -^(54>5] ^^-ofl^s. glutamic acid, aspartic acid, lysine, alanine fo] 7}^- ?>o| ^#J ^* ^^^. 7kGy

15). 7}% i&e] ^#^1 ^<>1 glutamic acid^- aspartic acid ^A alanine, lysine ^AS. ^[#£l5iT;]-.

-315- Table 14. Changes in free amino acid of nonirradiated and irradiated chicken1

Irradiation dose (kGy) Amino acids Cont 3 7

Asp 1.57 1.35 1.13 Thr 1.41 1.09 1.03 Ser 1.96 1.53 1.42 Asn 0.54 0.4 0.37 Glu 1.87 1.24 1.32 Gin 0.94 0. 77 0. 74

Pro 0.9 0.8 0. 76

Gly 1.84 1.61 1.51 Ala 3 2.4 2.42 Val 1.1 0.86 0.8 Cys ND* ND ND Met 0.59 0.42 0.38 He 0.71 0.54 0.47 Lue 1.48 1.01 0.93 Tyr 0.53 0.55 0.51 Phe 0.56 0.43 0.4 Lys 1.44 1.35 1.3 His 0.57 0.48 0. 39 Arg 0.99 0. 79 0. 76 Total 22 17.62 16.64

!Each value represents the mean of duplicate determinations and expressed fj. M g-1(wet weight basis). 2ND: not detected

-316- Table 15. Changes in total amino acid of nonirradiated and irradiated chicken1

Irradiation dose (kGy) Amino acids Cont

Asp 505 430 570 Thr 305 240 360

Ser 285 245 315

Asn NDZ ND ND

Glu 690 595 790

Gin ND ND ND

Pro 275 215 295

Gly 410 355 460

Ala 465 390 535

Val 265 235 310

Cys 45 40 35

Met 120 125 125

He 225 215 275

Leu 425 375 490

Tyr 130 140 155

Phe 155 160 180

Lys 410 355 480

His 165 140 185

Arg 255 215 290

Total 46278 4470 5850

LEach value represents the mean of duplicate determinations and expressed M g'^dry weight basis). 2ND: not detected

-317- methionine 3} cysteineS ^nj- tc]- glutamin^f asparagine^ amino7l^

^71

free radicals

(55) 7]$] -7 (50,56)

4. :## oj^i £>

SDS-PAGE-i- Fig. >«4^ band*] subunit 3} 4 S^ *}o]

205 > 116 • £•=*? 97 ^ •:-"•: 66 > *5S=="

45

31

21 > 14 •

0 13 5 7 10 Irradiation dose (kGy)

Fig. 10. Electroporetic patterns of nonirradiated and irradiated chickens

-318- ^ Table 164 S] ^71^ ^-^-cr phosphorus, potassium, sodium, magnesium^] &&. 3to, ^n>-il ^AHl ^*> -¥-71^^ ^£«!£Rr ^LSCL^>. Quaranta (58) Urbain ^ ofl 5|*^ ^n}^ 2:A>6fl cH«> 4i#^ ^.7|^ A^«.^ B|)^ 6^ 3. ^JLt-j-3. Olt:}. Mott ^(54)^ 7|-#45l Zn^ ^%*o| 1.8/

Table 16. Changes in selected mineral of nonirradiated and irradiated chickens1

Irradiation dose (kGy) Minerals control 10

Magnesium 39 33

Sodium 56 56

Potassium 354 348

Iron 6.5 5.9

Zinc 1.8 1.7

Calcium 24.1 22.9

Phosphorus 1708 1732

Cobalt 0.067 0.059

Copper 0.70 0.68

Manganese 0.29 0.26

Each value represents the mean of duplicate determinations and expressed mg 100g"'(wet weight basis).

-319- in vitro A)%|_O.5. Salmonella typhimurium TA98, TA100, TA1535, TA1537-§r A}-§-

^^Sfe mouseofl

2. 4^ ^^^^^> ]^^J MM ^ ± ICR D}-f>,<

3. 30

#H 30

4.

j( 28(3), 646-653(1999)

2. -y^^ # ^^J ^

n}*!^. , ^^-Al^^ot^^S]^, 28(3), 638-645(1999)

-321- 3. # 1, 28(5), 1092-1098(1999)

4. #n)-^ &*} A-*r$ ^Q^, tH^r^&^^-f^Sl^l. 6^ 4^,411-416(1999)

5. 48-54(1999)

6. Effects of pH and gamma irradiation on the physicochemical properties of corn starch, J. food Sci. Nutr(Korea), 4(3), 175-179(1999)

7. Production of modified starches by gamma irradiation, Radiat. Phys. Chem. 54, 425-430(1999)

8. #nHi % %#\, 1999. 6. 4-5,

-322- -323- 1. WHO: fbcxf irradiation. A technique for preserving and improving the safety of food. Geneva, World Health Organization (1988). 2. Hugo, W.B.: A brief history of heat and chemical preservation and disinfection. J. applied bacteriology, 71, 9-18 (1991) 3. Taub, I.A., Halliday, J.W. and Sevilla, M.D.: Chemical reactions in proteins irradiated at subfreezing temperatures. Adv. Chem. Ser. , 180, 109-140 (1979) 4. Diehl, J.F. : Safety of Irradiated Foods. Marcel Dekker, Inc., New York (1990) 5. Grant, I.R. and Patterson, M.F.: Effect of irradiation and modified atmosphere packing on the microbiological and sensory quality of pork stored at refrigeration temperatures. Int. J. Food Sci. Technol. , 26, 507-519 (1991) 6. Urbain, W.M.: Food irradiation. Academic Press, Inc., New York (1986) 7. Smith, J.L. : Foodborne toxoplasmosis. J. Food Safety, 12, 15-57(1991) 8. WHO: The role of food safety in health and development. Report of a Joint FAO/WHO Expert Committee on Food Safety (1984) 9. Doyle, M.P. and Schoeni, J.L.: Isolation of Escherichia coli 0157:H7 from retail fresh meats and poultry. Appl. Environ. Microbiol. , 53, 2394-2396 (1987) 10. Ahmed, N.M., Conner, D. E. and Huffman, D.L.: Heat-resistance of Escherichia coli 0157:H7 in meat and poultry as affected by product composition. J. Food Sci., 60, 606-610 (1995) 11. Winger, R . J. and Fennema, 0.: Tenderness and water holding properties of beef muscle as influenced by freezing and subsequent storage at -3 or 15*0. J. Food Sci., 41, 1433-1437(1976) 12. Yamamoto, K. and Samejima, K. : A Comparative Study of the change in hem pectoral muscle during storage at 4°C and -2°C. J. Food Sci., 42, 1642-1645(1977). 13. Miller, A. J., Ackerman, S. A. and Palumbo, S. A.: Effect of frozen storage on functionality of meat for processing. J. Food Sci., 45, 1466-1470(1980). 14. Brewer, M. S., Ikins, W. G. and Harberts, C. A . Z. : TBA values sensory characteristics and volatiles in ground pork during long-term frozen storage: Effect of packaging. J. Food Sci., 57, 558-562(1992). 15. Gill, C. 0. and Harrison, J. C. L. : The storage life of chilled pork packaged under carbon dioxide, Meat Sci., 26, 313-317(1989). 16. Kim, Y. S. and Yoo, I. J. : Effects of sanitary treatment of port cut surface on shelf-life of chilled pork. Korean, J. Anim. Sci., 36, 403-408(1994).

-325- 17. Mattison, M. L., Kraft, A. A., Olson, D. G., Walker, M. W., Rust, R. E. and James, D. D. : Effect of low dose irradiation of pork loins on the microflora, sensory characteristics and fat stability. J. Food Sci., 51, 284-287(1986). 18. Dickson, J. S. and Maxcy, R. B.: Irradiation of meat for the production of fermented sausage. J. Food Sci., 50, 1007-1012(1985). 19. Ehioba, R. M., Kraft, A. A., Molins, R. A., Walker, H. W., Olson, D. G., Subbaraman, G. and Skowronski, R. P. : Effect of low-dose(100 krad) gamma radiation on the microflora of vacuum-packaged ground pork with and without added sodium phosphates. J. Food Sci., 52, 1477-1480(1987). 20. Surve, A. V. , Sherkar, A. T., Bhiegaonokar, K. N. and Karkare, U. D. : Preservative effect of combination of acetic acid with acetic acid or propionic acid on buffalo meat stored at refrigeration temperature. Meat Sci., 29, 309-322(1991). 21. Papadopoulos, L. S., Miller, R. K., Ringer, L. J. and Cross, M. R.: Sodium lactate effect on sensory characteristic, cooked meat color and chemical composition. J. Food Sci. , 56, 621-635(1991). 22. Kim, D. G. , Lee, S. H., Kim, S. M., Seok, Y. S. and Sung, S. K. : Effects packaging method on physico-chemical properties of Korea beef. J. Korean Soc. Food Sci. Nutr. , 25, 944-950(1996). 23. Kampelmacher, E. H.: Prospects of eliminating pathogens by the process of food irradiation., In: Combination processes in food irradiation, Proceedings of a symposium held in Columbo., November 1980, Vienna, IAEA., pp. 265-289(1981). 24. IAEA.: Clearance of item by country. Intl Atomic Energy Agency, Vienna, Austria(1997) 25. ICGFI.: Summary report on eleventh meeting of the international consultative group on food irradiation. Denpasar, Bali, Indonesia, 2-4 November(1994) 26. FAO/WHO. Codex General Standard for Irradiated Foods. Codex Alimentarious Commission. Rome, Italy(1984) 27. Thayer, D. W. : wholesomeness of irradiated foods. Food Technology, May (1994) 28. tRH?R £-24*1^ #*Hd 2*}7]& % ^343 £-£4*1^:^1 *H 1995-34(1995. 5. 19) 29. Bruhn, C. : Consumer attitudes and market response to irradiated food. J. Food Protect 58, 175(1995) 30. WH0/HPP/F0S/92. 2, World Health Organization. 31. Council for Agricultural Science and Technology, Ionizing Energy in Food Processing and Pest Control I, Wholesomeness of Food Treated with Ionizing Energy, Report No. 109, ISSN 0194-4088(1986)

-326- 32. Thayer, D.W.: Extending shelf-life of poultry and red meat by irradiation processing. J. Food Prot., 56, 831-833 (1993) 33. Shay, B.J. , Egan, A. F. and Wills, P.A. : The use of irradiation for extending the storage life of fresh and processed meats. Food Technol. Aust., 40, 310-313 (1988) 34. USDA/FSIS: Status of Food Irradiation Activities in the U.S.A., A.I.I.I. Newsletter No. 27, 137(1993) 35. Reuter: "Irradiated Chicken Selling Briskly." 3, September(1993) 36. CBA n]~f^oflAi »£x}*± ^X[6\] £}*f Leukemogenesis-2]

37. Merritt, C., Angelini, P., Wierbicki, E. and Shults, G.W. :Chemical chages associated with flavor in irradiated meat. J. Agric. Food Chem., 23, 1037(1975) 38. Maron, D.M. and Ames, B.N.: Revised methods for the Salmonella mutagenicity test. Mutat. Res., 113, 173-215(1983) 39. Hayashi, M.: The micronucleus test. Scientist, Tokyo(1991) 40. ^t]J£:?l#g9-4i: ^>M%1 S^^-

-327- FoodSci., 38: 1232-1237(1973). 52. ^^HK o]4^, ol*>7l, ^J£^.: tf S*K *>^HK>«W*1.. 32(2): 83(1990) 53. ^^f, ^^U. 3J<8*1. °lt>7l.: ^%7]#% } ^\ ^^ I. ^1^^ S^^i^, *];^HK>^*1., 30(12): 747(1988) 54. Mott, E.L., Macneil, J.M., Mast, M.G. and Leach, R.M.: Protein Efficiency Ratio and Amounts of Selected Nutrients in Mechanically Debound Spent Layer Meat., J. FoodSci., Vol.47, 655(1982). 55. Liebster, J. and Kopoldova, J. : The Radiation Chemistry of Amino Acids., Advances in Radiation Biology., 1: 157(1964). 56. Delincee, H. : Recent Advances in the Radiation Chemistry of Proteins., In: Elias, P.S., Cohen, A. J. eds., Recent Advances in Food Irradiation., Amsterdam, Elsevier Biomedical., p.129(1983). 57. Quaranta, H.O., Eterovic, J.E., and Piccini, J.L.: Essential Elementa in Fresh and Irradiated Strawberries and Strawberry Marmalad, Appl. Radiat. Isotop., 37: 633(1986) 58. Urbain, W.M.: Food Irradiation, Academic Press, New York., p. 273(1987)

-328- Quarantine Treatment of Agricultural Products for Export and Import by Gamma Irradiation

-329- CONTENTS

Chpater 1. Introduction 337

Chpater 2. Status of home and foreign technology development 339

Chpater 3. Contents, Methods and Results 341

Section 1. Contents and Methods 341

1. Disinfestation test of quarantine-related pests in apple and pear 341

a. Collection, classification, identification and rearing of pests 341

b. Radiosensitivity of pests at developing stages 341

c. Methyl bromide fumigation test 342

d. Data analysis 343

2. Quality stability test of disinfested apple and pear • 343

a. Evaluation of physical qualities • 343

b. Evaluation of physiochemical qualities 343

c. Evaluation of organoleptic qualities 344

Section 2. Results and Discussion 347 1. Disinfestation effects of quarantine-related pests in apple 347 a. Radiation disinfestation of P. ulmi 347 b. Radiation disinfestation of T. urticae 360 2. Disinfestation effects of quarantine-related pests in pear 373

a. Radiation disinfestation of P. ulmi 373

b. Radiation disinfestation of T. urticae 387

3. MeBr fumigation effects of quarantine-related pests 400

4. Quality stability of disinfested fruits 401

-331- a. Physical quality attributes 401

b. Physiochemical quality attributes 427

c. Organoleptic quality attributes 447

Chapter 4. Goal Achievement and External Contribution 463

Chapter 5. Appl ication Plan 465

Chapter 6. References 467

-332- 337

339

341

341 l. 341

7}. ••••••• 341 341

342

: 343

2. • • 343

7}. • 343

...343

...... 344

346

347

.347

7\. 347

(1) 347

(2) 350

(3) • 353

(4) 357

360

360

(2) Af3]-g-o||il ^SLl} 363

QOQ ooo (3) ^^]-§.oU^ *£$3.3\ 367 (4) ^-SH ^2} ^o)-g-ofl

2. «M^ Sfl-fSj woUHd ^Z]3L3} 373 7}. l^Af 373 (1) AJ-^-g-oj] *£<%•$.$ 373 (2) ^off ^^ Af^-§-of|^ 4^JL^ 377 (3) ^ol-S-ofl ^M 380 (4) f-SH ^#*i ^M|o)-g-6fl^ -y^A4 383 M-. 2^}2A} 387 (1) 4^-§-6H ^^^-2} 387 (2) ^-SH ^^sj 4^1-g-of)*) >y-§^ 390 (3) ^M|o}-g-ofl ^3L3\ 393

(4) ^-9iy^SL2l- 397 3. ^Hl^l MeBr ^^ ^B|5l2f 400 4. *H^5| 2}^^-^ #^^>^^ • 401

y\. #513 #^3^ 401

(1) *Mi. 4)^ # ^-B* ^^ 401 (2) $£. 409

(3) 7l7H 4S 412 (4) ijPf ^^£ 421 14. ^Blil-n^ #^^-^ 427 (1) ^r^ 427

(2) PH 430

(3) x\$*ySL 432 (4) ^S. (Brix) 435 (5)%^ 438

(6) oflEKg. ^ o>4H^cji*lc. ^-3oi= 441

(7) ©l-tfifi&t 5J ofl^^l ^Bot 444

447

-334- • 463

• 465

*i • 467

-335- 1 3- M

A]

methyl bromide (MeBr) ^^ ^STMW £*> 7^^-%^ nfef

(quarantine treatment)ol ^.S ethylene dibromide^ Af-g-o] 4)(US EPA, 1984), ^g^5),

9-11) n ^>^ ^fl| ^fly H^^ ^ ^^71^^: MeBr

2005^

). Montreal ^] ^ fl^ ^ 4^#^ ^

]] 1 11 ] I415) *M MeBr UN Environment Committee ^-, 237fl^- Methyl Bromide Technical Options Committee(1993~1995)ofl^

J^.£ o} nfl-f ^q.^o|cK US FDA (1986)17) 5J USDA (1989)18)^A-l£ 1 kGy

-g-o] Al2>SlJL alfe ^TfloluK WHO, FAO, IAEA7}

lOkGy o)^ ^eo>AS

-337- Codex -b 10

4,

-338- *\\ 2

(MeBr, EDB, ETO, PH3 -§•), (host susceptibility, inspection •§•) -g-o] £1-

MeBr

0°C

(0~3°C, 10-20^), (40~50°C, (CA, MA) •§• injury), *)elBl-§-

19931^

197fl

200 (1999).

-339- 1999

{Tetranychus urticae) (Panonychus ulmi)

(2) at

(Tetranychus urticae) 1](Panonychus ulmi) -g- 4

sg7f7l$(Probit-9 security: 3/100,000 o|-gr>^

24

0.5, 1, 2, 3 kGy ^^^ ^±3. 3:4*}^} 91

-341- (Table 1).

(o±rcH4 40

0.5, 1, 2 kGy

iA}*>Sdlt:> (Table 1).

(2)

, 0.5, 1, 2, 3 kGy

(Table 1).

-, 0.5, 1, 2, 3 kGy ^ 4 ^ 4S* (Table 1).

Table 1. Classification of gamma irradiation dose, survey date and method for apple and pear Treatment (kGy) Survey date Method s a rc a a P , n R 1 I *" ^ ^> ^ * ^ ^' ^k ^ y> Alive rate of T. urticae & P. 10th day, 17th day, 21th ulmi (counting alive day, 28th day, 35th day individual per leaf)

(l) ^^l Dfl

MeBr ZLl]3. 24 4sl^l ^-foflS. &4l ^nHl ^el^ ^-fij- -g-^*>4 40^ MeBr

(Table 2).

-342- Table 2. Fumigation conditions of methyl bromide for apple and pear Temperature Chemical name Dosage (g) Time (hr) Size (ma Pressure

0.9 X 1.4 X Methyl bromide 26 21 1 atm 0.2

(2)

Excel program program °l-§-*H

2.

1999\i

(o± re, 0.5-3 kGy . MeBr 71-g- (Table (52.5 cm x 36.8 cm x 32.3

0.5, 2 £ 3 kGy, 2*rfe 0.5, 1, 2 fe ^r^ ^ 20, 40, 60, 90, 120<*H4, 24 40, 60, 90, 120*1 44 Ad4

(l) 3:4 44 507fl, tifl 257fl# 44

! 1 kgil 4-y ^, Hardness Tester FHM-1, Japan) 44 57fl, afl Jf-g- fruit peelerS ^^

-343- 20s]

-b color & color difference meter (Minolta, model CR-200, Japan)* °l-g-*M 4*1 % M)-f- 4SS «?-g;*M 4W95W-. 44 % ^ 4 AA

57fl ios] Hunter scaled 4 (Zlf, color difference) L, a, b ^^ 44 97.87, -0.34 51 2.00°l£t:h

4 207fl, tifl

M3.51 4 ^Hl^-Cov 44^ «B 4 6t 2g«] 4-1*114 Infrared Moisture Determination Balance (Kett, FD-240, Japan)

A 4 43.^114 4=1« *ti7R> ^, 4 J 37H<^14 ^4l*Jt tt ioog •§• food mixer (^^1^-^, S.^ WHF-514, tb^-)S n>i||^> ^ 7^2: (gauze)5. PH meter (Orion, model 420A, USAH ^sfl 3*1

(3) ^ ^ 0. IN NaOH# 7>*H PH 8. malic acidS.

(4) 43.5) ^2l« Digital refractometer (Atago, Model PR-1, Japan)# Brix

(5) glucose

-344- (6) 4 * GC- . o]nfl GC5| Table

(C2H4) 4 headspace Table 4 ^

Table 3. Operating conditions of GC for ethanol and acetaldehyde analysis Item Condition Instrument Shimadzu 14B Column Carbograph I , 4m X 2m SAS Column temperature 95 °C Detector FID Detector temperature 280 °C Injector temperature 220 °C Injection volumn Carrier gas N2

Table 4. Operating condition of GC for C02 analysis Item Condition Instrument Shimadzu 14B Column Active Carbon 4mX2m SUS Column temperature 110TC Detector TCD Detector temperature 150°C Injector temperature 220 °C Injection volumn Carrier gas He

Table 5. Operating condition of GC for C2H4 analysis Item Condition Instrument Shumadzu 14B Column Active alumina 4mX2m SUS Column temperature 110°C Detector FID Detector temperature 150°C Injector temperature 220 °C Injection volumn Carrier gas N2

-345- (9: Table 6 2} ^ ^4-g-^l^ IN (odor), (texture), t:f§>^ (juiciness), ^JE (acidity), (sweetness), (surface color), ^«>^ 7|5l£ (overall acceptability) •b SAS (statistical analysis system)34)fl *J

Table 6. Sensory sheet for nine-hedonic scale scoring test

: 2000. 4

(like extremely-9) > (like very much-8) c> (like moderately-7) (like slightly-6) &cf (neither like nor dislike-5) (dislike slightly-4) (dislike moderately-3) (dislike very much-2) (dislike extremely-1)

Code 857 215 321 582 693 007 Parameter 1) Odor

2) Color

3) Texture

4) Juiciness

5) Acidity

6) Sweetness

7) Overall acceptability

-346- 7>.

3 kGy 4«-i- afl 3 21

kGyij- 2 kGy ^e]9"^ *M 28

Table 7. Control effect of P. ulmi egg on apple 1 day after gamma irradiation Treatment Density Alive rate after 1 day {%) Control before DMRT „. .. . (kGy) treatment Replicate 1 Replicate 2 Replicate 3 Average ettect(^) 0.5 174.33 86.39 95.12 86.15 89.22 b 7.15 1 154.67 88.00 88.02 83.67 86.57 b 9.92 2 137.00 68.25 81.05 54.55 67.95 a 29.29 3 112.33 69.39 65.00 58.82 64.40 a 32.98 Control 127.67 99.11 95.80 93.38 96.10 a Coefficient of variation 6.78%

Table 8. Control effect of P. ulmi egg on apple 3 days after gamma irradiation

Treatment Alive rate after 3 days (*) - DMRT Control (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect(%) 0.5 94.12 83.53 77.78 85.14 ab 9.59 1 80.33 65.96 79.07 75.12 ab 20.24 2 63.64 72.28 43.24 59.72 a 36.59 3 68.42 57.97 57.45 61.28 a 34.93 Control 87. 72 98.56 96.25 94.18 b Coefficient of variation 12.31%

-347- Table 9. Control effect of P. ulmi egg on apple 7 days after gamma irradiation

Treatment Alive rate after 7 days (*) Control - DMRT (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect(%) 0.5 93.63 88.76 81.05 87.81 be 7.37 1 88.89 89.06 97.59 91.85 be 3.11 2 69.05 79.02 73.43 73.83 ab 22.12 3 74.19 57.97 51.72 61.30 a 35.34 Control 94.83 97.56 92.00 94.80 c -

rnof 8 RA

Table 10. Control effect of P. ulmi egg on apple 10 days after gamma irradiation

Treatment Alive rate after 10 days {% ) Control (kGy) Replicate 1 Replicate 2 Replicate 3 Average DMRT effect(fc) 0.5 85.86 77.01 87.05 83.31 b 8.13 1 78.49 89.20 54.55 74.08 b 18.30 2 71.03 83.76 87.16 80.65 b 11.06 3 37.04 48.91 32.47 39.47 a 56.47 Control 93.88 93.70 84.44 90.67 b -

1 Q 71 o.

Table 11. Control effect of P. ulmi egg on apple 17 days after gamma irradiation

Treatment Alive rate after 17 days (*) Control (kGy) Replicate 1 Replicate 2 Replicate 3 Average DMRT effect (86) 0.5 83.61 86.74 91.08 87.14 b 4.64 1 84.81 88.76 85.59 86.39 b 5.44 2 84.81 82.54 86.49 84.61 b 7.39 3 1.64 10.10 4.08 5.27 a 94.23 Control 96.81 85.45 91.82 91.36 b -

- R Q1%

-348- Table 12. Control effect of P. ulmi egg on apple 21 days after gamma irradiation

Treatment Alive rate after 21 days (*) Control • DMRT (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect(%) 0.5 80.95 81.95 86.36 83.09 c 7.34 1 62.69 60.00 66.29 62.99 b 29.75 2 47.44 58.93 52.27 52.88 b 41.03 3 0.00 0.00 0.00 0.00 a 100.00 Control 94.12 82.46 92.45 89.68 c -

i7 TXIA

Table 13. Control effect of P. ulmi egg on apple 28 days after gamma irradiation

Treatment Alive rate after 28 days (*) Control DMRT (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect(%) 0.5 76.47 76.92 76.36 76.59 c 14.76 1 34.88 27.78 30.25 30.97 b 65.53 2 19.05 25.00 25.00 23.02 b 74.38 3 0.00 0.00 0.00 0.00 a 100.00

Control 86.21 88.32 95.02 89.85 d • -

7 1ft

Table 14. Control effect of P. ulmi egg on apple 35 days after gamma irradiation

Treatment Alive rate after 35 days (*) Control • DMRT (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect(%) 0.5 33.96 76.92 47.37 52.75 b 41.29 1 30.56 28.16 22.92 27.21 ab 69.72 2 7.89 10.00 9.68 9.19 a 89.77 3 0.00 0.00 0.00 0.00 a 100.00 Control 92.65 94.52 93.46 93. 54 c -

«« Q7%

-349- 120

100 M _•_().5KGy •«-1KGy

80

"5 60

35

Fig. 1. Overall control effects of P. ultni egg on apple treated by gamma irradiation.

(2)

3 kGy 94.23%^ ^^ i kGy ^ 2 S^ (Table 15-22, Fig. 2).

Table 15. Control effect of P. ulmi egg on soybean leaf transferred from apple after 1 day of gamma irradiation

Treatment Density Alive rate after 1 day {%) Control before DMRT effect(as) (kGy) treatment Replicate 1 Replicate 2 Replicate 3 Average 0.5 90.00 92.65 95.35 87.67 91.89 b 4.45 1 60.00 93.85 89.58 91.04 91.49 b 4.86 2 51.67 89.58 91.18 92.31 91.02 b 5.35 3 55.67 69.39 64.41 59.32 64.37 33.06 Control 87.67 99.12 95.71 93.67 96.17 Coefficient of variation

-350- Table 16. Control effect of P. ulmi egg on soybean leaf transferred from apple after 3 days of gamma irradiation

Treatment Al ive rate after 3 days (*) Control - DMRT (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect(fti) 0.5 85.86 77.01 87.05 83.31 b 7.84 1 78.49 89.20 54.55 74.08 b 18.05 2 71.03 83.76 87.16 80.65 b 10.78 3 37.04 48.91 32.47 39.47 a 56.34 Control 93.88 92.86 84.44 90.39 b -

rnDf

Table 17. Control effect of P. ulmi egg on soybean leaf transferred from apple 7 days after gamma irradiation

Treatment Alive rate after 7 days (*) TWKOT Control JUMKl (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect(fc) 0.5 83.61 86.05 91.30 86.99 b 4.79 1 84.81 88.76 85.59 86.39 b 5.44 2 84. 81 82.54 86.49 84.61 b 7.39 3 1.64 10.10 4.08 5.27 a 94.23 Control 96.81 85.45 91.82 91.36 b -

Table 18. Control effect of P. ulmi egg on soybean leaf transferred from apple 10 days after gamma irradiation

Treatment Alive rate after 10 days {% ) Control • DMRT (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect(ss)

0.5 80.95 81.82 86.36 83.04 c 7.39 1 62.69 60.00 66.29 62. 99 b 29.75 2 47.44 58.93 52.27 52.88 b 41.03 3 0.00 0.00 0.00 0.00 a 100.00 Control 94.12 82.46 92.45 89.68 c -

. 7 TXo,

-351- Table 19. Control effect of P. ulmi egg on soybean leaf transferred from apple 17 days after gamma irradiation

Treatment Alive rate after 17 days (a0 Control • DMRT (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect(ss) 0.5 76.47 76.92 76.36 76.59 c 14.67 1 34.75 27.78 30.25 30.93 b 65.54 2 19.05 25.00 25.00 23.02 b 74.36 3 0.00 0.00 0.00 0.00 a 100.00 Control 85.92 88.32 95.04 89.76 d -

7 Oft",

Table 20. Control effect of P. ulmi egg on soybean leaf transferred from apple after 21 days of gamma irradiation

Treatment Alive rate after 21 days (*) Control (KGy) Replicate 1 Replicate 2 Replicate 3 Average effect^) 0.5 60.00 76.92 69.31 68.74 c 23.41 1 30.56 28.16 22.92 27.21 b 69.69 2 7.89 10.00 9.68 9.19 a 89.76 3 0.00 0.00 0.00 0.00 a 100.00 Control 92.65 94.52 93.46 93.54 d

1 ft v:ao.

Table 21. Control effect of P. ulmi egg on soybean leaf transferred from apple 28 days after gamma irradiation

Treatment Alive rate after 28 days (s«) FIUDT Control JJMK1 (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect(ss) 0.5 74.19 59.62 62.69 65.50 c 27.03 1 26.67 27.78 24.32 26.26 b 70.75 2 12.99 6.67 10.26 9.97 a 88.89 3 0.00 0.00 0.00 0.00 a 100.00 Control 89.74 91.80 93.81 91.78 d -

Q QQp,

-352- Table 22. Control effect of P. ulmi egg on soybean leaf transferred from apple 35 days after gamma irradiation

Treatment Alive rate after 35 days {%) Control DMRT (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect(%)

0.5 30.77 35.71 42.86 35.45 59.39 1 23.53 26.60 31.58 27.23 69.66

2 12.66 8.70 13.33 11.56 a 87.12

3 0.00 0.00 0.00 0.00 a 100.00 Control 97.52 98.17 85.09 93.59 Coefficient of variation 15.56%

120

17 21 28 35 Day

Fig. 2. Overall control effects of P. ulmi egg on soybean leaf transferred from apple treated by gamma irradiation.

(3)

, 3 kGy 47.05%^ ^ ZL^\ 3 17^ 96.17%^ 28^^] *1

-353- 1 kGyif 2 kGy *\Z]^-5L **£ 4^4- Ji&t:}. ^7l

Table 23. Control effect of T. urticae adult on apple 1 day after gamma irradiation Density Treatment Alive rate after 1 day {%) Control before "DMRT (kGy) treatment Replicate 1 Replicate 2 Replicate 3 Average effect(ss) 0.5 53.00 92.31 82. 00 77.27 83.86 b 9.73 1 62.33 85.96 78.26 84.52 82.92 b 10.75 2 48.00 81.63 77.27 74.51 77.81 b 16.25 3 63.33 53.85 49.30 44.44 49.20 a 47.05 Control 60.00 96.83 89.47 92.41 92.90 c -

A (\1

Table 24. Control effect of T. urticae adult on apple 3 days after gamma irradiation Treatment Alive rate after 3 days (? 0 T")UDT Control (kGy) Replicate 1 Replicate 2Replicate 3 Average UMtil effect(fc) 0.5 81.13 86.27 83.33 83.58 b 7.02 1 76.92 82.98 72.88 77.59 b 13.68 2 78.05 63.89 78.05 73.33 ab 18.42 3 61.45 55.81 60.56 59.27 a 34.06 Control 96.43 82.76 90.48 89.89 b -

r^o-Ff 7 A'ioz

Table 25. Control effect of T. urticae adult on apple 7 days after gamma irradiation Treatment Alive rate after 7 days {%) Control (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect(as) 0.5 83.33 64.00 86.54 77.96 b 4.82 1 85.07 70.00 58.21 71.09 ab 13.20 2 68.79 76.19 52.94 66.03 ab 19.38 3 45.61 50.85 36.17 44.21 a 46.02 Control 82.61 84.31 78.79 81.90 b Coefficient of variation 14.

-354- Table 26. Control effect of T. urticae adult on apple 10 days after gamma irradiation

Treatment Alive rate after 10 days (*) nuDT Control LWJKl (kGy) Replicate 1 Replicate 2Replicate 3 Average effect (as) 0.5 83.33 84.38 82.05 84.29 be 5.08 1 84.48 87.50 85.00 82.30 be 7.33 2 68.97 77.42 80.00 72.51 b 18.35 3 40.98 68.57 42.42 43.12 a 51.45 Control 96.08 84.95 85.96 88.81 c -

V (Y7

Table 27. Control effect of T. urticae adult on apple 17 days after gamma irradiation

Treatment Alive rate after 17 days (^0 Control DMRT (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect^) 0.5 83.33 78.26 80.43 80.68 c 9.46 1 80.00 84.93 75.29 80.08 be 10.14 2 66.67 76.06 70.51 71.08 b 20.23 3 3.23 5.00 2.00 3.41 a 96.17 Control 89.09 92.98 85.25 89.11 c -

rv,off . A 8Q^

Table 28. Control effect of T. urticae adult on apple 21 days after gamma irradiation

Treatment Alive rate after 21 days (s0 Control DMRT (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect(%) 0.5 83.87 66.67 80.00 76.85 c 16.82 1 63.64 57.14 61.90 60.89 b 34.09 2 57.14 60.49 46.85 54.83 b 40.66 3 0.00 0.00 0.00 0.00 a 100.00 Control 95.45 88.24 93.48 92.39 c -

Q Kite

-355- Table 29. Control effect of T. urticae adult on apple 28 days after gamma irradiation

Alive rate after 28 days {%) Treatment Control DMRT (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect(^)

0.5 46.12 43.47 47.42 45.67 c 14.58 1 31.43 32.43 43.86 35.91 c 59.46 2 20.45 19.70 7.14 19.10 78.44 3 0.00 0.00 0.00 0.00 100.00 Control 83.64 89.66 92.45 88. 58 Coefficient of variation 14.94%

Table 30. Control effect of T. urticae adult on apple 35 days after gamma irradiation

Treatment" Alive rate after 35 days Control DMRT (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect(%)

0.5 40.00 38.71 45.45 41.39 53.28 1 31.58 30 .23 32.00 31.27 64.70 2 10.10 8.47 9.33 9. 28 89.52 3 0.00 0.00 0.00 0. 00 100.00 Control 84.93 90.77 88.14 87.95 Coefficient of variation 6.41%

Day

Fig. 3. Overall control effects of T. urticae adult on apple treated by gamma irradiation.

-356- (4)

3 kGy *Je]^H 42.92%^ ^M* ^-SsU^-}, ^M^l ^el^HWfe 20% ^e]iiH- vfE^c]-. ZL5^ 3 kGy^ 17^ ^-f-B] 96.17%^ ^-^ uoMl7fl- >. 28

4

fe- 3 kGy , 2 kGy

Table 31. Control effect of 7. urticae adult on soybean leaf transferred from apple 1 day after gamma irradiation Density Treatment Alive rate after 1 day {%) Control before DMRT effect(as) (kGy) treatment Replicate 1 Replicate 2 Replicate 3 Average 0.5 26.67 90.91 84.00 77.27 84.06 b 9.47 1 31.00 85.71 78.26 85.71 83.23 b 10.36 2 23.67 83.33 77.27 76.00 78.87 b 15.06 3 30.00 54.55 60.00 44.44 53.00 a 42.92 Control 29.67 96.77 89.47 92.31 92.85 b -

Pnof -P. Q99C

Table 32. Control effect of T. urticae adult on soybean leaf transferred from apple 3 days after gamma irradiation

Treatment Alive rate after 3 days {% ) Control (kGy) Replicate 1 Replicate 2Replicate 3 Average DMRT effect(sg) 0.5 85.71 87.50 84.21 85.81 be 3.26 1 85.71 85.00 85.71 85.48 be 3.63 2 68.97 68.57 82.35 73.30 b 17.36 3 40.98 45.95 42.42 43.12 a 51.39 Control 96.00 84.38 85.71 88.70 c -

rnaf4

-357- Table 33. Control effect of T. urticae adult on soybean leaf transferred from apple 7 days after gamma irradiation

Treatment Al ive rate after 7 days <« ) Control DMRT (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect(ss) 0.5 83.33 78.26 86.36 82.65 c 7,71 1 80.00 86.11 75.61 80.57 ab 10.03 2 68.75 77.14 67.65 71.18 b 20.52 3 2.17 4.00 2.00 2.72 a 96.96 Control 88.89 93.10 86.67 89.55 c Coefficient of variation [

Table 34. Control effect of T. urticae adult on soybean leaf transferred from apple 10 days after gamma irradiation

Treatment Alive rate after 10 days (*') Control DMRT (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect(ss) 0.5 83.87 66.67 81.82 77.45 c 16.17 1 63.64 57.14 61.90 60.89 b 34.09 2 57.14 60.49 46.85 54.83 b 40.66 3 0.00 0.00 0.00 0.00 a 100.00 Control 95.45 88.24 93.48 92.39 c -

r^af -f - Q ft1«

Table 35. Control effect of T. urticae adult on soybean leaf transferred from apple 17 days after gamma irradiation

Treatment Alive rate after 17 days (*) FlMRT Control JJl*ll\ 1 (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect(ss) 0.5 79.41 73.47 77.42 77.42 e 14.84 1 31.43 32.43 44.83 36.23 d 59.81 2 20.45 19.70 17.14 19.10 c 78.81 3 0.00 0.00 0.00 0.00 b 100.00 Control 88.46 89. 66 92.31 90.14 a -

« sis*

-358- Table 36. Control effect of T. urticae adult on soybean leaf transferred from apple 21 days after gamma irradiation

Treatment Alive rate after 21 days <%> . Control DMRT „. f/q,\ (kGy) Replicate 1 Replicate 2 Replicate 3 Average enect^j 0.5 64.29 64.15 65.00 64.48 d 28.47

1 31.03 30.23 32.00 31.09 c 65.51

2 10.00 9026 9.21 9.49 b 89.47

3 0.00 0.00 0.00 0.00 a 100.00

Control 84.93 90.77 88.14 87.95 e

Coefficient of variation 3.79%

Table 37. Control effect of T. urticae adult on soybean leaf 28 days after gamma irradiation

Treatment Alive rate after 28 days (*) Control DMRT (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect(%) 0.5 51.72 56.52 66.67 58.30 c 35.32 1 27.78 22.95 38.57 29.77 b 66.98 2 7.14 9.52 9.38 8.68 a 90.37 3 0.00 0.00 0.00 0.00 a 100.00 Control 71.43 84.85 94.74 83. 67 d -

rv,Q-ff 1 r; QC

Table 38. Control effect of T. urticae adult on soybean leaf 35 days after gamma irradiation

Alive rate after 35 days (ai) Treatment Control DMRT (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect(ss) 0.5 51.85 21.88 25.00 32.91 b 63.49 1 33.33 22.22 32.53 29.36 b 67.43 2 11.11 14.29 18.92 14.77 ab 83.61 3 0.00 0.00 0.00 0.00 a 100.00 Control 96.43 88.89 93.94 93.09 c -

99 MOA

-359- 120

28 35

Fig. 4. Overall control effect of T. urticae adult on soybean leaf transferred from apple treated by gamma irradiation.

a) , 4 4, 4 40% n]i£S] ^^

3 kGy£] 93.44%^] 2 kGyfe A] (Table 39-46, Fig. 5).

Table 39. Control effect of P. ulmi egg on apple 1 day after gamma irradiation

Densit Treatment y Alive rate after 1 day {%) Control before DMRT (kGy) treatment Replicate 1 Replicate 2 Replicate 3 Average effect(%) 0.5 158.00 84.92 92.66 86.15 87.91 b 8.26 1 134.67 87.16 84.17 84.62 85.31 b 10.97 2 145.33 71.11 77.03 61.44 69.86 a 27.10 3 111.33 71.43 65.09 66.92 67.82 a 29.24 Control 166.33 98.54 97.35 91.61 95.83 Coefficient of variation

-360- Table 40. Control effect of P. ulmi egg on apple 3 days after gamma irradiation

Treatment Alive rate after 3 days {% ) Control DMRT (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect(%) 0.5 93.12 85.05 80.22 86.13 ab 7.98 1 81.60 69.90 80.23 77.25 ab 17.47 2 72.00 73.50 47.30 64.27 a 31.34 3 72.73 61.97 58.09 64.26 a 31.34 Control 89.60 94.84 96.35 93.60 b -

in A Co,

Table 41. Control effect of P. ulmi egg on apple 7 days after gamma irradiation Al ive rate after 7 days Treatment (*) Control DMRT (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect(%)

0.5 95.35 88.46 80.56 88.12 be 7.34 1 88.37 91.30 99.03 92.90 be 2.31 2 73.56 78.03 77.18 76.26 ab 19.81 3 72.92 60.29 55.17 62.79 a 33.97 Control 94.39 97.52 93.39 95.10 c -

rv,Qff 7 P,0

Table 42. Control effect of P. ulmi egg on apple 10 days after gamma irradiation

Treatment Al ive rate after 10 days (s Control DMRT (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect(?0 0.5 85.85 80.00 84.21 83.35 b 8.20 1 77.78 90.73 66.20 78.23 b 13.84 2 78.05 82.79 85.59 82.14 b 9.35 3 36.11 45.73 41.27 41.04 a 54.80 Control 94.05 92.37 85.96 90.80 b -

-361- Table 43. Control effect of P. ulmi egg on apple 17 days after gamma irradiation

Treatment Alive rate after 17 days 0<0 Control DMRT (kGy) Replicate 1 Replicate 2Replicate 3 Average effect(%) 0.5 84.35 88.14 91.36 87.95 be 5.74 1 78.35 83.62 86.61 82.86 c 11.19 2 86.36 84.21 86.49 85.69 be 8.16 3 2.44 9.00 6.39 6.12 a 93.44 Control 95.65 92.66 91.59 93.30 c -

_ A irw

Table 44. Control effect of P. ulmi egg on apple 21 days after gamma irradiation

Treatment Alive rate after 21 days (20 nUDT Control DMKi (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect(^) 0.5 80.77 83.19 90.63 84.86 c 5.45 1 61.43 56.82 66.30 61.52 b 31.46 2 49.03 55.45 50.98 51.82 b 42.26 3 0.00 0.00 0.00 0.00 a 100.00 Control 93.55 83.05 92.66 89.75 c -

. 7 ite

Table 45. Control effect of P. ulmi egg on apple 28 days after gamma irradiation

Treatment Alive rate after 28 days (*) T1UDT Control UMKl (kGy) Replicate 1 Replicate 2Replicate 3 Average effect(ss)

0.5 90.48 79.67 76.36 82.17 C 11.51 1 36.30 22.50 29.75 29.52 b 68.21 2 22.14 24.62 26.03 24.26 b 73.87 3 0.00 0.00 0.00 0.00 a 100.00 Control 89.47 93.80 95.32 92.86 c -

in R7%

-362- Table 46. Control effect of P. ulmi egg on apple 35 days after gamma irradiation

Treatment Alive rate after 35 days {%) Control DMRT (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect^)

0.5 63.,08 80.61 74.47 72.72 21.69 1 32. 61 28.16 26.09 28.95 68.82 2 10. 87 10.14 9.68 10.23 a 88.98 3 0.00 0.00 0.00 0.00 a 100.00 Control 92. 80 96.57 93.36 94.24 Coefficient of variation 10.89%

120

100 ^X X X -•—0.5KGy. -«-1KGy 80 -*-2KGy -x-3KGy / /

60

40

20

10 17 21 28 35 Day Fig. 5. Overall control effect of P. ulmi egg on apple treated by gamma irradiation.

(2) , 4 . 3 kGy

K 3 94. 23%^ 1 kGyi} 2 kGy^ , 21^ (Table 47-54, Fig. 6).

-363- Table 47. Control effect of P. ulmi egg on soybean leaf transferred from apple 1 day after gamma irradiation

Treatment Alive rate after 1 day(*) Control DMRT (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect(as) 0.5 86.39 95.12 86.15 89.22 be 7.15 1 88.00 88.02 83.67 86.57 be 9.92 2 81.13 87.32 70.59 79.68 b 17.08 3 69.39 65.00 58.82 64.40 a 32.98 Control 99.11 95.80 93.38 96.10 c -

A A£os

Table 48. Control effect of P. ulmi egg on soybean leaf transferred from apple 3 days after gamma irradiation

Treatment Alive rate after 3 days (*) Control DMRT IAH1LIUJ.

Table 49. Control effect of P. ulmi egg on soybean leaf transferred from apple 7 days after gamma irradiation

Treatment Alive rate after 7 days (*) Control

0.5 83.61 86.74 91.08 87.14 b 4.62 1 84.81 88.76 85.59 86.39 b 5.44 2 84.81 82.54 86.49 84.61 b 7.39 3 1.64 10.10 4.08 5.27 a 94.23 Control 96.81 85.45 91.82 91.36 b

Coefficient of variation

-364- Table 50. Control effect of P. ulmi egg on soybean leaf transferred from apple 10 days after gamma irradiation

Treatment Alive rate after 10 days (a0 FlMRT Control DMK1 (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect(%)

0.5 80.95 81.95 86.36 83.09 C 7.34 1 62.69 60.00 66.29 62.99 b 29.75 2 47.44 58.93 52.27 52.88 b 41.03 3 0.00 0.00 0.00 0.00 a 100.00 Control 94.12 82.46 92.45 89.68 c -

rv.Q-ff 7 14%

Table 51. Control effect of P. ulmi egg on soybean leaf transferred from apple 17 days after gamma irradiation

Treatment Alive rate after 17 days (*) nMDT Control DMK1 (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect(%) 0.5 76.47 76.92 76.36 76.59 c 14.76 1 34.88 27.78 30.25 30.97 b 65.53 2 19.05 25.00 25.00 23.02 b 74.38 3 0.00 0.00 0.00 0.00 a 100.00 Control 86.21 88.32 95.02 89.85 d

7 ia

Table 52. Control effect of P. ulmi egg on soybean leaf transferred from apple 21 days after gamma irradiation

Treatment Alive rate after 21 days (ai) Control DMRT (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect(as) 0.5 61.90 76.92 70.00 69.61 c 22.53 1 30.56 28.16 22.92 27.21 b 69.72 2 7.89 10.00 9.68 9.19 a 89.77 3 0.00 0.00 0.00 0.00 a 100.00 Control 92.65 94.52 93.46 93.54 d -

r^Q-F-f

-365- Table 53. Control effect of P. ulmi egg on soybean leaf transferred from apple 28 days after gamma irradiation

Treatment Alive rate after 28 days (*) Control DMRT (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect(^) 0.5 75.41 59.62 62.69 65.90 26.65 1 26.67 27.78 24. 32 26. 26 70.78

2 13.33 6.67 10.53 10.18 a 88.67 3 0.00 0.00 0.00 0.00 a 100.00 Control 89.74 91.80 93.81 91.78 Coefficient of variation 11.50%

Table 54. Control effect of P. ulmi egg on soybean leaf transferred from apple 35 days after gamma irradiation

Alive rate after 35 days Treatment Control DMRT (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect(ss)

0.5 26.40 27.00 24.32 25.91 b 70.78 1 23.53 26.60 31.58 27.23 b 69.69 2 12.66 8.70 13.33 11.56 a 87.13 3 0.00 0.00 0.00 0.00 a 100.00 Control 97.52 98.17 85.09 93.59 c Coefficient of variation 13.83%

Day Fig. 6. Overall control effect of P. ulmi egg on soybean leaf transferred from apple treated by gamma irradiation.

-366- (3)

3

(Table 55-62, Fig. 7).

*1, 3

Table 55. Control effect of T. urticae adult on apple 1 day after gamma irradiation

Density Alive rate after 1 day (%) Treatment Control before DMRT effect(%) (kGy) treatment Replicate 1 Replicate 2 Replicate 3 Average

0.5 43.00 88.75 60.00 77.27 75.34 b 18.81 1 68.00 84.85 77.36 82.35 81.52 b 12.15 2 54.00 80.36 80.85 77.97 79.72 b 14.08 3 68. 33 55.38 55.26 54.69 55.11 a 40.61 Control 79.00 96.81 90.00 91.57 92.79 b -

7 Ql!(

Table 56. Control effect of T. urticae adult on apple 3 days after gamma irradiation

Treatment Alive rate after 3 days (a0 Control DMRT (kGy) Replicate 1 Replicate 2Replicate 3 Average effect(fc) 0.5 81.25 84.21 81.25 82.24 b 7.05 1 76.09 82.00 72.88 76.99 ab 12.98 2 79.55 63.41 80.49 74.48 ab 15.82 3 63.54 62.20 60.56 62.10 a 29.81 Control 94.92 83.02 87.50 88.48 b -

7 M

-367- Table 57. Control effect of T. urticae adult on apple 7 days after gamma irradiation

Treatment Alive rate after 7 days (*) Control DMRT (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect(%) 0.5 80.82 60.71 84.31 75.28 ab 9.46 1 89.33 77.46 73.40 80.07 b 3.71 2 68.75 72.34 57.58 66.22 ab 20.36 3 48.21 63.27 39.62 50.37 a 39.42 Control 84.29 84.00 81.16 83.15 b -

Table 58. Control effect of T. urticae adult on apple 10 days after gamma irradiation

Treatment Alive rate after 10 days (*) Control DMRT (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect(as) 0.5 83. 58 88.57 80.85 84.33 be 5.65 1 82.46 81.58 81.40 81.81 be 8.48 2 77.78 67.50 76.32 73.86 b 17.37 3 55.56 41.43 41.54 46.17 a 48.34 Control 96.23 86.49 85.45 89.39 c -

A 99%

Table 59. Control effect of T. urticae adult on apple 17 days after gamma irradiation

Treatment Alive rate after 17 days 0 flMRT Control DMK1 (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect(%) 0.5 83.33 83.64 73.58 80.18 be 8.08 1 80.00 87.84 75.29 81.04 be 7.10 2 71.05 77.11 68.75 72.30 b 17.12 3 3.23 5.00 7.69 5.31 a 93.92 Control 86..67 91.11 83.93 87.24 c - Coefficient of variation - 5.22%

-368- Table 60. Control effect of T. urticae adult on apple 21 days after gamma irradiation

Treatment Alive rate after 21 days (*> Control DMRT .„ +/o \ (kGy) Replicate 1 Replicate 2 Replicate 3 Average eitectw 0.5 88.89 72.73 70.00 77.21 cd 14.84 1 70.73 64.81 63.53 66.36 be 26.80 2 62.00 60.76 49.56 57.44 b 36.64 3 0.00 0.00 0.00 0.00 a 100.00 Control 95.00 83.78 93.18 90.66 d Coefficient of variation I

Table 61. Control effect of T. urticae adult on apple 28 days after gamma irradiation

Treatment Alive rate after 28 days (s<0 Control (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect(ss) 0.5 79.03 79.55 78.46 79.01 c 12.23 1 33.78 30.56 52. 94 39.09 b 56. 58 2 22.22 14.52 17.14 17.96 a 80. 05 3 0.00 0.00 0.00 0.00 a 100.00 Control 85.71 86.36 98.00 90.03 c - Coefficient of variation - 13.96%

Table 62. Control effect of T. urticae adult on apple 35 days after gamma irradiation

Treatment Alive rate after 35 days 0 Control DMRT (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect(%) 0.5 46.15 47.06 68.42 53.88 c 40.15 1 37.50 23.68 28.07 29.75 b 66.95 2 9.9. 8.41 15.79 11.37 ab 87.37 3 0.00 0.00 0.00 0.00 a 100.00 Control 86.44 89.09 82.93 86.15 d -

1Q Qfi<*

-369- 100 -•— 0.5KGy -•-IKGy -*-2KGy -*—3KGy / /

60

40 >

20 * * / /

17 21 28 35 Day Fig. 7. Overall control effect of T. urticae adult on apple treated by gamma irradiation.

(4) 3 kGy ^ 96.17%^

L 1 kGyif 2 10^ 70% l «^, 0.5 kGy 60% JsL&cf (Table 63-70, Fig. 8).

Table 63. Control effect of T. urticae adult on soybean leaf transferred from apple 1 day after gamma irradiation

Density Alive rate after 1 day {%) Treatment Control before DMRT (kGy) effect(%) treatment Replicate 1 Replicate 2 Replicate 3 Average

0.5 31.33 92.31 82.00 77.27 83.86 b 9.73 1 25.55 85.96 78.26 84.52 82.92 b 10.75 2 23.67 81.63 77.27 74.51 77.81 b 16.25 3 29.88 53.85 49.30 44.44 49.20 a 47.05 Control 19.33 96.83 89.47 92.41 92.90 c -

-370- Table 64. Control effect of T. urticae adult on soybean leaf transferred from apple 3 days after gamma irradiation

Treatment Alive rate after 3 days (*) Control DMRT (kGy) Repl icate 1 Replicate 2 Repl icate 3 Average effect (as) 0.5 83.33 87.50 82.05 84.29 be 5.08 1 84.48 77.42 85.00 82.30 be 7.33 2 68.97 68.57 80.00 72.51 b 18.35 3 40.98 45.95 42.42 43.12 a 51.45 Control 96.08 84.38 85.96 88.81 c Coefficient of variation (

Table 65. Control effect of T. urticae adult on soybean leaf transferred from apple 7 days after gamma irradiation

Treatment Alive rate after 7 days <*) nURT Control JJMnl (kGy) Replicate 1 Replicate 2Replicate 3 Average effect(as)

0.5 83.33 78.26 80.43 80.68 C 9.46 1 80.00 84.93 75.29 80.08 be 10.14 2 66.67 76.06 70.51 71.08 b 20.23 3 3.23 5.00 2.00 3.41 a 96.17 Control 89.09 92.98 85.25 89.11 c -

rvoff A Ra<*

Table 66. Control effect of T. urticae adult on soybean leaf transferred from apple 10 days after gamma irradiation

Treatment Alive rate after 10 days (*) Control DMRT (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect (as) 0.5 83.87 66.67 80.00 76.85 c 16.82 1 63.64 57.14 61.90 60.89 b 34.09 2 57.14 60.49 46.85 54.83 b 40.66 3 0.00 0.00 0.00 0.00 a 100.00 Control 95.45 88.24 93.48 92.39 c -

Q RQ^

-371- Table 67. Control effect of T. urticae adult on soybean leaf transferred from apple 17 days after gamma irradiation

Treatment Alive rate after 17 days (*) DMRT Control (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect(as) 0.5 76.12 73.47 77.42 75.67 d 14.58 1 31.43 32.43 43.86 35.91 c 59.46 2 20.45 19.70 17.14 19.10 b 78.44 3 0.00 0.00 0.00 0.00 a 100.00 Control 83.64 89.66 92.45 88.58 e - a "*$.»,

Table 68. Control effect of T. urticae adult on soybean leaf transferred from apple 21 days after gamma irradiation

Treatment Alive rate after 21 days (*) Control DMRT (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect(%) 0.5 66.67 64.15 68.42 66.41 d 25.03 1 31.58 30.23 32.00 31.27 c 64.70 2 10.10 8.41 9.33 9.28 b 89.52 3 0.00 0.00 0.00 0.00 a 100.00 Control 84.93 90.77 88.14 87.95 e -

A RQsc

Table 69. Control effect of T. urticae adult on soybean leaf transferred from apple 28 days after gamma irradiation

Treatment Al ive rate after 28 days {%0 Control (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect(%)

0.5 51 .72 57.78 68.42 59.31 C 33.05 1 27.78 23.73 40.30 30.60 b 65.45 2 7.46 9.52 12.07 9.69 a 89.07 3 0.00 0.00 0.00 0.00 a 100.00 Control 71.43 84.85 94.74 83.67 d -

• • 1 A 1Aoz

—372— Table 70. Control effect of T. urticae adult on soybean leaf transferred from apple 35 days after gamma irradiation

Treatment Alive rate after 35 days {%) Control DMRT (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect (5«)

0.5 23.70 40.30 27. 78 30. 60 c 64.45 1 33.33 22.22 32. 53 29. 36 c 66.85 2 11.11 14.29 18.92 14.77 83.32 3 0.00 0.00 0.00 0. 00 100.00 Control 96.43 88.89 93.94 93.09 Coefficient of variation 14.

Day Fig. 8. Overall control effects of T. urticae adult on soybean leaf transferred from apple treated by gamma irradiation.

2.

(1)

3 kGy^ 100%SA-1 . 1 kGyi} 2 kGyfe

(Table 71-78, Fig. 9).

-373- Table 71. Control effect of P. ulmi egg on pear 1 day after gamma irradiation

Treatment Density Alive rate after J d^ {%) Control before DMRT ^?°,L (kGy) treatment Replicate 1 Replicate 2 Replicate 3 Average 0.5 19.00 93.75 94.74 95.45 94.65 b 2.15 1 20.00 95.45 88.89 93.10 92.48 b 4.39 2 23.00 90.48 85.71 92.59 89.59 ab 7.38 3 22.00 80.77 86.36 77.78 81.64 a 15.60 Control 22.67 96.45 94.74 100.00 96.73 b Coefficient of variation 3.79%

Table 72. Control effect of P. ulmi egg on pear 3 days after gamma irradiation

Treatment Alive rate after 3 days (a0 Control DMRT (kGy) Replicate 1Replicate 2 Replicate 3 Average effect{%)

0.5 93.75 90.00 95.45 93.07 a 1.54 1 96.15 86.36 93.10 91.87 a 2.80 2 93.55 78.26 92.59 88.13 a 6.67 3 80.77 86.36 87.50 84.88 a 10.20 Control 95.45 95.00 93.10 94.52 a -

c; 91 %

Table 73. Control effect of P. ulmi egg on pear 7 days after gamma irradiation

Treatment Alive rate after 7 days (*) nMDT Control DMK1 (KGy) Replicate 1Replicate 2 Replicate 3 Average effect (as) 0.5 88.24 85.71 87.50 87.15 ab 4.90 1 92.59 86.36 87.10 88.68 ab 3.23 2 90.63 78.26 86.21 85.03 ab 7.21 3 80.77 82.61 80.00 81.13 a 11.47 Control 95.45 86.36 93.10 91.64 b -

Q Aioz

-374- Table 74. Control effect of P. ulmi egg on pear 10 days after gamma irradiation

Treatment Alive rate after 10 days (*) nMRT Control effect(as) (kGy) Replicate 1 Replicate 2 Replicate 3 Average

0.5 88.24 94.74 87.50 90.16 a 2.36 1 92.59 87.50 87.10 89.06 a 3.55

2 90. 63 78.26 86.21 85.03 a 7.92 3 80.77 82.61 80.00 81.13 a 12.14 Control 95.45 88.46 93.10 92.43 a -

A KRo,

Table 75. Control effect of P. ulmi egg on pear 17 days after gamma irradiation

Treatment Alive rate after 17 »ar° \~> Control (k()y) Replicate 1 Replicate 2 Replicate 3 Average effect(*)

0.5 88.24 94.74 95.45 92.81 b 2.10

1 89.29 91.30 90.00 90.20 b 4.85

2 90.63 81.82 89.29 87.24 b 7.97

3 0.00 0.00 0.00 0.00 a 100.00

Control 95.45 95.83 93.10 94.80 b

Coefficient of variation 4.'.

Table 76. Control effect of P. ulmi egg on pear 21 days after gamma irradiation

Treatment Alive rate after 21 days (*) Control DMRT ^oniroi (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect(*)

0.5 75.00 81.82 87.50 81.44 b 11.62

1 83.33 75.00 81.82 80.05 b 13.13

2 80.56 81.82 69.44 77.27 b 16.14

3 0.00 0.00 0.00 0.00 a 100.00

Control 87.50 95.83 93.10 92.15 b

Coefficient of variation 8.

-375- Table 77. Control effect of P. ulmi egg on pear 28 days after gamma irradiation

Treatment Alive rate after 28 days {%) Control DMRT (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect(as)

0.5 75.00 81.82 84.00 80.27 12.88 1 27.27 36.84 47.37 37.16 b 59.67 2 26.67 33.33 27.78 29.26 b 68.25 3 0.00 0.00 0.00 0.00 100.00 Control 87.50 95.83 93.10 92.15 Coefficient of variation 9.22%

Table 78. Control effect of P. ulmi egg on pear 35 days after gamma irradiation

Treatment Alive rate after 35 days {%) Control DMRT (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect(as)

0.5 52.94 72.00 55.00 59.98 34.91 1 22.73 36.84 42.11 33.89 b 63.22 2 18.75 29.17 27. 78 25.23 b 72.62 3 0.00 0.00 0.00 0.00 100.00 Control 87.50 95.83 93.10 92.15 Coefficient of variation 12.87*;

1 ? 21 28 36

Fig. 9. Overall control effects of P. ulmi egg on pear treated by gamma irradiation.

-376- (2) 3 y^H H ^ ] 1OO*SJ #^JL2fl- UBf^t:}. *>^, l kGyif 2 kGy ^el^-oM^- ^e] 17^ 60% °}^$) »y-47ft Ji&JM, ^*) n. &o} ^7^}^t:f. 0.5 kGy 35

Table 79. Control effect of P. ulmi egg on soybean leaf transferred from- pear after 1 day of gamma irradiation Treatment Density Alive rate after 1 day (») Control before DMRT ™ +lo, (KGy) treatment Replicate 1 Replicate 2 Replicate 3 Average ettect(^) 0.5 9.67 88.89 100.00 100.00 96.30 b 0.45 1 12.00 100.00 88.89 93.75 94.21 ab 2.60 2 23.00 90.48 85.71 92.59 89.59 ab 7.38 3 22.00 80.77 86.36 77.78 81.64 ab 15.60 Control 22.67 95.45 94.74 100.00 96.73 a - Coefficient of variation 5.63%

Table 80. Control effect of P. ulmi egg on soybean leaf transferred from pear 3 days after gamma irradiation

Treatment Alive rate after 3 days (*) Control DMRT (kGy) Replicate 1Replicate 2 Replicate 3 Average effect(&) 0.5 88.24 85.71 90.91 88.29 ab 3.66 1 94.74 87.50 87.10 89.78 ab 2.77 2 90.63 78.26 86.21 85.03 ab 7.21 3 80.77 82.61 82. 35 81.91 a 11.29 Control 95.45 88.46 93.10 92.34 b -

19 fX\

-377- Table 81. Control effect of P. ulmi egg on soybean leaf transferred from pear 7 days after gamma irradiation

Treatment Alive rate after 7 days (a0 Control DMRT (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect(%) 0.5 88.24 94.74 95.45 92.81 b 2.10 1 89.29 91.30 90.00 90.20 b 4.85 2 90.00 81.82 89.29 87.03 b 8.19 3 72.73 57.97 52.24 61.08 a 35.76 Control 95.45 95.83 93.10 94.80 b -

a P.Ao,

Table 82. Control effect of P. ulmi egg on soybean leaf transferred from pear 10 days after gamma irradiation

Treatment Alive rate after 10 days (*) Control (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect(ss) 0.5 75.00 81.82 91.67 82.83 b 10.11 1 83.33 75.00 81.82 80.05 b 13.13 2 80.56 81.82 69.44 77.27 b 16.14 3 37.04 48.91 32.47 39.47 a 56.34 Control 87.50 95.83 93.10 92.15 b -

1Q 71^

Table 83. Control effect of P. ulmi egg on soybean leaf transferred from pear 17 days after gamma irradiation

Treatment Alive rate after 17 days (*) Control DMRT (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect (a:) 0.5 75.00 81.82 84.00 80.27 c 12.88 1 27.27 36.84 47.37 37.16 b 59.67 2 26.67 33.33 27.78 29.26 b 68.25 3 0.00 0.00 0.00 0.00 a 100.00 Control 87.50 95.83 93.10 92.15 c -

-378- Table 84. Control effect of P. ulmi egg on soybean leaf transferred from pear 21 days after gamma irradiation

Treatment Alive rate after 21 days (*0. nvinT Control DMttl (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect (as) 0.5 52.94 72.00 55.00 59.98 c 34.91 1 22.73 31.58 42.11 32.14 b 65.12 2 18.75 20.83 27.78 22.45 b 75.63 3 0.00 0.00 0.00 0.00 a 100.00 Control 93.94 95.83 93.10 94.29 d -

. 7 7Q<*

Table 85. Control effect of P. ulmi egg on soybean leaf transferred from pear 28 days after gamma irradiation

Treatment Alive rate after 28 days (%0 F1MDT Control DMK1 (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect(sc)

0.5 52.94 72.00 55.00 59.98 C 34.91 1 22.73 31.58 42.11 32.14 b 65.12 2 18.75 20.83 27.78 22.45 b 75.63 3 0.00 0.00 0.00 0.00 a 100.00 Control 93.94 95.83 93.10 94.29 d -

. 7 IS**

Table 86. Control effect of P. ulmi egg on soybean leaf transferred from pear 35 days after gamma irradiation

Treatment Alive rate after 35 days (*) Control DMRT (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect (s*Q 0.5 52.94 72.00 55.00 59.98 c 34.91 1 22.73 31.58 42.11 32.14 b 65.12 2 18.75 20.83 27.78 22.45 b 75.63 3 0.00 0.00 0.00 0.00 a 100.00 Control 90.48 95.83 93.10 93.14 d -

rnaff 9fi Q7?«

-379- Day Fig. 10. Overall control effects of P. ulmi egg on soybean leaf transferred from pear treated by gamma irradiation.

(3)

, 3

1 kGyif 2 kGy (Table 87-94, Fig. 11)

Table 87. Control effect of T. urticae adult on pear 1 day after gamma irradiation

Alive rate after 1 day {%) Treatment Density Control before DMRT effect(fc) (kGy) treatment Replicate 1 Replicate 2 Replicate 3 Average

0.5 16.00 91.67 93.75 85.00 90.14 b 5.00 1 19.00 87.50 91.67 82.35 87.17 ab 8.12 2 18.67 86.36 88.24 76.47 83.69 ab 11.79 3 16.33 66.67 65.00 82.35 71.34 a 24.81 Control 18.67 94.74 95.45 94.44 94.88 b Coefficient of variation 7.

-380- Table 88. Control effect of T. urticae adult on pear 3 days after gamma irradiation

Treatment Aive rate after 3 days {%)i nMRT Control LJ|V|K I (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect(%) 0.5 91.67 93.75 85.00 90.14 ab 4.00 1 93.33 88.00 77.78 86.37 ab 8.02 2 90.00 83.33 76.47 83.27 ab 11.32 3 84.62 65.00 73.68 74.43 a 20.73 Control 94.74 91.30 95.65 93.90 b -

Table 89. Control effect of T. urticae adult on pear 7 days after gamma irradiation

Treatment Alive rate after 7 days (°A0 Control DMRT (kGy) Replicate 1 Replicate 2Replicate 3 Average effect^) 0.5 91.67 88.24 85.00 88.30 be 5.96 1 82.35 84.62 82.35 83.11 ab 11.49 2 81.25 75.00 76.47 77.57 a 17.39 3 79.17 76.47 82.35 79.33 a 15.51 Control 94.74 91.30 95.65 93.90 c -

Q 1 Ao,

Table 90. Control effect of T. urticae adult on pear 10 days after gamma irradiation

Treatment Alive rate after 10 days (%0 Control DMRT (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect(%) 0.5 91.67 88.24 85.00 88.30 ab 5.74 1 82.35 84.62 77.78 81.58 ab 12.91 2 69.23 75.00 81.25 75.16 a 19.77 3 80.95 76.47 82.35 79.93 a 14.68 Control 94.74 91.30 95.00 93.68 b -

Pnoff - r: Arto,

-381- Table 91. Control effect of T. urticae adult on pear 17 days after gamma irradiation

Treatment Alive rate after 17 days (*) DMRT Control (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect(%)

0.5 84.62 88.24 85.00 85.95 be 8.25

1 82.35 84.62 82.35 83.11 be 11.29

2 64.29 83.33 76.47 74.70 b 20.26

3 0.00 0.00 0.00 0.00 a 100.00

Control 94.74 91.30 95.00 93.68 c -

rv.Qf-f

Table 92. Control effect of T. urticae adult on pear 21 days after gamma irradiation

Alive rate after 21 days (s Treatment *) Control (kGy) Replicate 1 Replicate 2 Replicate 3 Average DMRT effect(%)

0.5 78. 57 78.95 85.00 80.84 be 13.71

1 66.67 81.48 70.00 72.72 b 22.38

2 56.25 75.00 76.47 69.24 b 26.09 3 0.00 0.00 0.00 0.00 a 100.00

Control 94.74 91.30 95.00 93.68 c -

rnaft

Table 93. Control effect of T. urticae adult on pear 28 days after gamma irradiation

Alive rate after 28 days Treatment (*) Control effect(%) (kGy) Replicate 1 Replicate 2 Replicate 3 Average

0.5 56.25 78.95 50.00 61.73 C 34.10 1 30.77 56.25 33.33 40.12 be 57.18 2 36.84 29.41 33.33 33.20 b 64.56 3 0.00 0.00 0.00 0.00 a 100.00 Control 94.74 91.30 95.00 93.68 d -

1Q QRoz

-382- Table 94. Control effect of T. urticae adult on pear 35 days after gamma irradiation

Treatment Alive rate after 35 days {%) Control DMRT (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect(%)

0.5 56.25 35.71 33.33 41.77 b 55.42 1 30.77 47.06 47.06 36.47 b 61. 07 2 31.58 29.41 29.41 27.35 b 70. 81 3 0.00 0.00 0.00 0.00 100 .00 Control 94.74 91.30 95.00 93.68 Coefficient of variation • 18.74%

Fig. 11. Overall control effect of T. urticae adult on pear treated by gamma irradiation.

(4)

}. ZL5]u]- 3 . ZLZ}3. 4^ W-B}, 1 (Table 95-102, Fig. 12).

-383- Table 95. Control effect of T. urticae adult on soybean leaf transferred from pear 1 day after gamma irradiation

Treatment Density Alive rate after 1 day {%) before DMRT Control (kGy) treatment Replicate 1 Replicate 2 Replicate 3 Average effect(ss) 0.5 13.33 91.67 100.00 85.00 92.22 b 2.80 1 15.00 87.50 91.67 82.35 87.17 ab 8.12 2 12.00 90.00 88.89 76.47 85.12 ab 10.29 3 16.33 66.67 65.00 82.35 71.34 a 24.81 Control 19.67 94.74 95. 45 94.44 94.88 b -

A m <>y

Table 96. Control effect of T. urticae adult on soybean leaf transferred from pear 3 days after gamma irradiation

Treatment Alive rate after 3 days (% ) Control DMRT (kGy) Replicate 1 Replicate 2Replicate 3 Average effect(%) 0.5 91.67 88.24 88.89 89.60 b 4.36 1 82.35 90.91 77.78 83.68 ab 10.68 2 69.23 75.00 81.25 75.16 a 19.77 3 81.82 76.47 82.35 80.21 ab 14.37 Control 94.74 91.30 95.00 93.68 b -

- 7 A1o,

Table 97. Control effect of T. urticae adult on soybean leaf transferred from pear 7 days after gamma irradiation (% Treatment Alive rate after 7 days ) Control DMRT (kGy) Replicate 1 Replicate 2 Repl icate 3 Average effect (a;) 0.5 84.62 88.89 85.00 86.17 be 8.02 1 82.35 83.33 82.35 82.68 be 11.74 2 64.29 83.33 76.47 74.70 b 20.26 3 0.00 0.00 0.00 0.00 a 100.00 Control 94.74 91.30 95.00 93.68 c Coefficient of variation 14.

-384- Table 98. Control effect of T. urticae adult on soybean leaf transferred from pear 10 days after gamma irradiation Alive rate after 10 days {"><• Treatment •'). nUDT Control UMnl (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect(%) 0.5 78.57 78.95 88.89 82.14 be 12.32 1 66.67 83.33 70.00 73.33 c 21.72 2 56.25 77.78 76.47 70.17 c 25.10 3 0.00 0.00 0.00 0.00 a 100.00 Control 94.74 91.30 95.00 93.68 c -

. 7 CYlo,

Table 99. Control effect of T. urticae adult on soybean leaf transferred from pear 17 days after gamma irradiation

Treatment Alive rate after 17 days (?<0 Control (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect(%)

0.5 56.25 78.95 50.00 61.73 C 34.10 1 30.77 56.25 33.33 40.12 be 57.18 2 36.84 29.41 33.33 33.20 b 64.56 3 0.00 0.00 0.00 0.00 a 100.00 Control 94.74 91.30 95.00 93.68 d -

. A QQoz

Table 100. Control effect of T. urticae adult on soybean leaf transferred from pear 21 days after gamma irradiation

Treatment Alive rate after 21 days «) Control DMRT (kGy) Repl icate 1 Replicate 2 Replicate 3 Average effect(a) 0.5 56.25 52.63 60.00 56.29 b 39.91 1 30.77 47.06 31.58 36.47 b 61.07 2 31.58 29.41 21.05 27.35 ab 70.81 3 0.00 0.00 0.00 0.00 a 100.00 Control 94.74 91.30 95.00 93.68 c Coefficient of variation 9.

-385- Table 101. Control effect of T. urticae adult on soybean leaf transferred from pear 28 days after gamma irradiation

Treatment Alive rate after 28 days {%) Control DMRT (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect(%) 0.5 56.25 52.63 60.00 56.29 39.91 1 30.77 35.29 31.58 32.55 b 65.26 2 21.05 29.41 21.05 23.84 b 74.55 3 0.00 0.00 0.00 0. 00 100.00 Control 94.75 91.30 95.00 93. 68 Coefficient of variation 14.94%

Table 102. Control effect of T. urticae adult on soybean leaf transferred from pear 35 days after gamma irradiation

Treatment Alive rate after 35 days {%) Control DMRT (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect(?0 0.5 56.25 44.44 60.00 53. 56 42.82 1 30. 77 29.41 31.58 30.59 b 67.35 2 15.79 25.00 21.05 20.61 b 78.00 3 0.00 0.00 0.00 0.00 100.00 Control 91.67 89.47 94.12 91.75 Coefficient of variation 6.41%

Fig. 12. Overall control effect of T. urticae adult on soybean leaf transferred from pear treated by gamma irradiation.

-386- 4, 20% n) 3 kGyir 100%-^f , 1 kGy A]- 2 (Table 39-46, Fig. 5).

Table 103. Control effect of P. ulmi egg on pear 1 days after gamma irradiation

Treatment Alive rate after 1 days (*) Control (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect(»)

0.5 93.75 95.45 95.00 94.73 be 3.34 1 97.50 91.67 96.00 95.06 be 3.01 2 86.96 85.71 92.59 92.59 ab 9.78 3 80.77 86.36 85.71 85.71 a 14.00 Control 96.88 97.14 100.00 98.01 c Coefficient of variation 2.66%

Table 104. Control effect of P. ulmi egg on pear 3 days after gamma irradiation

Treatment Alive rate after 3 days (*) Control DMRT (kGy) Replicate 1 Replicate 2 Repl icate 3 Average effect(%) 0.5 89.47 90.00 95.45 91.64 a 3.04 1 89.29 82.61 93.10 88.33 a 6.55 2 90.63 76.00 89.66 85.43 a 9.62 3 80.77 82.61 87.50 83.63 a 11.53 Control 95.45 95.00 93.10 94.52 a Coefficient of variation 4.57%

-387- Table 105. Control effect of P. ulmi egg on pear 7 days after gamma irradiation

Treatment Alive rate after 7 days <*) Control DMRT (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect(%) 0.5 80.00 85.71 84.00 83.24 ab 9.17 1 92.59 88.57 87.10 89.42 ab 2.42 2 90.63 84.00 86.21 86.94 ab 5.12 3 75.86 82.61 80.00 79.49 a 13.26 Control 95.45 86.36 93.10 91.64 b -

A A Roy

Table 106. Control effect of P. ulmi egg on pear 10 days after gamma irradiation

Treatment Al ive rate after 10 days {% ) Control DMRT (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect (s») 0.5 88.24 94.74 87.50 90.16 a 2.36 1 92.59 87.50 87.10 89.06 a 3.55 2 90.63 78.26 86.21 85.03 a 7.92 3 80.77 82.61 80.00 81.13 a 12.14 Control 95.45 88.46 93.10 92.34 a -

. A HHK

Table 107. Control effect of P. ulmi egg on pear 17 days after gamma irradiation

Treatment Alive rate after 17 days (*) Control DMRT (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect (as) 0.5 88.24 94.74 95.45 92.81 b 2.10 1 89.29 91.30 90.00 90.20 b 4.85 2 90.63 81.82 89.29 87.24 b 7.97 3 0.00 0.00 0.00 0.00 a 100.00 Control 95.45 95.83 93.10 94.80 b -

-388- Table 108. Control effect of P. ulmi egg on pear 21 days after gamma irradiation

Treatment Alive rate after 21 days (*) Control DMRT (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect(%) 0.5 75.00 77.27 87.50 79.92 be 13.26 1 83.33 75.00 81.82 80.05 be 13.13 2 80.56 75.00 69.44 75.00 b 18.61 3 0.00 0.00 0.00 0.00 a 100.00 Control 87.50 95.83 93.10 92.15 c -

_ 8 Moz

Table 109. Control effect of P. ulmi egg on pear 28 days after gamma irradiation

Treatment Al ive rate after 28 days (?<0 Control DMRT (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect (as) 0.5 75.00 81.82 84.00 80.27 c 12.88 1 27.27 42.11 47.37 38.92 b 57.77 2 29.41 37.50 27.78 31.56 b 65.75 3 0.00 0.00 0.00 0.00 a 100.00 Control 87.50 95.83 93.10 92.15 c -

Q 774:

Table 110. Control effect of P. ulmi egg on pear 35 days after gamma irradiation

Treatment Al ive rate after 35 days {%0 Control DMRT (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect (as) 0.5 52.94 69.23 55.00 59.06 c 35.91 1 18.18 36.84 42.11 32.38 b 64.86 2 21.05 29.17 27.78 26.00 b 71.78 3 0.00 0.00 0.00 0.00 a 100.00 Control 87.50 95.83 93.10 92.15 d -

- 1Q RR%

-389- 28 35

Fig. 13. Overall control effect of P. ulmi egg on pear treated by gamma irradiation.

(2)

^ 4 3 kGy (Table 115-122, Fig. 13).

Table 111. Control effect of P. ulmi egg on soybean leaf transferred from pear 1 day after gamma irradiation Alive rate after 1 day {%) Treatment Control DMRT (kGy) Repl icate 1 Replicate 2 Replicate 3 Average effect(^)

0.5 93.75 94.74 95.45 94.65 b 2.15 1 95.45 88.89 93.10 92.48 b 4.39 2 90.48 85.71 92.59 89.59 ab 7.38 3 80.77 86.36 77.78 81.64 a 15.60 Control 95.45 94.74 100.00 96.73 b Coefficient of variation 5.04%

-390- Table 112. Control effect of P. ulmi egg on soybean leaf transferred from pear 3 days after gamma irradiation

Treatment Al ive rate after 3 days (*) Control DMRT (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect(%)

0.5 88.24 94.74 87.50 90.16 a 2.36 1 92.59 87.50 87.10 89.06 a 3.55 2 90.63 78.26 86.21 85.03 a 7.92 3 80.77 82.61 80.00 81.13 a 12.14 Control 95.45 88.46 93.10 92.34 a -

in Ac;o.<;

Table 113. Control effect of P. ulmi egg on soybean leaf transferred from pear 7 days after gamma irradiation

Treatment Alive rate after 7 days (*•>) Control DMRT (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect(%) 0.5 88.24 94.74 95.45 92.81 b 2.10 1 89.29 91.30 90.00 90.20 b 4.85 2 90.63 81.82 89.29 87.24 b 7.97 3 26.67 27.78 33.33 29.26 a 68.25 Control 95.45 95.83 93.10 94.89 b -

7 ROoz

Table 114. Control effect of P. ulmi egg on soybean leaf transferred from pear 10 days after gamma irradiation

Alive rate after 10 days Treatment •(*) Control DMRT (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect(%) 0.5 75.00 81.82 87.50 81.44 b 11.62 1 83.33 75.00 81.82 80.05 b 13.13 2 80.56 81.82 69.44 77.27 b 16.14 3 37.04 48.91 32.47 39.47 a 56.34 Control 87.50 95.83 93.10 92.15 b -

-391- Table 115. Control effect of P. ulmi egg on soybean leaf transferred from pear 17 days after gamma irradiation Al ive rate after 17 days (a Treatment 0 Control DMRT (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect(%) 0.5 75.00 81.82 84.00 80.27 c 12.88 1 27.27 36.84 47.37 37.16 b 59.67 2 26.67 33.33 27.78 29.26 b 68.25 3 0.00 0.00 0.00 0.00 a 100.00 Control 87.50 95.83 93.10 92.15 c -

. A m«!

Table 116. Control effect of P. ulmi egg on soybean leaf transferred from pear 21 days after gamma irradiation

Treatment Alive rate after 21 days (a0 F1K/1DT Control 1JMK1 (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect (a;) 0.5 52.94 72.00 55.00 59.98 c 34.91 1 22.73 36.84 42.11 33.89 b 63.22 2 18.75 29.17 27.78 25.23 b 72.62 3 0.00 0.00 0.00 0.00 a 100.00 Control 87.50 95.83 93.10 92.15 d -

. 7 1 A°A

Table 117. Control effect of P. ulmi egg on soybean leaf transferred from pear 28 days after gamma irradiation

Alive rate after 28 days (*) Treatment HURT Control until (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect (as) 0.5 52.94 72.00 55..00 59.98 c 34.91 1 22.73 31.58 42.11 32.14 b 65.12 2 18.75 20.83 27.78 22.45 b 75.63 3 0.00 0.00 0.00 0.00 a 100.00 Control 93.94 95.83 93.10 94.29 d -

in wr>/.

-392- Table 118. Control effect of P. ulmi egg on soybean leaf transferred from pear 35 days after gamma irradiation Alive rate after 35 days {%) Treatment Control DMRT (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect(as)

0.5 52.94 70.83 52.63 58. 80 36.19 1 22.73 31.58 36.84 30.38 b 67.03 2 18.75 17.39 27.78 21.31 b 76.88 3 0.00 0.00 0.00 0. 00 100.00 Control 90.48 95.83 93.10 93.14 Coefficient of variation 10.

Fig. 14. Overall control effect of P. ulmi egg on soybean leaf transferred from pear treated by gamma irradiation.

(3)

H5JU} 3

100% (Table 119-126, Fig. 15).

-393- Table 119. Control effect of T. urticae adult on pear 1 day after gamma irradiation

Density Alive rate after 1 day (? Treatment 0 Control before DMRT (kGy) treatment Replicate 1 Replicate 2 Replicate 3 Average effect(as)

0.5 18.00 94.12 93.75 82.35 90.07 ab 5.06 1 15.67 87.50 91.30 87.50 88.77 ab 6.44 2 19.00 84.00 82.35 76.47 80.94 ab 14.69 3 18.33 68.75 65.00 83.33 72.36 a 23.73 Control 16.00 94.74 95.45 94.44 94.88 b -

rnof fij.

Table 120. Control effect of T. urticae adult on pear 3 days after gamma irradiation

Treatment Alive rate after 3 days (a0 Control DMRT (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect(*) 0.5 85.71 93.33 89.47 89.51 ab 4.68 1 77.78 88.00 78.95 81.58 ab 13.12 2 82.61 82.35 76.47 80.48 ab 14.29 3 84.21 65.00 73.68 74.30 a 20.87 Control 94.74 91.30 95.65 93.90 b -

7 OHOZ

Table 121. Control effect of T. urticae adult on pear 7 days after gamma irradiation

Treatment Alive rate after 7 days (*) DMRT Control (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect (a:) 0.5 86.36 78.95 85.00 83.44 ab 11.14 1 76.19 84.62 82.35 81.05 a 13.68 2 70.83 75.00 76.47 74.10 a 21.08 3 81.25 73.33 78.95 77.87 a 17.10 Control 94.74 91.30 95.65 93.90 b -

A AA"z

-394— Table 122. Control effect of T. urtlcae adult on pear 10 days after gamma irradiation

Treatment Alive rate after 10 days (*) F1UDT Control DMK1 (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect (as) 0.5 84.62 88.24 85.00 85.95 be 6.68 1 82.35 81.48 77.78 80.54 ab 12.56 2 69.23 75.00 76.47 73.57 a 20.12 3 80.95 72.22 82. 35 78.51 ab 14.76 Control 90.00 91.30 95.00 92.10 c -

A C;R^

Table 123. Control effect of T. urticae adult on pear 17 days after gamma irradiation

Treatment Al ive rate after 17 days (s0 Control DMRT (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect(as) 0.5 84.62 88.24 80.95 84.60 be 9.69 1 83.33 84.62 77.78 81.91 be 12.57 2 60.00 83.33 75.00 72.78 b 22.31 3 0.00 0.00 0.00 0.00 a 100.00 Control 94.74 91.30 95.00 93.68 c -

- 8 7Q«

Table 124. Control effect of T. urtlcae adult on pear 21 days after gamma irradiation

Treatment Al ive rate after 21 days (%') Control DMRT (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect (as) 0.5 68.75 78.95 85.00 77.57 be 17.20 1 63.64 81.48 70.00 71.71 b 23.46 2 56.25 75.00 68.42 66.56 b 28.95 3 0.00 0.00 0.00 0.00 a 100.00 Control 94.74 91.30 95.00 93.68 c -

. Q AQo;

-395- Table 125. Control effect of T. urticae adult on pear 28 days after gamma irradiation

Treatment Alive rate after 28 days {%) Control DMRT (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect(%)

0.5 56.25 75.00 50.00 60.42 c 35.51 1 30.77 52.94 33.33 39.01 be 58.35 2 38.10 29.41 33.33 33.61 b 64.12 3 0.00 0.00 0.00 0.00 a 100.00 Control 94.74 91.30 95.00 93.68 d Coefficient of variation 17.91%

Table 126. Control effect of T. urticae adult on pear 35 days after gamma irradiation

Treatment Alive rate after 35 days {%) Control DMRT (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect(%)

0.5 56.25 52.63 57.14 55.34 40.93 1 28.57 47.26 31.58 35.74 b 61.85 2 31.58 23.53 21.05 25.39 b 72.90 3 0.00 0.00 0.00 0.00 100.00 Control 94.74 91.30 95. 00 93.68 Coefficient of variation 13.76%

Fig. 15. Overall control effect of T. urticae adult on pear treated by gamma irradiation.

-396- (4) ^-go 3 kGy 24^-r AA 76J ^A 100^ ^4^^# A^AA. ^l^fe ^1, 1 kGy \ 2 kGy 2A^ ^A} ^ 21 ^Bf A>#t-©1 ^7f^7l A|4^^t:]-. ZL5J3. ^5] 21

0.5 35

Table 127. Control effect of T. urticae adult on soybean leaf transferred from pear 1 day after gamma irradiation

Treatment ^^ Alive rate after 1 day («) ^^ ,, v before DMRT effect(%) ^Kby; treatment Replicate 1 Replicate 2 Replicate 3 Average

0.5 18.33 91.67 93.75 85.00 90.14 b 5.00 1 16.33 87.50 91.67 82.35 87.17 ab 8.12 2 12.33 86.36 88.24 76.47 83.69 ab 11.79 3 15.67 66.67 65.00 82.35 71.34 a 24.81 Control 20.67 94.74 95.45 94.44 94.88 b Coefficient of variation 7.

Table 128. Control effect of T. urticae adult on soybean leaf transferred from pear 3 days after gamma irradiation

Treatment Alive rate after 3 days (a0 Control DMRT (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect(ss)

0.5 91.67 88.24 85.00 88.30 be 5.74 1 81.35 84.62 77.78 81.58 abc 12.91 2 69.23 75.00 81.25 75.16 a 19.77 3 80.95 76.47 82.35 79.93 ab 14.68 Control 94.74 91.30 95.00 93.68 c -

rw.ff 7 K\"z

-397- Table 129. Control effect of T. urticae adult on soybean leaf transferred from pear 7 days after gamma irradiation

Treatment Alive rate after 7 days (*) Control (k°y) Replicate 1 Replicate 2 Replicate 3 Average effect(x)

0.5 84.62 88.24 85.00 85.95 be 8.25 1 82.35 84.62 82.35 83.11 be 11.29 2 64.29 83.33 76.47 74.70 b 20.26 3 0.00 0.00 0.00 0.00 a 100.00 Control 94.74 91.30 95.00 93.68 c Coefficient of variation 1^

Table 130. Control effect of T. urticae adult on soybean leaf transferred from pear 10 days after gamma irradiation

Treatment Alive rate after 10 days 0 T1MDT Control DMK1 (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect^) 0.5 78. 57 78.95 85.00 80.84 be 13.71 1 66.67 81.48 70.00 72.72 b 22.38 2 56.25 75.00 76.47 69.24 b 26.09 3 0.00 0.00 0.00 0.00 a 100.00 Control 94.75 91.30 95.00 93.68 c -

- A 99*

Table 131. Control effect of T. urticae adult on soybean leaf transferred from pear 17 days after gamma irradiation

Treatment Alive rate after 17 days (*) Control (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect(«)

0.5 56.25 78.95 50.00 61.73 c 34.10 1 30.77 56.25 33.33 40.12 be 57.18 2 36.84 29.41 33.33 33.20 b 64.56 3 0.00 0.00 0.00 0.00 a 100.00 Control 94.74 91.30 95.00 93.68 d Coefficient of variation

-398- Table 132. Control effect of T. urticae adult on soybean leaf transferred from pear 21 days after gamma irradiation

Treatment Alive rate after 21 days (*) Control DMRT ff ,o v (kGy) Replicate 1 Replicate 2 Replicate 3 Average ellect^j 0.5 56.25 52.63 60.00 56.29 c 39.91 1 30.77 47.06 31.58 36.47 b 61.07 2 31.58 29.41 21.05 27.35 b 70.81. 3 0.00 0.00 0.00 0.00 a 100.00 Control 94.74 91.30 95.00 93.68 d Coefficient of variation !

Table 133. Control effect of T. urticae adult on soybean leaf transferred from pear 28 days after gamma irradiation

Alive rate after 28 days (*) Treatment nUDT Control UMKl (kGy) Replicate 1 Replicate 2 Replicate 3 Average effect(%)

0.5 56.25 52.63 60.00 56.29 C 39.91 1 30.77 35.29 31.58 32.55 be 65.26 2 21.05 29.41 21.05 23.84 ab 74.55 3 0.00 0.00 0.00 0.00 a 100.00 Control 94.74 91.30 95.00 93.68 d -

1 "3 Qft

Table 134. Control effect of T. urticae adult on soybean leaf transferred from pear 35 days after gamma irradiation

Treatment Alive rate after 35 days {%) Control (k°y) Replicate 1 Replicate 2 Replicate 3 Average effect(a)

0.5 18.75 27.78 29.17 25.23 b 72.62 1 27.27 27.78 21.43 25.49 b 72.97 2 11.11 20.00 16.67 15.93 b 83.00 3 0.00 0.00 0.00 0.00 a 100.00 Control 91.67 89.47 94.12 91.75 c )f variation 19.

-399- Day

Fig. 16. Overall control effect of T. urticae adult on soybean leaf transferred from pear treated by gamma irradiation.

3. MeBr MeBr *\7\,

.. 4 107H

(Table 135-138).

Table 135. Control effect of P. ulmi egg on apple fumigated by methyl bromide Survey date 1st day 3rd day 7th day 10th day No. of nymph Survival (Average) Death (Average) 167 Mortality (%) 100

Table 136. Control effect of T. urticae adult on apple fumigated by methyl bromide Survey date 1st day 3rd day 7th day 10th day No. of nymph Survival (No. ) Death (No.) 46 Mortality {%) 100

-400- Table 137. Control effect of P. ulmi egg on pear fumigated by methyl bromide Survey date ^~-_ 1st day 3rd day 7th day 10th day No. of nymph ^^-^^ Survival (Average) Death (Average) 67 Mortality {%) 100

Table 138. Control effect of T. urticae adult on apple fumigated by methyl bromide Survey date ^~~^_ 1st day 3rd day 7th day 10th day No. of nymph Survival (No.)

Death (No. ) 24

Mortality {%) 100

4. 7}.

U4) 20^ ^ofl cjfS-?-, 2 kGy 2:Af^- H5]^L MeBr ^El^-ofl^ 2%7\ , MeBr ^el^-fe ^H^l^^l ^7}^ fl) (Fig. 17). a ofe 6%^ ^-iB## i^cK 2 kGy , 0.5, 1, 3 kGy 3 kGy ^4^)4 2%$] ^ . 0.5 kGy, 1 kGy g 3 kGyfe 7^^ ^^7> ^SiA^, 40^o|

(Fig. 18). H^\ 2 kGy 24^ ^^^^1^^ 4^ 40^

(Fig. 20). 4^ 120^611 7>4o> cfl^^-1- ^1^*> IE ^el^^A-1 2%$]

2 kGy ^4^r-^ ^1^#61 7># ^^ 28%# ^-E>M|Sftr:>. o|irj| l kGyfe 8%, MeBr 4%, 0.5 kGy^ 2%# ^MSiJl tfl^ofl4fe ^^*f4 ^^1" (Fig. 21). , Fig. 19, 22<>fl4 ^-^ ^ ^ al^ol ^3o^£H S!l«H4fe 14, 24

-401- 10 .5 —•—control -"-0.5kGy

9 -*-1kGy -«-2kGy \ -*-3kGy 7 .5 -^MeBr

6 rat e ["/, in g ? 4 .5

1.5

40 60 120 Stroage day

Fig. 17. Effects of gamma irradiation and MeBr fumigation on rotting rate of apple immediately after harvest (MeBr-treated conditions : 26 g/kg, 0.9X1.4X 0.2 m3, 2rc and 4 hr).

control 0.5kGy 1kGy 2kGy 3kGy MeBr

40 60 90 120 Stroage day Fig. 18. Effects of gamma irradiation and MeBr fumigation on withering rate of apple immediately after harvest (MeBr-treated conditions : 26 g/kg, 0.9X1.4X 0.2 m3, 21°C and 4 hr).

-402- 102.0

101.0

100.0

99.0

•5

2 98.0 I ^5 97.0

] ! —•—control -•-0.5kGy 96.0 j -*-1kGy -«-2kGy I -*- 3kGy -^-MeBr 95.0 20 40 60 90 120 Stroage day Fig. 19. Effects of gamma irradiation and MeBr fumigation on weight changes of apple immediately after harvest (MeBr-treated conditions : 26 g/kg, 0.9x1.4 x 0.2 m3, 21TC and 4 hr).

40 60 90 120 Stroage day Fig. 20. Effects of gamma irradiation and MeBr fumigation on rotting rate of apple after 40 days of harvest (MeBr-treated conditions : 26 g/kg, 0.9X1.4X 0.2 m3, 21°C and 4 hr).

-403- 40 90 120 Stroage day

Fig. 21. Effects of gamma irradiation and MeBr fumigation on withering rate of apple after 40 days of harvest (MeBr-treated conditions : 26 g/kg, 0.9xl.4x 0.2 m3, 21°C and 4 hr).

100.5

100 r i 99.5 '-

99 -

lange s 98.5 [ o j 98 - Weigh t

97.5 •control •0.5kGy •1kGy 97 r -2kGy -MeBr 96.5 40 60 90 120 Stroage day Fig. 22. Effects of gamma irradiation and MeBr fumigation on weight change of apple after 40 days of harvest (MeBr-treated conditions : 26 g/kg, 0.9xl.4x 0.2 m3, 21TC and 4 hr).

-404- 44 - 70% (Fig. 23). ZL -b 16% °}f>}$] 2, 0.5, 1

(Fig. 24). 2, 3 120

HelJL 2^ 40*1 (Fig. 26). Jf-*1, 2 kGyi}

i 2 40 *J *M 40-72%^ (Fig. 27). Fig 25, 28^14 1. 24 1 H)

•""J=lt•*-•a^iP'.-*™15?Hli_Ki_ • . ~ J*

^'"" L^J^V^

Photo. 1. Overall appearance of pear stored for 4 months following MeBr fumigation immediately after harvest.

-405- 10

20 40 60 120 Stroage day Fig. 23. Effects of gamma irradiation and MeBr fumigation on rotting rate of pear immediately after harvest. (MeBr-treated conditions : 26 g/kg, 0.9xl.4x 0.2 m3, 21 °C and 4 hr)

90 -control 80 -0.5kGy -1kGy 70 -2kGy 60 -3kGy -MeBr

(0 ICO 40 ^ 30

20

10

20 40 60 120 Stroage day Fig. 24. Effects of gamma irradiation and MeBr fumigation on withering rate of pear immediately after harvest (MeBr-treated conditions : 26 g/kg, 0.9xl,4x 0.2 m3, 21°C and 4 hr).

-406- 100.00

70.00 20 40 60 90 120 Stroage day Fig. 25. Effects of gamma irradiation and MeBr fumigation on weight change of pear immediately after harvest (MeBr-treated conditions : 26 g/kg, 0.9x1.4x 0.2 m3' 21°C and 4 hr).

control 0.5kGy 1kGy 2kGy MeBr

40 60 90 120 Stroage day Fig. 26. Effects of gamma irradiation and MeBr fumigation on rotting rate of pear after 40 days of harvest (MeBr-treated conditions : 26 g/kg, 0.9x1.4x0.2 m3' 211! and 4 hr).

-407- control 0.5kGy 1kGy 2kGy MeBr

60 Stroage day 90 120 Fig. 27. Effects of gamma irradiation and MeBr fumigation on withering rate of pear after 40 days of harvest (MeBr-treated conditions : 26 g/kg, 0.9x1.4x0.2 m3' 21°C and 4 hr).

102 r

100

98

96 r i

92 h

90 - g

86 - - control -0.5kGy -1kGy 84 r- -2kGy -MeBr 82 L- 40 60 90 120

Fig. 28. Effects of gamma irradiation and MeBr fumigation on weight change of pear after 40 days of harvest (MeBr-treated conditions : 26 g/kg, 0.9x1.4x0.2 m3- 21°C and 4 hr).

-408- (2)

^S-^ Fig. 29*114 Ji-b H^ ^o] S€- *fsl i20

fe 2 kGy

fe o.6O 0.5

K 1 kGy ^H-i)- MeBr Bl^-r^l 1 kGy£} MeBr ^ 0. 44 o. 61 3} 0.62# uf^flcv] . 2 kGy-b 44 0. 52, 0. 55, 0.57, 0.60 ^ (Fig. 30).

0.70

0.64

3 0.58

c 0.52

0.46

0.40 20 40 60 90 120 Stroage day Fig. 29. Effects of gamma irradiation and MeBr fumigation on hardness of apple immediately after harvest (MeBr-treated conditions : 26 g/kg, 0.9x1.4x0.2 m3' 21 "C and 4 hr).

-409- 0.64

0.62

0.6

0.58

CO <£ 0.56

0.54

0.52

0.5 •control • 0.5kGy •1kGy 0.48 -2kGy •MeBr 0.46 40 60 90 120 Stroage day Fig. 30. Effects of gamma irradiation and MeBr fumigation on hardness of apple after 40 days of harvest (MeBr-treated conditions : 26 g/kg, 0.9x1.4x0.2 m3' 21°C and 4 hr).

2, 3 kGy 7} Fig 120 0.5 g| 1 kGy 3.7(1 2, 3 kGy

4-§-t> modified atmosphere

^ Fig. 0.5 kGy kGy

0.46, 0.49, 0.52, o] 0.53 uf 2 kGy 0.43o]^^ ^ 0.385. ^^ 0.46^1

-410- 0.6

0.5

0.4

I 0.3 c •a

0.2

| —•—control -»-0.5kGy 0.1 i -*-1kGy -«-2kGy ! -*-3kGy -•-MeBr

20 40 60 90 120 Stroage day Fig. 31. Effects of gamma irradiation and MeBr fumigation on hardness of pear immediately after harvest (MeBr-treated conditions : 26 g/kg, 0.9x1.4x0.2 m3' 21OC and 4 hr).

0.6 ;

0.5 h

0.4 -

|0.3

X 0.2

0.1 -r -control -0.5kGy •1kGy

-2kGy -MeBr

40 60 Stroage day 90 120 Fig. 32. Effects of gamma irradiation and MeBr fumigation on hardness of pear after 40 days of harvest (MeBr-treated conditions : 26 g/kg, 0.9x1.4x0.2 m3' 21°C and 4 hr).

—411— (7})

Table

0.5 kGy

-, MeBr

, MeBr

3 kGy MeBr MeBr $1

Table 0.5, 1, 2 kGy >. ^*), lkGy

^-Si1-} MeBr

kGy 4.86A

MeBr

120^ 0.39

-412- Table 139. Comparative effects of gamma irradiation and MeBr fumigation on Hunter's color values of apple peel color immediately after harvest Storage Hunter Irradiation dose(kGy) period MeBr parameter (day) 0 0.5 1 2 3 0 46.57 44.82 48.16 49.55 50.20 50.88 20 47.17 45.28 48.32 49.38 50.07 50.58 40 47.33 45.44 48.30 49.34 50.19 50.63 T L 60 47.37 45.71 48.71 49.32 49.84 50.45 90 47.54 46.03 48.54 49.73 50.03 50.93 120 47.17 45.53 48.38 49.22 53.95 50.59 0 33.09 36.63 35.32 34. 43 34.38 33.97 20 31.75 35.38 34.65 33.77 33.83 34.00 40 31.79 33.75 33.73 32.48 32.13 33.71 a 60 31.73 33.96 33.05 32.75 32.72 33.74 90 31.80 34.06 33.60 31.69 30.70 33.57 120 31.85 33.69 33.40 31.43 29.44 33.57 0 17.56 16.25 16.81 18.08 16.27 19.61 20 17.33 15.57 16.68 17.25 16.11 19.16 40 17.07 14.94 16.48 16.90 15.60 19.11 Du 60 12.67 15.53 16.63 16.88 15.72 19.01 90 17.38 15.31 16.98 16.81 15.80 19.11 120 17.88 19.98 17.63 18.53 17.16 19.81 0 63.23 66.20 62.93 61.72 60.68 60.90 20 61.98 64.92 62.33 61.30 60.35 60.89 40 61.88 63.85 61.88 60.62 59.28 60.77 AE 60 61.64 63.65 60.98 60.49 59.67 59.67 90 61.84 63.68 61.80 59.92 58.80 60.53 120 62.31 64.11 61.92 60.60 58.34 60.95

-413- Table 140. Comparative effects of gamma irradiation and MeBr fumigation on Hunter's color values of apple peel color after 40 days of harvest

Storage Irradiation dose(kGy) Hunter period - MeBr parameter (day) 0 0.5 1 2

40 52.54 50.96 53.61 49.96 53.93

60 54.82 50.18 54.09 49.70 53.22 L 90 52.39 50.66 53.90 49.13 53.76

120 51.45 50.43 50.54 49.99 53.85

40 30.88 31.37 30.02 32.75 31.39

60 30.19 31.45 28.62 32.78 31.21 a 90 30.49 30.36 28.31 32.62 29.66

120 31.44 30.26 25.16 31.91 28.85

40 17.01 17.93 18.57 16.26 18.33

60 17.36 17.51 18.70 15.74 17.64 b 90 17.23 17.34 18.67 15.38 17.95

120 17.28 17.78 18.57 16.30 18. 72

40 57.09 58.95 56.22 59.98 56.67

60 54.17 59.50 55.13 60.07 56.83

90 57.04 58.49 55.17 60.36 55.68

120 58.20 58.68 57.08 59.39 55.34

—414— Table 141. Comparative effects of gamma irradiation and MeBr fumigation on Hunter's color values of pear peel color immediately after harves

Storage Hunter Irradiation dose(kGy) period - MeBr parameter (day) 0 0.5 1 2 3

0 59.68 61.30 61.10 58.05 60.65 61.88 20 58.56 61.26 61.15 58.61 60.50 59.98 40 58.31 60.33 60.89 57.34 58.43 60.13 T L 60 58.65 58.16 60.86 56.89 58.62 59.27 90 58.26 58.35 60.98 56.23 56.88 59.75 120 57.70 58.61 60.42 49.85 50.44 59.12 0 3.49 2.80 3.42 2.59 3.46 4.19 20 3.90 3.70 4.06 3.36 3.86 4.82 40 4.49 3.96 4.20 3.42 4.39 4.95 a 60 5.12 4.46 4.53 4.24 4.88 5.26 90 5.10 4.32 4.49 4.59 5.35 5.35 120 5.17 4.57 4.51 4.54 5.31 5.50 0 38.68 38.21 37.62 35.81 36.99 36.79 20 35.14 34.94 34.14 32.52 34.20 32.50 40 33.46 33.72 33.88 33.20 31.53 32.72 b 60 34.05 31.44 33.69 31.55 33.58 31.56 90 33.09 31.33 33.59 29.66 29.40 31.35 120 35.55 33.84 35.54 26.25 23.09 32.58 0 53.01 51.52 51.29 52.36 51.21 50.28 20 51.24 49.33 48.87 49.77 49.49 48.88 40 50.75 49.41 49.01 51.51 50.28 49.04 ZiE 60 50.60 49.83 48.60 50.63 50.56 48.75 90 50.72 49.99 48.88 50.56 50.43 48.61 120 52.58 51.08 50.45 54.75 53.95 49.75

^ el X\S.$] ^ Table 1413}

-415- , 2 kGyif 3 kGy 0.5

0.5 £ 1 kGy, MeBr *^B]^lH &oj Q&.*}v.}7\ 120

7} *|# 120^ »H^-E| ^7>^Slt>. ^-5]^- 2$} 3 kGy

^ Table .. 2 kGy

., 2 kGy^A-1 7}% 1&0] ^-7}^}^}. %A^£(b)^ 0.5 kGy, 1 kGy, 2 kGy ., MeBr

Table 142. Comparative effects of gamma irradiation and MeBr fumigation on Hunter's color values of pear peel color after 40 days of harvest Storage Hunter Irradiation dose(kGy) period - MeBr parameter (day) 0 0.5 1 2 40 60.73 59.68 60.95 60.39 62.89

T 60 60.69 58.85 59.25 57.59 61.83 L 90 59.37 57.89 58.80 57.11 60.75 120 58.73 56.26 57.39 53.73 60.51 40 3.68 3.24 4.45 4.21 3.30 60 3.67 3.57 4.77 4.41 3.61 a 90 3.96 3.79 5.04 4.92 3.82 120 4.15 4.17 5.26 5.79 3.89 40 33.33 33.21 33.03 33.35 33.35 u 60 32.05 32.42 31.61 30.64 32.28 b 90 32.08 31.83 31.08 30.15 31.68 120 31.82 30.67 30.48 26.53 32.06 40 48.79 49.45 48.46 49.09 47.13 60 48.97 49.59 48.92 49.76 47.22 A IT 90 32.08 31.83 31.08 30.15 31.68 120 49.38 50.57 49.97 51.11 48.00

—416— Table Ufif

0.5, 1, 2 kGy if MeBr K -aB|u|. 3 kGy

(3 MeBr

±r ZL

(Table 144) 5L&

fe 1 kGy A 4 ^S]^- n>c> 47] 0.5 kGyit 2kGy

-417- Table 143. Comparative effects of gamma irradiation and MeBr fumigation on Hunter's color values of apple internal color immediately after of harvest Storage Hunter Irradiation dose(kGy) period - MeBr parameter (day) 0 0.5 1 2 3 0 76.84 77.65 77.73 77.12 78.05 78.58 20 77.96 78.93 77.50 79. 06 77.63 78.56 40 77.77 78.28 76.91 78.40 78.05 78.18 T L 77.48 76.95 75.17 76.18 75.23 76.22 60 90 76.21 71.17 72.85 73.10 73.61 75.77 120 69.54 75.23 74.84 75.72 73.20 76.07 0 -4.60 -4.58 -4.58 -4.38 -4.69 -4.82 20 -4.18 -4.21 -4.10 -4.07 -3.59 -4.34 40 -4.62 -4.43 -3.26 -4.09 -3.81 -4.06 a 60 -4.47 -4.11 -3.19 -3.57 -3.79 -4.37 90 -4.58 -3.20 -2.14 -2.66 -3.13 -4.04 120 -4.47 -3.75 -2.88 -3.41 -1.98 -4.16 0 18.26 17.30 16.08 17.17 17.87 18.07 20 17.76 17.54 17.65 18.82 16.80 17.86 40 18.64 17.22 18.18 17.89 17.19 16.91 L D 60 19.60 18.46 17.45 18.22 20.07 17.74 90 19.46 19.46 18.82 19.36 20.94 18.76 120 18.31 18.26 18.33 19.83 20.38 17.79 0 26.91 25.70 24.91 26.01 25.76 25.56 20 25.66 24.76 25.90 25.50 25.24 25.29 40 25.11 25.11 26.88 25.46 25.26 25.00 AE 60 27.21 26.83 27.51 27.21 27.09 27.00 90 27.91 29.30 29.97 30.16 30.69 27.74 120 27.08 28.01 28.29 28.56 30.79 27.15

-418- Table 144. Comparative effects of gamma irradiation and MeBr fumigation on Hunter's color values of apple peel color after 40 days of harvest Storage Hunter Irradiation dose(kGy) period MeBr parameter (day) 0 0.5 1 2 40 74.73 74.71 74.75 74.89 75.13

60 76.08 77.14 77.86 78.09 77.82 L 90 77.00 76.73 76.63 77.06 77.35

120 77.79 77.89 78.94 78.22 78.14

40 -4.47 -4.14 -4.03 -3.75 -4.11

60 -4.12 -3.65 -3.48 -3.39 -4.04 a 90 -4.38 -4.16 -3.91 -4.07 -4.47

120 -4.53 -4.04 -3.79 -3.45 -3.82

40 18.05 17.96 18.39 17.43 17.47

60 18.36 16.84 16.66 17.90 17.94 b 90 17.78 17.46 17.91 17.22 17.97

120 17.87 18.28 17.86 18.70 16.87

40 28.39 28.30 28.48 27.79 27.66

60 27.26 25.80 25.14 25.70 25.99 AE 90 26.47 26.45 26.77 26.03 27.24

120 27.32 27.39 26.30 27.34 26.35

1*} *1el 'X\3.*\ fe Table 1453} 2, 3 kGy 3:49- £ MeBr 0.5** 120

.5 kGy

E)-b 0.5i^ 1 kGy 120^

—419— Table 146ofl4 jt^. 0.5 tcfe}- ^1 ^7f*>$i3., 13} 2 kGy MeBr

2 kGy , MeBr

0.5 kGy, 2 kGy if MeBr

0.5 kGyif MeBr , 1 2 kGy

Table 145. Comparative effects of gamma irradiation and MeBr fumigation on Hunter's color values of pear internal color immediately after of harvest Storage Hunter Irradiation dose(kGy) period MeBr parameter (day) 0 0.5 1 2 3 0 73.02 70.89 69.88 73.94 69.47 70.40 20 68.65 69.27 70.43 71.27 72.48 69.86 40 73.05 70.85 71.91 69.78 70.24 70.90 L 60 70.94 71.59 70.57 73.30 69.93 69.41 90 69.35 72.43 69.93 70.48 72.97 69.52 120 71.76 71.55 71.20 71.07 65.42 68.41 0 -1.38 -1.41 -1.26 -1.56 -1.29 -1.58 20 -1.05 -0.88 -1.11 -1.11 -1.16 -0.70 40 -1.06 -0.89 -1.00 -0.86 -1.12 -0.87 60 -1.55 -1.60 -1.51 -1.72 -1.88 -1.24 90 -1.33 -1.54 -1.50 -1.52 -1.75 -1.20 120 -1.35 -1.28 -1.22 -1.25 -1.13 -1.11 0 6.61 5.99 6.09 5.97 6.49 6.26 20 6.92 6.44 6.35 7.95 6.80 6.35 40 6.32 6.76 6.23 6.68 6.29 6.52 b 60 6.98 6.17 8.25 7.76 9.53 8.25 90 6.19 8.13 7.19 7.73 6.20 8.00 120 6.64 8.13 9.23 8.28 7.42 6.74 0 25.28 27.27 28.27 24.26 28.73 27.87 20 29.48 28.79 27.62 27.09 25.73 27.17 40 25.22 27.65 26.38 28.53 28.03 27.38 AE 60 27.35 26.54 28.04 25.22 29.13 29.16 90 28.59 25.95 28.23 27.81 25.05 28.78 120 26.48 26.99 27.61 27.56 32.92 29.78

-420- Table 146. Comparative effects of gamma irradiation and MeBr fumigation on Hunter's color values of pear internal color after 40 days of harvest Storage Hunter Irradiation dose(kGy) period - MeBr parameter (day) 0 0.5 1 2 40 70.80 70.50 71.73 71.86 70.72 60 71.30 71.78 70.87 70.29 70.29 L 90 71.00 69.40 68.83 67.97 71.55 120 71.06 71.91 69.37 70.69 73.91 40 -0.91 -0. 89 -1.04 -1.10 -1.11 60 -0. 57 -0.78 -0.69 -0.73 -0. 73 a 90 -1.22 1.02 -1.12 -1.20 -1.32 120 -0.91 -0.78 -1.01 -0.75 -0.84 40 6.63 5.80 6.24 5.40 5.43 60 6.57 6.94 5.21 5.16 5.16 b 90 7.81 6.61 6.85 5.08 8.01 120 6.16 6.95 6.25 7.24 6.17 40 27.44 27.57 26.46 26.17 27.30 60 27.07 26.70 27.31 27.85 27.85 Z1E 90 27.24 28.83 29.47 30.03 24.29 120 28.33 24.87 30.02 28.93 25.54

(4)

-b Fig. V}3\ ^ 4 ufl-f- . UBi (Photo 2).

30%, t;}. 0.5 kGy ^A^cK 1 kGy 4 ^^.^^ 15%CH]A-1 60%5] . 2 kGy 1 kGy.4}

3 kGy-b

-421- (Photo 3).

7} Fig. 34011 X\ MeBr 4 20%, 0.5 kGy MeBr , 0.5 kGy ., MeBr

. 2 kGy 55%$. kGy

20 40 60 90 120 Stroage day Fig. 33. Effects of gamma irradiation and MeBr fumigation on internal browing of apple immediately after harvest (MeBr-treated conditions : 26 g/kg, 0.9x1.4 X0.2 m3' 21°C and 4 hr).

-422- 70

60 • 50

I 40

o J5 "5j 30 / ; / . c £

20

10 "! —•—control -«-0.5kGy -*-1kGy -B-2kGy -•-MeBr

40 60 90 120 Stroage day Fig. 34. Effects of gamma irradiation and MeBr fumigation on internal browing of apple after 40 days of harvest (MeBr-treated conditions : 26 g/kg, 0.9x1.4 X0.2 m3' 21°C and 4 hr).

Photo. 2. Overall appearance of apple 10 days following treatments immediately after harvest.

-423- Photo. 3. Overall appearance of stored apple 100 days following treatments immediately after harvest.

i4I-¥- ^3]- Photo 3 kGy MeBr (Photo 4). ZL5]JL (Fig. 35) 0.5 kGy 33.5% i* 46.9%^ 44 77.33%, 100%^ 3 kGy MeBr 20

. 2 kGy 3 kGy kGy

MeBr (Fig. 46.9% 0.5 kGy 4 44 87%, 2 kGy fe MeBr , Photo -, 2 MeBr

-424- 120

100

80

o 'E o 60 .a

| 40

20

20 40 60 90 Stroage day Fig. 35. Effects of gamma irradiation and MeBr fumigation on internal browning of pear immediately after harvest (MeBr-treated conditions : 26 g/kg, 0.9x1.4 X0.2 m3' 21°C and 4 hr).

120

100

80

CD C 'c 60 o j 15

| 40

20 -control -0.5kGy •1kGy -2kGy -MeBr 0 40 60 90 120 Stroage day Fig. 36. Effects of gamma irradiation and MeBr fumigation on internal browning of pear after 40 days of harvest (MeBr-treated conditions : 26 g/kg, 0.9x1.4 x 0.2 m3' 21 °C and 4 hr).

-425- Photo. 4. Overall appearance of pear 10 days following treatments immediately after harvest..

Photo. 5. Overall appearance of pear 30 days following treatments after 40 days of harvest.

-426- (l)

Fig. h 4

88.13%^ l 0.5 kGy

^i 3 kGy 60

MeBr 7] 5] (Fig. 38)

4

90

86

c o o 1 84

82 1" -control •0.5kGy -1kGy •2kGy •3kGy -MeBr 80 0 20 40 60 90 120 Stroage day Fig. 37. Effects of gamma irradiation and MeBr fumigation on water content of apple immediately after harvest (MeBr-treated conditions : 26 g/kg, 0.9X1.4X 0.2 m3- 21°C and 4 hr).

-427- 89

88

87

o o S 86 I

85 -control -0.5kGy •1kGy -2kGy -MeBr 84 40 60 90 120 Stroage day

Fig. 38. Effects of gamma irradiation and MeBr fumigation on water content of apple after 40 days of harvest (MeBr-treated conditions : 26 g/kg, 0.9x1.4 x 0.2 m3' 21°C and 4 hr).

£ Fig. v\X\

2%\ Fig. 406fl 1 kGy , MeBr

=L^\ 2

Jit:]- 2.

-428- 92

90

88

OS

86

control -0.5kGy 1kGy -2kGy 3kGy -MeBr 84 20 40 60 90 120 Stroage day Fig. 39. Effects of gamma irradiation and MeBr fumigation on water content of pear immediately after harvest' (MeBr-treated conditions : 26 g/kg, 0.9x1.4 X 0.2 m3' 211: and 4 hr).

90

89

c o o CD 87

86

85 40 60 90 120 Stroage day Fig. 40. Effects of gamma irradiation and MeBr fumigation on water content of pear after 40 days of harvest (MeBr-treated conditions : 26 g/kg, 0.9x1.4x0.2 m3' 211; and 4 hr).

-429- (2) PH

^ ^] MeBr

pH7f -f.7f«rf5ftje.L|, MeBr ^ 4.1

PH Fig. kGy PH JE.^-

MeBr

PH Fig. 44ofl

PH irfl 7]51

40 60 90 120 Stroage day Fig. 41. Effects of gamma irradiation and MeBr fumigation on pH of apple immediately after harvest (MeBr-treated conditions : 26 g/kg, 0.9x1.4x0.2 m3' 21°C and 4 hr).

-430- 4.8

4.6

4.4

X •— —^===— M a 4.2

.o .: -»— control -«-0.5kGy ! -*-1kGy -«-2kGy -•-MeBr 3.6 40 60 90 120 Stroage day Fig. 42. Effects of gamma irradiation and MeBr fumigation on pH of apple after 40 days of harvest (MeBr-treated conditions : 26 g/kg, 0.9x1.4x0.2 m3' 21OC and 4 hr).

-

—•—control -»-0.5kGy -*-1kGy -«-2kGy -*-3kGy ^-MeBr

20 40 60 120 Stroage day Fig. 43. Effects of gamma irradiation and MeBr fumigation on pH of pear immediately after harvest (MeBr-treated conditions : 26 g/kg, 0.9x1.4x0.2 m3' 21 "C and 4 hr).

-431- *— __is== *— * __ »_^* •***

—•— control -*—0.5kGy -*-1kGy |-«-2kGy -^-MeBr

40 60 90 120 Stroage day Fig. 44. Effects of gamma irradiation and MeBr fumigation on rotting pear after 40 days of harvest (MeBr-treated conditions : 26 g/kg, 0.9X1.4X0.2 m3' 21 °C and 4 hr).

(3) (7\) Fig. malic acidi]- A|-g-5jHS. vfl-f S malic acidiq

fe Fig. 46*11 H>ij- ^-o], MeBr

2 kGy oi

Fig. 3 kGy SA-pr-, MeBr i20

Fig. , 2 kGy , MeBr

-432- 350

300

250 \ E o o ^— 200

150

I 100

50 i —•—control -•—0.5kGy -*-1kGy -«-2kGy i -*-3kGy -*-MeBr

20 40 60 90 120 Stroage day Fig. 45. Effects of gamma irradiation and MeBr fumigation on titratable acidity of apple immediately after harvest (MeBr-treated conditions : 26 g/kg, 0.9x1.4x0.2 m3' 21'C and 4 hr).

300

250

I 200 o o ~ 150

f 100

50 -control -0.5kGy •1kGy -2kGy -MeBr

40 60 90 120 Stroage day Fig. 46. Effects of gamma irradiation and MeBr fumigation on titratable acidity of apple after 40 days of harvest (MeBr-treated conditions : 26 g/kg, 0.9x1.4x0.2 m3" 21"C and 4 hr).

-433- 120

20 40 60 90 120 Stroage day Fig. 47. Effects of gamma irradiation and MeBr fumigation on titratable acidity of pear immediately after harvest (MeBr-treated conditions : 26 g/kg, 0.9x1.4 X0.2 m3' 21°C and 4 hr).

120

100

80 1o o

£ 60 o S 40

20 | -*-control -«-0.5kGy -*-1kGy i -«-2kGy -»-MeBr

40 60 90 120 Stroage day Fig. 48. Effects of gamma irradiation and MeBr fumigation on titratable acidity of pear after 40 days of harvest (MeBr-treated conditions : 26 g/kg, 0.9X1.4X 0.2 m3" 21°C and 4 hr).

-434- 120

Fig> 490]) 2 kGy (Brix)7l-

fe Fig. 1 kGy, 2 7}^ ^ 120^*H 0.5 kGy aslJL 1 2 kGy ^^, MeBr

16

14

12

CD • 10 CD

—•—control -•— 0.5kGy -»-1 kGy -«-2kGy -*-3kGy -^MeBr

20 40 60 90 120 Stroage day Fig. 49. Effects of gamma irradiation and MeBr fumigation on Brix of apple immediately after harvest (MeBr-treated conditions : 26 g/kg, 0.9x1.4x0.2 m3' 21 °C and 4 hr).

-435- 16

14

12 • —•- , —. -•

10 •—*

CD

-•—control -«-0.5kGy -*-1kGy -«-2kGy -»-MeBr

40 60 90 120 Stroage day Fig. 50. Effects of gamma irradiation and MeBr fumigation on Brix of apple after 40 days of harvest (MeBr-treated conditions : 26 g/kg, 0.9x1.4x0.2 m3' 21°C and 4 hr).

Silt:}. Fig. 51 1 kGy SA^if MeBr , 0.5 kGy, 2 kGy, 3 kGy 4 . 24 4 5] Fig. 52o\]M

kGy MeBr

-436- 20 40 60 90 120 Stroage day Fig. 51. Effects of gamma irradiation and MeBr fumigation on Brix of pear immediately after harvest. (MeBr-treated conditions : 26 g/kg, 0.9x1.4x0.2 m3, 21°C and 4 hr)

12

10

-

-•—control -«-0.5kGy -*-1kGy

-«-2kGy -«-MeBr

i i ,

40 60 90 120 Stroage day Fig. 52. Effects of gamma irradiation and MeBr fumigation on Brix of pear after 40 days of harvest (MeBr-treated conditions 26 g/kg, 0.9x1.4x0.2 m3, 21°C and 4 hr).

-437- (A) Fig.

uj-7]

7} 6.65-7.10% 7} ^ 4 4 6.48-7.58%

2^} Fig. 54<>fl Slc>. kGy 6\} 2 kGy ^^ MeBr 90«y 120K 44 4.76%, 2. . -LBU 0.5 ^ 1 kGy

40 60 90 120 Stroage day Fig. 53. Effects of gamma irradiation and MeBr fumigation on reducing sugar of apple immediately after harvest (MeBr-treated conditions : 26 g/kg, 0.9X1.4X 0.2 m3' 21 °C and 4 hr).

-438- 10

cd 3

CO c

•«

-control •0.5kGy •1kGy -2kGy •MeBr

40 60 90 120 Stroage day Fig. 54. Effects of gamma irradiation and MeBr fumigation on reducing sugar of apple after 40 days of harvest (MeBr-treated conditions : 26 g/kg, 0.9xl.4x 0.2 m3' 21 °C and 4 hr).

4

55). o] ^ MeBr

kGy

Fig. 6.62%, 6.55%,

-439- 9.00

8.00

7.00

6.00

5.00 j suga r c o 4.00

Red L 3.00

2.00 —•—control -»-0.5kGy 1.00 -*-1kGy -»-2kGy -*-3kGy -•-MeBr 0.00 0 20 40 60 90 120 Stroage day Fig. 55. Effects of gamma irradiation and MeBr fumigation on reducing sugar of pear immediately after harvest (MeBr-treated conditions : 26 g/kg, 0.9x1.4x 0.2 m3" 21 °C and 4 hr).

60 90 120 Stroage day Fig. 56. Effects of gamma irradiation and MeBr fumigation on reducing sugar of pear after 40 days of harvest (MeBr-treated conditions : 26 g/kg, 0.9x1.4x0.2 m3- 21°C and 4 hr).

-440- (6) (7\) #4^ ^*}3} MeBr §• ethanol, acetaldehyde5| »3Sffe Fig. 57 4 Fig. 58

Acetal dehyde ccf$ ethanol . O] ^0.5 kGy 3.7]} 5X3. 3 kGy

-•—control -«-0.5kGy -*-1kGy -«-2kGy 2.5 -H«-3kGy -»-MeBr

E M Q

Ic 1.5 o o X o LU 1

0.5

60 Stroage day Fig. 57. Effects of gamma irradiation and MeBr fumigation on EtOH content of apple (MeBr-treated conditions : 26 g/kg, 0.9x1.4x0.2 m3' 21°C and 4 hr).

—441— —•—control -*-0.5kGy ^-1kGy -»-2kGy -*-3kGy -•-MeBr

a a

o o

60 Stroage day Fig. 58. Effects of gamma irradiation and MeBr fumigation on acetaldehyde content of apple (MeBr-treated conditions : 26 g/kg, 0.9x1.4x0.2 m3' 21°C and 4 hr).

«fl^l ethanol^ acetaldehyde ^TT Fig. Fig. 44 ethanol ^^ *HV ^1^ 3 kGy

3 kGy 0.76 l 60 ^.S. MeBr 10.04ppmS. , 3 kGy ethanol 3 kGy ^r ethanol ^^ 60^

acetaldehyde ^JV^r 1 kGy 2^fflr ^ ^j2-, 2 kGyit 3 kGy 24^, MeBr 60^^] acetaldehyde 44 3.67, 3.82, 3.71, 3.81ppmAS

-442- 70

—•—control -«-0.5kGy 60 -*-1kGy -»-2kGy -x-3kGy -•-MeBr 50

40

O 30

20

10

0 60 Stroage day Fig. 59. Effects of gamma irradiation and MeBr fumigation on EtOH content of pear (MeBr-treated conditions : 26 g/kg, 0.9x1.4x0. 2 m3' 21°C and 4 hr).

Stroage day Fig. 60. Effects of gamma irradiation and MeBr fumigation on acetaldehyde content of pear (MeBr-treated conditions : 26 g/kg, 0.9x1.4x0.2 m3' 21°C and 4 hr).

—443— (7) offgg

(C02) Fig. 612f Fig. 44 C02 MeBr

co2 !

MeBr C02

ZL %»-5o^ 0.5 kGy, 1 kGy HZ\JL 2 kGy 3 kGy ^^H1^ MeBr MeBr ^W 1.40 20.92

-

o O 3

—•—control —•— 0.5kGy -*-1kGy -«-2kGy -*-3kGy -•-MeBr

i

60 Stroage day

Fig. 61. Effects of gamma irradiation and MeBr fumigation on C02 content of apple (MeBr-treated conditions : 26 g/kg, 0.9x1.4x0.2 m3' 21°C and 4 hr).

-444- 25

20

15

3 (3 10

0 60 Stroage day Fig. 62. Effects of gamma irradiation and MeBr fumigation on C2H4 content of apple (MeBr-treated conditions : 26 g/kg, 0.9x1.4x0.2 m3J 21°C and 4 hrj.

Fig. 44 (co2 ^H?)^ fe 2 kGy & aj-ef 0.1 MeBr 1.37

C2H4 Fig. 64011 '-, 0.5-2 kGy 3 kGy

0.5 kGy, 1 kGy gj 3 kGy 60<*H *i*\}-s] &7}*\%.eM, 2 kGy MeBr i^t:}. ^.*| MeBr 92.3 ^ 27.66 ^e/kg^-S.

^ MeBr ^gr (3

-445- 3.5

2.5

1.5 O

—•—control -«-0.5kGy 0.5 -*-1kGy -B-2kGy -*-3kGy -•-MeBr

60 Stroage day

Fig. 63. Effects of gamma irradiation and MeBr fumigation on CO2 content of pear (MeBr-treated conditions : 26 g/kg, 0. 9 Xl. 4 XO. 2 m3' 21°C and 4 hr).

60 Stroage day Fig. 64. Effects of gamma irradiation and MeBr fumigation on C2H4 of pear (MeBr-treated conditions : 26 g/kg, 0.9x1.4x0.2 m3J 21°C and 4 hr).

-446- (l) (D %M(odor) : (odor)*] 3^3 A> ^2]-^ Table 147:2]- £4. *fe]*]^ 1*]- 6.605]

7} 7K# ^^ ^# i^Jl n^g-^S MeBr ^ 2 kGy

MeBr

^(color) : 445] ^(colorH cfl*f ^^^A} ^aj. Table U8$} go] \ 0.5 kGy

°H1 alsfl cHs-T-if MeBr *]e]^4r ^B^^S. a]

. asm- MeBr

(texture) : A>3}^ 2.^} (texture)ofl c]|*> ^^^A} £3}^ g. 4 Si, 24 45] S-Jf ^3:9-efl4 ^VS^l fe^r ^# °J ^ SlSiU. 4 4 445] 4S]^-S^r -«4%H ^7^^^- ^^^^^ 4^4^ (Table 149). H^\, MeBr 2 kGy 0]*^

-447- Table 147. Means of sensory scores of odor from gamma-irradiated and MeBr-fumigated apple1) Stroage Irradiation dose (kGy) Sensory period (days) MeBr characteristics 1st treated 0 0.5 1 2 3

0 6.60a 5.13D 4.80D 4.87" 5.20b 6.07^

20 6.50a S.IO1* 5.00"° 4.60c 5.45"° 5.95*"

40 5.90a 5.35** 5.40*" 4.75° 5.40^ 5.55^

60 5.85a 4.90B 4.85D 4.95D 4.65B 4. 70b

90 5.67^ 4.92° 5.1730 5.42ad 4.33D 6.42a

Odor 120 5.70a 4.80a 5.10a 4.60a 5.00a 5.60a

2nd treated 0 0.5 1 2 MeBr

40 6.85a 5.75D 6.00^ 5.60d 6.25^

60 6.50a S.SO3" 5.75^ 5.40b 5.55B

90 5.99a 5.50a 5.63a 5.00a 5.75a

120 6.00a 5.77a 4.92a 5.15a 5.60a

J)As the value increases the degree of sensory characteristics increases. abcd)Means in the same row with different superscripts are significantly differentp<0. 05).

-448— Table 148. Means of sensory scores of color from gamma-irradiated and MeBr-fumigated apple1' Stroage _ Irradiation dose (kGy) Sensory period (days) ..D Mebr characteristics , . . . , n rtC , o o 1st treated 0 0.5 1 2 3

0 6.27a 5.67^ 5.60^ 5.07s 5.53^ 6.33

20 6.90a 6.10^ 6.30^ 5.90D 5.75d 6.1530

40 6.60a S^3" 6.00^ 5.40" 5.90^ 5.70^

60 6.50a e.OO3" 5.85^ 5.60D 3.20c 5.9O30

90 6.00a 4.92^ 4.83^ 3.42b 3.75B 6.17a

Color 120 5.40^ 3.40d 5.00"° 3.70cd 4.00CCI 6.40a

2nd treated 0 0.5 1 2 MeBr

40 6.60a e^ 5.75ab 5.20b 6.40a

60 6.70a 6.25a 6.15a 6.30a 6.10a

90 6.06a 6.00a 6.00a 5.44a 6.31a

120 5.77ab 5.69^ 5.46^ 4.69b 6.27a As the value increases the degree of sensory characteristics increases. 3130(1 Means in the same row with different superscripts are significantly different(p<0. 05).

-449- Table 149. Means of sensory scores of texture from gamma-irradiated and MeBr-fumigated apple1' Stroage Irradiation dose Sensorc y period (days) characteristics , . . . , 1st treated 0.5

6.46a 4.80BC 4.93"= 4.33cd 3.47° 6.07

20 7.00a 5.40D 5.70" 4.05c 4.10° 6.203

40 6.70a 4.60° 4.90" 3.40c 3.00c 6.30a

60 6.40a 4.95D 4.95° 4.45D 2.35° 4.70D

90 6.42a 4.25" 3.92** 2.42C 2.50c 5.92a

Texture 120 5.80a 3.80°° 4.80ab 3.10c 4. 5.70a

2nd treated 0 0.5 MeBr

40 6.75a 5.85a 4.40b 3.95D 6.25a

60 7.20a 5.75D 5.55B 3.90° 5.55D

90 6.25a 6.00a 5.56a 4.31b 6.56a

120 6.23a 4.92^ 4.38"° 3.46C 6.27a

"As the value increases the degree of sensory characteristics increases. abcd)Means in the same row with different superscripts are significantly different(p<0.05).

® ^#^ (juiciness) : A}^^ t±&$ (juiciness)

juiciness . MeBr

-450- Table 150. Means of sensory scores of juiciness from gamma-irradiated and MeBr-fumigated apple Stroage Irradiation dose (kGy) Sensory period (days) .. _ MeBr characteristics ,,,,, n nc , o o

1st treated 0 0.5 1 2 3

0 5.80a 5.33a 5.33a 5.00a 4.80a 5.60a

20 6.50a 5.80*" 6.15^ 5.40b 5.40b 5.80ab

40 6.25a 5.50°* 5. 55*" 4.65b 4. 80b 5.95a

60 6.55a 5.35B 5.35° 5.20B 3.85C 4.85°

90 6.08a 5.42"* 5.58^ 4. 67bc 4.25C 5.92ab

Juiciness 120 6.10a 4.90ab 5. 40*° 4.50b 4.80b 6.10a

2nd treated 0 0.5 1 2 MeBr

40 6.65a 5.90^ 5.35"° 4.65C 6.15ab

60 7.05a 6.10bc 6.20b 5.40c 6.00bc

90 6.06a 6.25a 6.25a 5.44a 6.31a 120 5.92*" 5.62^ 4.77bc 4.38C 6.13a uAs the value increases the degree of sensory characteristics increases. abcd)Means in the same row with different superscripts are significantly different(p<0.05).

(acidity) : 4^ acidity^

(Table 151). 2 kGy

-451- Table 151. Means of sensory scores of acidity from gamma-irradiated and MeBr-fumigated apple Stroage Sensorv • A IA \ Irradiation dose (kGy) bensory period (days) MeBr characteristics ,,,., rt n c , o o

1st treated 0 0.5 1 2 3

a b aD 0 6.47 4.93° 4.40 4.93D 4.87° 5.47

20 5.80a 4.85^ 4.90^ 4.25b 4.30d 5. 05ab

40 5.20a 4.40""° 4.60ab 3.30c 3.60"° 4.95a

60 5.20a 4.60ab 4.35aD 3.90DC 3.15C 4.30*°

90 6.08a 4.17bc 4.08DC 3.08c 2.75C 5.33^

Acidity 120 5.00a 4. OO30 4.30aD 3.10B S.eO3" 5.00a

2nd treated 0 0.5 1 2 MeBr

40 5.75a 5.50^ 4.60Bc 4.35C 5.75a

60 5.95a 5.05^ 5.35^ 4.35bc 3.60c

90 5.63*° 5.75a 4.50°° 4.38C 4.63aDC

120 4.92a 4.85a 4.23a 4.08a 5.00a As the value increases the degree of sensory characteristics increases. ^"^Means in the same row with different superscripts are significantly different(p<0.05).

(g) ^n] (sweetness) : *}3\$] sweetness cfl*> ^-^^4 ^3}fe Table

H, MeBr *Jel-b S. ^^<>1 3.7S ^i£]$it:>. a*>, 4 *1#7l#ofl $a

0.5 kGy 4el

-452- kGy

(overall acceptability) : (overall acceptability)^ cfl«> ^^^4 ^2fe Table Hl^tl 4 ^lel^«Hl4 4^71^01 ^^^^^- 713LES} ^-^^^ol ^^3., 4 4 .5 kGy ^Aj-n2-^- MeBr ^5l9->l, 2, 3 kGy iA^AS d 6 Hlfe ^-^4 J *W7} J^^^K ojnfl 2 kGy O]AOV ^ MeBr ^5l9-v 60

90^ ^l^f^l^ 2 kGyif ^^ 45lJiLo114 ^B^T2- 9l 1 kGy oje]. S^H?-^ -R-^4^1 4

Table 152. Means of sensory scores of sweetness from gamma-irradiated and MeBr-fumigated apple1' Stroage Irradiation dose (kGy) Sensory period (days) - MpRr characteristics lst-treated 0 0.5 1 2 3

0 5.73" 4.40"6 3.93' 4.53"° 4.67"* 5.47" 20 5.95" 4.90ab 5.25"* 4.25' 4.65' 5.15^ 40 5.05" 4.45" 5.05" 3.30' 4.50" 5.05" 60 5.60" 4.65"' 4.05' 4.00' 2.95C 3.7O'C 90 5.75" 5.08a 4.42"" 3.92"* 3.00' 4.67"" Sweetness 120 5.30" 3.00' 4.50" 3.00' 3.10' 5.10" 2nd-treated 0 0.5 1 2 MeBr 40 5.55" 5.25" 4.75" 4.35" 4.75" 6 60 5.95" 4.45'c s.io" 4.00c 3.80c 90 5.25" 4.94" 4.94" 4.63" 4.25" 120 4.38" 4.77a 4.46" 4.08" 5.33" As the value increases the degree of sensory characteristics increases. ^ Means in the same row with different superscripts are significantly different(p<0.05).

-453- Table 153. Means of sensory scores of overall acceptability from gamma-irradiated and MeBr-fumigated apple1* Stroage Irradiation dose (kGy) Sensory period (days) MeBr characteristics , . . . , A n e , „ o 1st treated 0 0.5 1 2 3

0 6.80a 5.20" 4.47b 4.67b 4. 53b 5. 80*"

20 6.60a 5.05* 5.00bc 4.05c 4.35C 5.80^

40 6.25a 4.75° 5.05" 3.25C 3.60c 5.20b

60 6.05a 5.10D 4.60bc 4.05c 2.30d 3.65C

90 6.08a 4.25D 4.25b 2.67C 2.25C 5.33*"

a 0 bc c c aD acceptabi1i ty 120 5.80 S.SO" 4.40 3.10 3.20 4.80

2nd treated 0 0.5 1 2 MeBr

40 6.45a 5.65a 4.35b 4.25b 5.90a

60 6.80a 5.30b 5.65b 4.20c 4.20c

90 6.00a 5.50^ 5.06^ 4.25b 5.25^

120 5.62a 5.08^ 4.31^ 4.00b 5.73a l)As the value increases the degree of sensory characteristics increases. in the same row with different superscripts are significantly different(p<0. 05).

%*(odor) : wfl^ odorofl tH*> Q^*} ^2f# Table 154ofi

0.5 kGy 2AHL, 40

-454- MeBr || - n 4

Table 154. Means of sensory scores of odor from gamma-irradiated and MeBr-fumigated pear Stroage Irradiation dose (kGy) Sensory period (days) MeBr characteristics ,.,,, A rtl- , o o 1st treated 0 0.5 1 2 3

0 6.7a SA* 4.95bc 5.00bc 4.75° 6.00^

20 5.25^ 5.90a 5.25^ 5.10"" 4.35° 5.75a

40 5.00a 5.30a 5.55a 5.25a 5.00a 5.11a

60 5.25s13 5.35^ 5.20^ 4.70" 5. KT 5.70a

90 5.38ab 4.54d 5.15* 5.54^ 5.46^

Odor 120 5.60a 5.40a 5.30a 5.10a 4.60a

2nd treated 0 0.5 1 2 MeBr

40 6.25a 5.20^ 5.60^ 4.75b 5.40^

60 6.05a 5.50a 5.50a 5.70a 5.35a

90 6.13a 5.06a 5.38a 4.94a 5.81a

120 5.23ab 5.151* 4.77^ 4.15° 6.15a As the value increases the degree of sensory characteristics increases. Means in the same row with different superscripts are significantly different(p<0.05).

(color) : tifl£| colors] tfl^f ^fe^7>5l ^2ffe Table 155^1^ ^9-4f ^ei^- 4O]

2 kGy 2^r?^ MeBr

2*> ^e] A)S01]A-1 cfl^^AS nflat^fil- MeBr

-455- tfl^-ilf MeBr.

Table 155. Means of sensory scores of color from gamma-irradiated and MeBr-fumigated pear Stroage Irradiation dose (kGy) Sensory period (days) „ wMeor characteristics . . . . . A Ac , o o

1st treated 0 0.5 1 2 3

0 6.35a 5.50^ 5.62^ 4.85b 5.65^ 6.25a

20 5. OS1* 6.50a 5.40bc 4.60c 4.60c 5.90ab

40 5.35s6 6.05a 6.05a 5.50a 5.55a 4.37b

60 5.10b 6.70a 5.55b 5.70^ 4.90b 5.45b

90 5.46a 4.85a 4.46a 5.77a 6.00a

Color 120 6.20a 5.10ab 4.10b 5.70^ 4.20b

2nd treated 0 0.5 1 2 MeBr

40 6.30a 5.65a 5.75a 5.20a 6.15a

60 5.80a 6.15a 5.35a 6.25a 5.40a

90 6.56^ 5.44C 5.63"° 5.31C 6.94a

120 5.46^ 4.62bc 4.46bc 3.85C 6.54a As the value increases the degree of sensory characteristics increases. abcd)Means in the same row with different superscripts are significantly different(p<0.05). (3) S^m* (texture) : «fl^ textured] 4*1 ^^^4 ^^# Table

MeBr K 4 0.5 kGy S.*}^ .33] .2. MeBr ^Bln*- A}o|oflJ ., 2, 3 kGy ^A^ji- A]-O|^|^. -

-456- 2*]- 1 *H7}

Table 156. Means of sensory scores of texture from gamma-irradiated and MeBr-fumigated pear Stroage Senqorv • J /J \ Irradiation dose (kGy) bensory period (days) MeBr characteristics , . . . . n Ac , o o

1st treated 0 0.5 1 2 3

0 6.30a 4.65b 5.00b 4.00bc 3.25C 6.15a

20 5.55d 5.35b 5.20° 4.15C 3.10a 7.15a

40 5.60^ 6.20a 4.60bc 3.65ca 2.75d 5.84a

60 5.05"" 6.15a 4.40b 3.35C 2.95C 5.70a

90 5.85^ 5.23^ 4.62bc 3.77C 2.31"

Texture 120 4.40ab 4.70s0 3.806 3.50b 3.10B

2nd treate40 d 6.000 ^ 5.35°0.5 ° 4.801 c 2.852 ° MeB6.55ra

60 6.00a 5.70a 4.50b 2.70c 6.25a

90 5.88a 6.13a 4.69b 3.06c 6.75a

120 5.46a 4.54a 4.31a 2.31b 5.00a

:>As the value increases the degree of sensory characteristics increases. Means in the same row with different superscripts are significantly different(p<0. 05).

(juciness) : tiflS] juciness 3j^^A> ^[2fe Table MeBr

3., ^^9-if MeBr

f. 24 ^ie) Al^.51 ^^ xH1- 3L7]ofl 2 kGy

juciness 3g^^

-457- Table 157. Means of sensory scores of juiciness from gamma-irradiated and MeBr-fumigated pear1' Stroage Irradiation dose (kGy) bensory period (days) MeBr characteristics ,,,., A n c , o o

1st treated 0 0.5 1 2 3

0 6.30a 4.65b 5.00b 4.00bc 3.25C 6.15a

20 6.20313 6.60a 6.30a 5.35bc 4.90c 6.55a

40 5.80a 6.40a 5.75a 5.55a 4.65b 5.63a

60 5.45* 6.70a 5.60bc 4.80c 4.75C 6.25*"

90 5.85a 5.85a 5.15a 5.85a 5.31a

Juiciness 120 5.20a 5.30a 4.50a 5.30a 4.20a

2nd treated 0 0.5 1 2 MeBr

40 6.30a 6.10a 6.30a 4.20" 6.80a

60 6.60a 6.40^ 5.65" 4.25C 5.95^

90 6.50a 6.19a 5.94a 5.94a 6.94a

120 5.77a 5.15s6 5.46ab 3.92b 6.15a As the value increases the degree of sensory characteristics increases. a Means in the same row with different superscripts are significantly different(p<0.05).

(acidity) : nfl$l acidity^] £fl*> #^7} ^2fi- Table 158^]

, 4

*)£.!>) ^-f 4 ^^7l?>o||4 24 ^eo*o) ^^-^^ acidityofl ^o}^l^ ^^- <£ ^ 51S13.. 2 kGy

-458- Table 158. Means of sensory scores of acidity from gamma-irradiated and MeBr-fumigated pear1' Stroage Irradiation dose (kGy) Sensory period (days) Metir characteristics , . . . , n n c , o o

1st treated 0 0.5 12 3

0 6.65a 5.00Dca 4.45ca 5.40bc 4.20a 5. 65b

20 4.25bca 4.85^ 4.75aDc 3.95ca 3.50a 5.10a

40 4.60aD 4.90a 4. 70** 3.85°° 3.55C 4.95a

60 4.35abc 5.25a 4.05bc 3.45C 3.60Dc 4.55aD

90 5.08a 4.92abc 3.85ca 4.15ca 3.08a

Acidity 120 3.60^ 3.30° 3.70"" 3.80*" 3.50aD

2nd treated 0 0.5 1 2 MeBr

40 5.25^ 4.60b 5.10^ 3.45C 5.90a

60 5.50a 4.90a 3.85b 2.90c 4. 75*"

90 5.38"" 4.94"° 4.13ca 3.81a 6.06a

120 5.08a S^3" 4.15ab 2.69D 5.23a As the value increases the degree of sensory characteristics increases c Means in the same row with different superscripts are significantly different(p<0.05). © $*)£. (sweetness) : uflS} sweetness o\] cfl^V 3*^3*} ^2}, 1, 2^} ^1

51 S.^ ^A} ^BO>O| ^#^^- 3j-^3g^^. ^4. uj^ ^^S ufEM^u} (Table 159). 1*} *lej A|S.^ 3-f *t% 3L7]o\) cfl^^-if MeBr

3 kGy

-459- Table 159. Means of sensory scores of sweetness from gamma-irradiated and MeBr-fumigated pear Stroage _, , Irradiation dose (kGy) bensory period (days) MeBr characteristics , . . _ 1st treated 0 n0.5 1 2 3

0 5.50a 4.35" 4.106 4.50D 4.30° 5.55a

20 4.65^ 5.60a 5.35a 4.10DC 3.35C 5.55a

40 4.75a 4.85a 4.60a 4.05a 3.85a 4.95a

60 4.60"° 5.75a 4.65^ 3.20c 4.00DC 4.35DC

90 4.69^ 4.38ab 3.92" 4.84ab 3.23b

Sweetness 120 3.30a 3.50a 4.40a 3.80a 3.80a

2nd treated 0 0.5 1 2 MeBr

40 5.80a 4.65b 5.50^ 3.10c 5.80a

60 5.45a 4.70a 3.40"° 3.05° 4.45at

90 5.63a 4.19C 4.69^ 4.50DC 6.00a

120 5.08a 4.38a 4.15ab 2.62b 5.85a

!>As the value increases the degree of sensory characteristics increases. "^Means in the same row with different superscripts are significantly different(p<0.05).

7]S.S. (overall acceptability) : «> ^4# Table 160

6.^, 2 kGy o]^- #nHd ^H MeBr

^ H %]\) ^^} MeBr kGy o]s$ Xtf^M B^^ fe 2 kGy

—460— Table 160. Means of sensory scores of overall acceptability from gamma-irradiated and MeBr-fumigated pear

Sensory peH oaM days) Irradiation dose (kGy) MeBr characteristics lst treated 0 0.5 1 2 3

0 6.60a 5.35bc 4.75bc 4. 85bc 4.35C 5.85ad

20 4.80bc 5.70^ 4.80Bc 3.85ca 2.85a 6.40a

40 5.00at) 5.21a 4.65ab 4.05°° 3.20c 5.21a

60 4.70b 6.40a 4.90" 3.35° 3.30° 4.80D

90 5.1535 4.77^ 4.08t)C 4.46b 3.00c

120 3.80" 3.90b 3.30b 4.00b 3.10b acceptability

2nd treated 0 0.5 1 2 MeBr

40 6.45a 5.10b 5.30b 2.90c 6.30a

60 5.80a 5.20a 3.95b 2.55C 4.95^

90 e.Oe313 5.19bc 4.13ca 3.63d 6.50a

120 5.61a 4.31a 4.23a 2.62b 5.54a ^As the value increases the degree of sensory characteristics increases. abcd Means in the same row with different superscripts are significantly different(p<0.05).

-461- 1. ^Hl^l Methyl Bromide

MeBr

*\ MeBr 4

fe 2 kGy

3-8-°] 1 kGy

2.

O 7 (3-141 5, ^$] 2), fe^^S 10

-463- 5 g- s ^H ira 3*21

-465- #

5(3), 199-206 (1998) 10. <>]%$. • 2A}^]#5] 6>^^4 ^*fl.SL^, 3.^cflt|j2. -t^f-, p.214 (1998) 11. Codex Alimentarius Commission : Codex General Standard for Irradiated Foods and Recommended International Code of Practice for the Operation of Radiation Facilities Used for the Treatment of Foods. CAC/V0L. XV. FA0, Rome (1984) 12. ^&, 3

-467- 16. 3K ^#] |# £ n *f 3 o\ ^w^^ o>, i(2), 37-48 (1996) 17. Food and Drug Administration : Irradiation in the production, processing and handling of food : Final Rule, Fed. Regist., 51, 13376-13399 (1986) 18. United States Department of Agriculture, Animal and Plant Health Inspection Service : Use of irradiation as a quarantine treatment for fresh fruits of papaya from Hawaii, Fed. Regist., 54, 387-393 (1989) 19. IAEA : Highlights of Activities, International Atomic Energy Agency, Vienna, Austria(1995) IAEA : Food Irradiation Newsletter, 19(2), 3-55 (1995) 20. WHO : Wholesomeness of irradiated food. Report of a Joint FAO/IAEA/ WHO Expert Committee. Technical Report Series-659, 34 (1981) 21. «!^i#^-t!^ : ^-g-^, p. 101 (1999) 22. ^

23. o)^, %%qt i]^^ : Postharvest \ #^£h ^t^HMrf^SM, 2(2), 233-242 (1995) 24. Ufct^, il*i3L, ol^fl : tifli] ^H^I ^*> ^^-(1). *!^Hi^-^^]^-S)^], 38(3), 246-249 (1997) 26. ^^xg, ^11^, ^.Bfi^, Mj^^, ^1^^ : #elcHl^^l ^s^- 4-g-*f 'AIJL' tifl 5] Modified Atmosphere ^Hv. t>^-^w2}^^^l. 18(2), 130-136 27. Kobayashi, T. and Tabuchi, T. : A method employing a tribasic sodium phosphate buffered reagent for estimating semimicro quantities of reducing sugars. J. Agr. Chew. Soc. Japan., 28, 171 (1954) 28. £]^ : '^1' 42f 3H1S1 4^T7 ^4 ^^^i A^5)^ ^^. 38(3), 250-254 (1997) 29. SAS : SAS Users Guide, SAS Institute Inc., Cary, NC. (1986) 30. n& ll 4^^ MM'Wm ^ p.296-300 (1982) 31. *4^§s *l^iX <>lAfl •' «H^ 4^1 ^*> ^^-(2). *J:^^^n^I4, 7, 21-25 (1970) 32. Josephson, E. S. and Peterson, M. S. : Preservation of Food by Ionizing Radiation, Vol. I-III, CRC Press Inc., Boca Raton, Florida (1983) 33. Kwon, J. H., Byun, M. W. and Cho, H. 0. : Browning and color characteristics in mushrooms as influenced by ionizing energy. Korean J. Food Sci, Technol., 22(5), 509-513 (1990) 34. Vajdi, M. and Pereira, R. R. : Comparative effects of ethylene oxide, y -irradiation and microwave treatments on selected spices. J. Food Sci. , 38, 893-897 (1973)

-468- 35. Turner, E. W., Paynter, W. D., Montie, E. J., Bessert, M. W., Struck, G. M. and Olson, F. C. : Use of the 2-thiobarbituric acid reagent to measure rancidity in frozen pork. J. Agric. Food Chem. , 8, 326 (1954) 36. Schoch, T. J. : Determination of Alkali Number. In Methods in Chemistry, Whistler R. L.(Ed.), Academic Press, New York, Vol. 4, p. 61 (1964) 37. Ackeman, J., Ficher M. and R. Amado : Changes in sugars, amino acids during ripening and stroage of apples. J. Agric. Food Chem. ,40, 1131 (1992) 38. Clijsters, H : Malic acid metabolism and initiation of the internal breakdown in Janthan apples. Physiologia Plantarum., 18, 85-94 (1965) 39. Neal, G. E. and A. C. Hulme : The organic acid metabolism of Bramley's seedling apple peel. J. Exp. Bot., 9, 142-157 (1958) 40. Fidler, J. C. : The metabolism of acetaldehyde by plant tissues. J Exp. Bot., 19, 41-51 (1968)

-469- INIS

KAERI/RR-2002/99

2000^

468 p. 3. 71 A4

5 kGy

A}-g-

71 kGy BIBLIOGRAPHIC INFORMATION SHEET Performing Org. Sponsoring Org. Stamdard Report No. INIS Subject Code Report No. Report No. KAERI/RR-2002/99 Development of Food Preservation and Processing Techniques Title / Subtitle by Radiation Project Manager Byun, Myung-Woo (Dept. of Radiation Food & Biotechnology, KAERI] and Department Researcher and Yook, Hong-Sun, Lee, Ju-Woon, Lee, Kyong-Haeng, Kim, Dong-Ho, Jo, Cheorun, Kim, Jae-Hoon, Ahn, Hyun-Joo, Jo, Sung-Kee, Department Kim, Kyoung-Pyo, Han, Bong-Oh, Seo, Min-Won (KAERI) Kim, Hak-Soo(Seokang Univ.), Lee, Cherl-Ho(Korea Univ.), Chai,Jong-Yi 1 (Seoul national Univ.), Kang, Il-Joon(Hallym Univ. ), Kwon, Joong-Ho(Kyungpook national Univ.) Publication Publication Taejon Publisher KAERI 1999 Place Date Page 468 p. 111. & Tab. Yes(«), No ( ) Size A4

Note Open( • ),Restricted( Classified Report Type Research Report Class Document Sponsoring Org. Contract No. Abstract(15-20Lines) Development of food preservation and processing techniques by radiation was performed. Gamma irradiation at 5 kGy completely eliminated pathogenic bacteria in pork and chicken meats. Gamma irradiation at such doses and subsequent storage at less than 4°C could ensure hygienic quality and prolong the microbiological shelf-life resulting from the reduction of spoilage microorganisms. Pork loin ham with desirable color was also developed without using of sodium nitrite that is known as a carcinogen. Safety tests of gamma-irradiated meats in areas such as genotoxicity, acute toxicity, four-week oral toxicity, rat hepatocarcinogenesis and the antioxidative defense system, were not affected by gamma irradiation. Gamma irradiation at about 1 kGy completely eliminated the parasites in foods and drinking water. In the study of quarantine treatment of apple and pear for export by gamma irradiation, current fumigation (MBr) was perfect in its disinfesting capability, but it caused detrimental effects on the physical quality of apple and pear. However, irradiation doses at 1-3 kGy was suitable for controlling pests and did not induce any significant changes in the quality of the products. The result of the survey to assess the public understanding indicated that the irradiated food had somewhat negative impression to general public. Therefore, it is necessary to establish a public education and information program by using mass communication and by constructing communication system to obtain the enhanced impression from the general public.

Food irradiation, Meat processing and preservation, Subject Keywords Safety of irradiated Meats, Parasitic infection, (About 10 words) Quarantine treatment, Public understanding of irradiated food,