Lessons from The

Total Page:16

File Type:pdf, Size:1020Kb

Lessons from The Pennsylvania State University The Graduate School Eberly College of Science MICROBES IN LIFE HISTORY TRANSITIONS: LESSONS FROM THE UPSIDE-DOWN JELLYFISH CASSIOPEA XAMACHANA A Dissertation in Biology by Aki Ohdera © 2018 Aki Ohdera Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2018 The Dissertation of Aki Ohdera was reviewed and approved* by the following: Mónica Medina Associate Professor of Biology Dissertation Advisor Todd C. LaJeunesse Associate Professor of Biology Chair or Committee Timothy Jegla Associate Professor of Biology Paul Medvedev Assistant Professor of Computer Science and Engineering Assistant Professor of Biochemistry and Molecular Biology Stephen W. Schaeffer Professor of Biology Associate Department Head of Graduate Education * Signatures are on file in the graduate school ! ii! Abstract The ubiquity of symbiotic associations that exist in nature demonstrates the importance mutualism plays in the life history of virtually all metazoans. Even closely related species of hosts can associated with different species or genera of symbionts, with varying degrees of specificity. The co-evolutionary implications of these associations underline the genetic and molecular innovations that are a result of symbiosis. This is highlighted in the symbiosis between insects and Buchnera, as well as the bob-tail squid and Vibrio fischeri, where symbiont specific organs have evolved to facilitate the symbiosis. Genomic evolution can also be observed in bacteria as dramatic reductions in gene content, indicating evolution can act on both host and symbiont. Despite the importance and prevalence of symbiosis in nature, we still lack an understanding of how symbiosis is established and maintained for many of the associations. In particular, the mechanisms behind symbiosis-mediated developmental transitions that are found in some invertebrate symbiosis remain unsolved. Here, I utilize the Cassiopea xamachana model system to understand how symbionts can play a role in host life history transitions, and the mechanisms controlling these developmental events. I use next-generation sequencing techniques to determine how both host and symbiont genetics resulted in the evolution of larval and polyp metamorphosis. I also utilize the newly sequenced Cassiopea genome to explore genes that may have facilitated the evolution of symbiosis with Symbiodinium. The work presented in these chapters also showcase the effort put forth in developing the Cassiopea system as a model to understand various fields of organismal biology, particular in cnidarian-Symbiodinium symbiosis. ! iii! Table of Contents List of Figures!......................................................................................................................!vi! List of Tables!........................................................................................................................!x! Acknowledgment!..............................................................................................................!xi! ! Chapter!1!8!Introduction:!Symbiosis!as!a!driver!of!evolutionary!novelty!in! organismal!life!history!.....................................................................................................!1! References!....................................................................................................................................!5! ! Chapter 2: Upside-down but headed in the right direction: Review of the highly versatile Cassiopea xamachana system!...........................................................................!9! Abstract!.......................................................................................................................................!12! Introduction!................................................................................................................................!13! Evolution and Phylogenetics!...................................................................................................!14! Life History!.................................................................................................................................!16! Bud Morphogenesis!...............................................................................................................................!17! Settlement and Metamorphosis!..........................................................................................................!18! Cassiopea-Symbiodinium Symbiosis!..............................................................................................!20! Nutritional Requirements!........................................................................................................!22! Behavior!......................................................................................................................................!24! Fluid Dynamics!.......................................................................................................................................!24! Quiescence!................................................................................................................................................!26! Cassiopea in the Environment!................................................................................................!27! Bioinvasion and Blooms!......................................................................................................................!27! Environmental Monitoring and Ecotoxicology!............................................................................!28! Other Laboratory Applications!.............................................................................................!30! Toxinology and cnidome!.....................................................................................................................!30! Cassiopea Virology!................................................................................................................................!31! Cassiopea as a Laboratory Resource!.....................................................................................!32! Conclusions!.................................................................................................................................!34! References!...................................................................................................................................!36! ! Chapter 3: Is larval settlement predictable? Genomic insights of settlement and metamorphosis inducing bacteria of Cassiopea xamachana!...................................!70! Abstract!......................................................................................................................................!71! Introduction!................................................................................................................................!72! Materials and Methods!............................................................................................................!74! Larval Collection!....................................................................................................................................!74! Bacterial Isolation!..................................................................................................................................!75! Identification of bacterial Isolates!.....................................................................................................!75! Settlement Bioassays!.............................................................................................................................!76! 16S microbiome extraction and sequencing!..................................................................................!77! Genome Sequencing and Analysis!...................................................................................................!78! Results!..........................................................................................................................................!79! Bacterial Settlement Bioassay!............................................................................................................!79! Settlement Substrate Microbiome!.....................................................................................................!79! Bacterial Genome Analysis!.................................................................................................................!80! Discussion!....................................................................................................................................!82! References!...................................................................................................................................!89! ! iv! Chapter 4: Modulation of gene expression driven by symbiosis: Strobilation mechanism in the upside-down jellyfish Cassiopea xamachana!...........................!108! Abstract!.....................................................................................................................................!109! Introduction!..............................................................................................................................!110! Materials and Methods!..........................................................................................................!112! Artificial Induction of Strobilation!.................................................................................................!112! RNAseq of colonization and strobilation!.....................................................................................!113!
Recommended publications
  • The Role of Temperature in Survival of the Polyp Stage of the Tropical Rhizostome Jelly®Sh Cassiopea Xamachana
    Journal of Experimental Marine Biology and Ecology, L 222 (1998) 79±91 The role of temperature in survival of the polyp stage of the tropical rhizostome jelly®sh Cassiopea xamachana William K. Fitt* , Kristin Costley Institute of Ecology, Bioscience 711, University of Georgia, Athens, GA 30602, USA Received 27 September 1996; received in revised form 21 April 1997; accepted 27 May 1997 Abstract The life cycle of the tropical jelly®sh Cassiopea xamachana involves alternation between a polyp ( 5 scyphistoma) and a medusa, the latter usually resting bell-down on a sand or mud substratum. The scyphistoma and newly strobilated medusa (5 ephyra) are found only during the summer and early fall in South Florida and not during the winter, while the medusae are found year around. New medusae originate as ephyrae, strobilated by the polyp, in late summer and fall. Laboratory experiments showed that nematocyst function, and the ability of larvae to settle and metamorphose change little during exposure to temperatures between 158C and up to 338C. However, tentacle length decreased and ability to transfer captured food to the mouth was disrupted at temperatures # 188C. Unlike temperate-zone species of scyphozoans, which usually over-winter in the polyp or podocyst form when medusae disappear, this tropical species has cold-sensitive scyphistomae and more temperature-tolerant medusae. 1998 Elsevier Science B.V. Keywords: Scyphozoa; Jelly®sh; Cassiopea; Temperature; Life history 1. Introduction The rhizostome medusae of Cassiopea xamachana are found throughout the Carib- bean Sea, with their northern limit of distribution on the southern tip of Florida. Unlike most scyphozoans these jelly®sh are seldom seen swimming, and instead lie pulsating bell-down on sandy or muddy substrata in mangroves or soft bottom bay habitats, giving rise to the common names ``mangrove jelly®sh'' or ``upside-down jelly®sh''.
    [Show full text]
  • Population and Spatial Dynamics Mangrove Jellyfish Cassiopeia Sp at Kenya’S Gazi Bay
    American Journal of Life Sciences 2014; 2(6): 395-399 Published online December 31, 2014 (http://www.sciencepublishinggroup.com/j/ajls) doi: 10.11648/j.ajls.20140206.20 ISSN: 2328-5702 (Print); ISSN: 2328-5737 (Online) Population and spatial dynamics mangrove jellyfish Cassiopeia sp at Kenya’s Gazi bay Tsingalia H. M. Department of Biological Sciences, Moi University, Box 3900-30100, Eldoret, Kenya Email address: [email protected] To cite this article: Tsingalia H. M.. Population and Spatial Dynamics Mangrove Jellyfish Cassiopeia sp at Kenya’s Gazi Bay. American Journal of Life Sciences. Vol. 2, No. 6, 2014, pp. 395-399. doi: 10.11648/j.ajls.20140206.20 Abstract: Cassiopeia, the upside-down or mangrove jellyfish is a bottom-dwelling, shallow water marine sycophozoan of the phylum Cnidaria. It is commonly referred to as jellyfish because of its jelly like appearance. The medusa is the dominant phase in its life history. They have a radial symmetry and occur in shallow, tropical lagoons, mangrove swamps and sandy mud falls in tropical and temperate regions. In coastal Kenya, they are found only in one specific location in the Gazi Bay of the south coast. There are no documented studies on this species in Kenya. The objective of this study was to quantify the spatial and size-class distribution, and recruitment of Cassiopeia at the Gazi Bay. Ten 50mx50m quadrats were randomly placed in an estimated study area of 6.4ha to cover about 40 percent of the total study area. A total of 1043 individual upside-down jellyfish were sampled. In each quadrat, all jellyfish encountered were sampled individually.
    [Show full text]
  • Early B-Cell Factors Are Required for Specifying Multiple Retinal Cell Types and Subtypes from Postmitotic Precursors
    11902 • The Journal of Neuroscience, September 8, 2010 • 30(36):11902–11916 Development/Plasticity/Repair Early B-Cell Factors Are Required for Specifying Multiple Retinal Cell Types and Subtypes from Postmitotic Precursors Kangxin Jin,1,2 Haisong Jiang,1,2 Zeqian Mo,3 and Mengqing Xiang1,2 1Center for Advanced Biotechnology and Medicine and Department of Pediatrics, 2Graduate Program in Molecular Genetics, Microbiology and Immunology, and 3Department of Cell Biology and Neuroscience, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854 The establishment of functional retinal circuits in the mammalian retina depends critically on the proper generation and assembly of six classes of neurons, five of which consist of two or more subtypes that differ in morphologies, physiological properties, and/or sublaminar positions. How these diverse neuronal types and subtypes arise during retinogenesis still remains largely to be defined at the molecular level. Here we show that all four family members of the early B-cell factor (Ebf) helix-loop-helix transcription factors are similarly expressedduringmouseretinogenesisinseveralneuronaltypesandsubtypesincludingganglion,amacrine,bipolar,andhorizontalcells, and that their expression in ganglion cells depends on the ganglion cell specification factor Brn3b. Misexpressed Ebfs bias retinal precursors toward the fates of non-AII glycinergic amacrine, type 2 OFF-cone bipolar and horizontal cells, whereas a dominant-negative Ebf suppresses the differentiation of these cells as well as ganglion cells. Reducing Ebf1 expression by RNA interference (RNAi) leads to an inhibitory effect similar to that of the dominant-negative Ebf, effectively neutralizes the promotive effect of wild-type Ebf1, but has no impact on the promotive effect of an RNAi-resistant Ebf1.
    [Show full text]
  • The Puzzling Occurrence of the Upside-Down Jellyfish Cassiopea
    ZOOLOGIA 37: e50834 ISSN 1984-4689 (online) zoologia.pensoft.net RESEARCH ARTICLE The puzzling occurrence of the upside-down jellyfishCassiopea (Cnidaria: Scyphozoa) along the Brazilian coast: a result of several invasion events? Sergio N. Stampar1 , Edgar Gamero-Mora2 , Maximiliano M. Maronna2 , Juliano M. Fritscher3 , Bruno S. P. Oliveira4 , Cláudio L. S. Sampaio5 , André C. Morandini2,6 1Departamento de Ciências Biológicas, Laboratório de Evolução e Diversidade Aquática, Universidade Estadual Paulista “Julio de Mesquita Filho”. Avenida Dom Antônio 2100, 19806-900 Assis, SP, Brazil. 2Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo. Rua do Matão, Travessa 14 101, 05508-090 São Paulo, SP, Brazil. 3Instituto do Meio Ambiente de Alagoas. Avenida Major Cícero de Góes Monteiro 2197, 57017-515 Maceió, AL, Brazil. 4Instituto Biota de Conservação, Rua Padre Odilon Lôbo, 115, 57038-770 Maceió, Alagoas, Brazil 5Laboratório de Ictiologia e Conservação, Unidade Educacional de Penedo, Universidade Federal de Alagoas. Avenida Beira Rio, 57200-000 Penedo, AL, Brazil. 6Centro de Biologia Marinha, Universidade de São Paulo. Rodovia Manoel Hypólito do Rego, km 131.5, 11612-109 São Sebastião, SP, Brazil. Corresponding author: Sergio N. Stampar ([email protected]) http://zoobank.org/B879CA8D-F6EA-4312-B050-9A19115DB099 ABSTRACT. The massive occurrence of jellyfish in several areas of the world is reported annually, but most of the data come from the northern hemisphere and often refer to a restricted group of species that are not in the genus Cassiopea. This study records a massive, clonal and non-native population of Cassiopea and discusses the possible scenarios that resulted in the invasion of the Brazilian coast by these organisms.
    [Show full text]
  • Harnessing the Power of Bacteria in Advancing Cancer Treatment
    International Journal of Molecular Sciences Review Microbes as Medicines: Harnessing the Power of Bacteria in Advancing Cancer Treatment Shruti S. Sawant, Suyash M. Patil, Vivek Gupta and Nitesh K. Kunda * Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Jamaica, NY 11439, USA; [email protected] (S.S.S.); [email protected] (S.M.P.); [email protected] (V.G.) * Correspondence: [email protected]; Tel.: +1-718-990-1632 Received: 20 September 2020; Accepted: 11 October 2020; Published: 14 October 2020 Abstract: Conventional anti-cancer therapy involves the use of chemical chemotherapeutics and radiation and are often non-specific in action. The development of drug resistance and the inability of the drug to penetrate the tumor cells has been a major pitfall in current treatment. This has led to the investigation of alternative anti-tumor therapeutics possessing greater specificity and efficacy. There is a significant interest in exploring the use of microbes as potential anti-cancer medicines. The inherent tropism of the bacteria for hypoxic tumor environment and its ability to be genetically engineered as a vector for gene and drug therapy has led to the development of bacteria as a potential weapon against cancer. In this review, we will introduce bacterial anti-cancer therapy with an emphasis on the various mechanisms involved in tumor targeting and tumor suppression. The bacteriotherapy approaches in conjunction with the conventional cancer therapy can be effective in designing novel cancer therapies. We focus on the current progress achieved in bacterial cancer therapies that show potential in advancing existing cancer treatment options and help attain positive clinical outcomes with minimal systemic side-effects.
    [Show full text]
  • Differential Expression of Hydroxyurea Transporters in Normal and Polycythemia Vera Hematopoietic Stem and Progenitor Cell Subpopulations
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2021 Differential expression of hydroxyurea transporters in normal and polycythemia vera hematopoietic stem and progenitor cell subpopulations Tan, Ge ; Meier-Abt, Fabienne Abstract: Polycythemia vera (PV) is a myeloproliferative neoplasm marked by hyperproliferation of the myeloid lineages and the presence of an activating JAK2 mutation. Hydroxyurea (HU) is a standard treat- ment for high-risk patients with PV. Because disease-driving mechanisms are thought to arise in PV stem cells, effective treatments should target primarily the stem cell compartment. We tested for theantipro- liferative effect of patient treatment with HU in fluorescence-activated cell sorting-isolated hematopoietic stem/multipotent progenitor cells (HSC/MPPs) and more committed erythroid progenitors (common myeloid/megakaryocyte-erythrocyte progenitors [CMP/MEPs]) in PV using RNA-sequencing and gene set enrichment analysis. HU treatment led to significant downregulation of gene sets associated with cell proliferation in PV HSCs/MPPs, but not in PV CMP/MEPs. To explore the mechanism underlying this finding, we assessed for expression of solute carrier membrane transporters, which mediate trans- membrane movement of drugs such as HU into target cells. The active HU uptake transporter OCTN1 was upregulated in HSC/MPPs compared with CMP/MEPs of untreated patients with PV, and the HU diffusion facilitator urea transporter B (UTB) was downregulated in HSC/MPPs compared withCM- P/MEPs in all patient and control groups tested. These findings indicate a higher accumulation ofHU within PV HSC/MPPs compared with PV CMP/MEPs and provide an explanation for the differential effects of HU in HSC/MPPs and CMP/MEPs of patients with PV.
    [Show full text]
  • Synergetic Effect of Recoverin and Calmodulin on Regulation of Rhodopsin Kinase
    Thomas Jefferson University Jefferson Digital Commons Department of Biochemistry and Molecular Department of Biochemistry and Molecular Biology Faculty Papers Biology 1-1-2012 Synergetic effect of recoverin and calmodulin on regulation of rhodopsin kinase. Ilya I Grigoriev Lomonosov Moscow State University Ivan I Senin Lomonosov Moscow State University Natalya K Tikhomirova Lomonosov Moscow State University Konstantin E Komolov Lomonosov Moscow State University; University of Oldenburg, Oldenburg, Germany; Department of FBiochemistrollow this andy and additional Molecular works Biology at: ,https:/ Thomas/jdc.jeff Jeffersonerson.edu/bmpfp University Ser geiPar tE of P theermy Medicalakov Biochemistry Commons, and the Medical Molecular Biology Commons LetInstitute us for knowBiological Instrumentationhow access of the tRussiano this Academy document of Sciences benefits ouy RecommendedSee next page for Citation additional authors Grigoriev, Ilya I; Senin, Ivan I; Tikhomirova, Natalya K; Komolov, Konstantin E; Permyakov, Sergei E; Zernii, Evgeni Yu; Koch, Karl-Wilhelm; and Philippov, Pavel P, "Synergetic effect of recoverin and calmodulin on regulation of rhodopsin kinase." (2012). Department of Biochemistry and Molecular Biology Faculty Papers. Paper 36. https://jdc.jefferson.edu/bmpfp/36 This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in Department of Biochemistry and Molecular Biology Faculty Papers by an authorized administrator of the Jefferson Digital Commons.
    [Show full text]
  • Cassiopea Xamachana (Upside-Down Jellyfish)
    UWI The Online Guide to the Animals of Trinidad and Tobago Ecology Cassiopea xamachana (Upside-down Jellyfish) Order: Rhizostomeae (Eight-armed Jellyfish) Class: Scyphozoa (Jellyfish) Phylum: Cnidaria (Corals, Sea Anemones and Jellyfish) Fig. 1. Upside-down jellyfish, Cassiopea xamachana. [http://images.fineartamerica.com/images-medium-large/upside-down-jellyfish-cassiopea-sp-pete-oxford.jpg, downloaded 9 March 2016] TRAITS. Cassiopea xamachana, also known as the upside-down jellyfish, is quite large with a dominant medusa (adult jellyfish phase) about 30cm in diameter (Encyclopaedia of Life, 2014), resembling more of a sea anemone than a typical jellyfish. The name is associated with the fact that the umbrella (bell-shaped part) settles on the bottom of the sea floor while its frilly tentacles face upwards (Fig. 1). The saucer-shaped umbrella is relatively flat with a well-defined central depression on the upper surface (exumbrella), the side opposite the tentacles (Berryman, 2016). This depression gives the jellyfish the ability to stick to the bottom of the sea floor while it pulsates gently, via a suction action. There are eight oral arms (tentacles) around the mouth, branched elaborately in four pairs. The most commonly seen colour is a greenish grey-blue, due to the presence of zooxanthellae (algae) embedded in the mesoglea (jelly) of the body, and especially the arms. The mobile medusa stage is dioecious, which means that there are separate males and females, although there are no features which distinguish the sexes. The polyp stage is sessile (fixed to the substrate) and small (Sterrer, 1986). UWI The Online Guide to the Animals of Trinidad and Tobago Ecology DISTRIBUTION.
    [Show full text]
  • Serum Albumin OS=Homo Sapiens
    Protein Name Cluster of Glial fibrillary acidic protein OS=Homo sapiens GN=GFAP PE=1 SV=1 (P14136) Serum albumin OS=Homo sapiens GN=ALB PE=1 SV=2 Cluster of Isoform 3 of Plectin OS=Homo sapiens GN=PLEC (Q15149-3) Cluster of Hemoglobin subunit beta OS=Homo sapiens GN=HBB PE=1 SV=2 (P68871) Vimentin OS=Homo sapiens GN=VIM PE=1 SV=4 Cluster of Tubulin beta-3 chain OS=Homo sapiens GN=TUBB3 PE=1 SV=2 (Q13509) Cluster of Actin, cytoplasmic 1 OS=Homo sapiens GN=ACTB PE=1 SV=1 (P60709) Cluster of Tubulin alpha-1B chain OS=Homo sapiens GN=TUBA1B PE=1 SV=1 (P68363) Cluster of Isoform 2 of Spectrin alpha chain, non-erythrocytic 1 OS=Homo sapiens GN=SPTAN1 (Q13813-2) Hemoglobin subunit alpha OS=Homo sapiens GN=HBA1 PE=1 SV=2 Cluster of Spectrin beta chain, non-erythrocytic 1 OS=Homo sapiens GN=SPTBN1 PE=1 SV=2 (Q01082) Cluster of Pyruvate kinase isozymes M1/M2 OS=Homo sapiens GN=PKM PE=1 SV=4 (P14618) Glyceraldehyde-3-phosphate dehydrogenase OS=Homo sapiens GN=GAPDH PE=1 SV=3 Clathrin heavy chain 1 OS=Homo sapiens GN=CLTC PE=1 SV=5 Filamin-A OS=Homo sapiens GN=FLNA PE=1 SV=4 Cytoplasmic dynein 1 heavy chain 1 OS=Homo sapiens GN=DYNC1H1 PE=1 SV=5 Cluster of ATPase, Na+/K+ transporting, alpha 2 (+) polypeptide OS=Homo sapiens GN=ATP1A2 PE=3 SV=1 (B1AKY9) Fibrinogen beta chain OS=Homo sapiens GN=FGB PE=1 SV=2 Fibrinogen alpha chain OS=Homo sapiens GN=FGA PE=1 SV=2 Dihydropyrimidinase-related protein 2 OS=Homo sapiens GN=DPYSL2 PE=1 SV=1 Cluster of Alpha-actinin-1 OS=Homo sapiens GN=ACTN1 PE=1 SV=2 (P12814) 60 kDa heat shock protein, mitochondrial OS=Homo
    [Show full text]
  • Molecular Analysis of Candidate Probiotic Effector Molecules of Lactobacillus Plantarum
    Molecular analysis of candidate probiotic effector molecules of Lactobacillus plantarum Daniela Maria Remus Thesis committee Promoter Prof. dr. Michiel Kleerebezem Professor of Bacterial Metagenomics Wageningen University Co-promoter Dr. Peter A. Bron Senior Scientist, NIZO food research BV, Ede Other members Prof. dr. Tjakko Abee, Wageningen University Prof. dr. Pascal Hols, University of Lovain (Lovain la Neuve), Belgium Dr. Philippe Langella, National Institute of Agricultural Research (INRA), Paris, France Prof. dr. Roland J. Siezen, Radboud University, Nijmegen This research was conducted under the auspices of the Graduate School VLAG (Advanced studies in Food Technology, Agrobiotechnology, Nutrition and Health Sciences). Molecular analysis of candidate probiotic effector molecules of Lactobacillus plantarum Daniela Maria Remus Thesis submitted in fulfillment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. dr. M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Tuesday 09 October 2012 at 4 p.m. in the Aula. Daniela Maria Remus Molecular analysis of candidate probiotic effector molecules of Lactobacillus plantarum Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands (2012) With references and summaries in English and Dutch. ISBN 978-94-6173-373-3 Summary Lactobacilli occupy diverse natural habitats, including dairy products and the mammalian gastrointestinal (GI) tract, and several Lactobacillus strains are marketed as probiotics that can interact with host cells in the GI tract by which they are proposed to beneficially influence the health status of their consumers. The discovery of probiotic effector molecules is instrumental to understand the exact modes of probiotic action, which is required for their controlled, safe, and purpose-directed application.
    [Show full text]
  • Plantaricin KW30
    The Molecular and Cellular Characterisation of the First Glycocin: Plantaricin KW30 Judith Stepper 2009 The Molecular and Cellular Characterisation of the First Glycocin: Plantaricin KW30 A thesis presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biochemistry at Massey University, Palmerston North, New Zealand Judith Stepper 2009 “What we know is a drop. What we don’t know is an ocean.” Isaac Newton (1643 – 1727) ABSTRACT Bacteriocins, typically secreted by Gram-positive and -negative bacteria, are ribosomally- synthesised antimicrobial peptides which inhibit the growth of competing bacteria. We have purified a 43 amino acid bacteriocin, plantaricin KW30 (PlnKW30) produced by Lactobacillus plantarum KW30, that has little amino acid sequence similarity to any other characterised bacteriocin. The gene encoding plnKW30 is in a cluster with the genes required for maturation and export of, and immunity to, the bacteriocin. This arrangement of genes is similar to the genomic context of bacteriocin genes in other lactic acid bacteria. The plnKW30 gene cluster comprises six genes encoding a glycosyltransferase, a proteolytic ABC-transporter, two putative thioredoxins, a response regulator and PlnKW30 itself. PlnKW30 was found to possess two unusual post-translational modifications: an O-glycosylated serine and an unprecedented S-glycosylation of the C-terminal cysteine. The modified serine is located on an eight residue loop that is tethered by a disulfide bridge. Both modifications have been identified as N-acetylglucosamines (GlcNAc), making PlnKW30 the first described class IV bacteriocin. A post-translational modification with S-linked GlcNAc is unprecedented in bacteriocins as well as in all genera.
    [Show full text]
  • The Bacteriostatic Diglycocylated Bacteriocin Glycocin F Targets A
    Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. The Bacteriostatic Diglycosylated Bacteriocin Glycocin F Targets a Sugar-Specific Transporter A thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Biochemistry at Massey University, Manawatu New Zealand Kelvin Ross Drower 2014 Dedicated to Nana and Pop Abstract The increasing prevalence of antibiotic-resistance bacteria is threatening to end the antibiotic era established following Alexander Fleming's discovery of penicillin in 1928. Over-prescription and misuse of broad-spectrum antibiotics has hastened the development and spread of antibiotic resistance. This, combined with a lack of research and development (R&D) of new antibiotics by major pharmaceutical companies, may lead to a widespread recurrence of 'incurable' bacterial diseases. However while commercial R&D of antibiotics has waned, much research has been carried out to characterise bacteriocins, ribosomally-synthesised antimicrobial polypeptides thought to be produced by virtually all prokaryotes. Although hundreds of bacteriocins have been identified and characterised, only a handful of their cognate receptors on susceptible cells have been identified. Glycocin F is a bacteriostatic diglycosylated 43-amino acid bacteriocin produced by the Gram-positive bacterium Lactobacillus plantarum KW30 that inhibits the growth of a broad range of bacteria. The mechanism of action of glycocin F is unknown, however evidence suggested that glycocin F binds to cells via a N-acetylglucosamine (GlcNAc) specific phosphoenolpyruvate:carbohydrate-phosphotransferase system (PTS) transporter, as had been shown for lactococcin A, lactococcin B and microcin E492 that target a mannose specific PTS transporter.
    [Show full text]