Genome-Wide Mapping of Human DNA Replication by Optical Replication Mapping Supports a Stochastic Model of Eukaryotic Replication Timing [Preprint]
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Role of Lamin Associated Domains in Global Chromatin Organization and Nuclear Architecture
THE ROLE OF LAMIN ASSOCIATED DOMAINS IN GLOBAL CHROMATIN ORGANIZATION AND NUCLEAR ARCHITECTURE By Teresa Romeo Luperchio A dissertation submitted to The Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland March 2016 © 2016 Teresa Romeo Luperchio All Rights Reserved ABSTRACT Nuclear structure and scaffolding have been implicated in expression and regulation of the genome (Elcock and Bridger 2010; Fedorova and Zink 2008; Ferrai et al. 2010; Li and Reinberg 2011; Austin and Bellini 2010). Discrete domains of chromatin exist within the nuclear volume, and are suggested to be organized by patterns of gene activity (Zhao, Bodnar, and Spector 2009). The nuclear periphery, which consists of the inner nuclear membrane and associated proteins, forms a sub- nuclear compartment that is mostly associated with transcriptionally repressed chromatin and low gene expression (Guelen et al. 2008). Previous studies from our lab and others have shown that repositioning genes to the nuclear periphery is sufficient to induce transcriptional repression (K L Reddy et al. 2008; Finlan et al. 2008). In addition, a number of studies have provided evidence that many tissue types, including muscle, brain and blood, use the nuclear periphery as a compartment during development to regulate expression of lineage specific genes (Meister et al. 2010; Szczerbal, Foster, and Bridger 2009; Yao et al. 2011; Kosak et al. 2002; Peric-Hupkes et al. 2010). These large regions of chromatin that come in molecular contact with the nuclear periphery are called Lamin Associated Domains (LADs). The studies described in this dissertation have furthered our understanding of maintenance and establishment of LADs as well as the relationship of LADs with the epigenome and other factors that influence three-dimensional chromatin structure. -
Genome-Wide Mapping of Human DNA
Genome-Wide Mapping of Human DNA Replication by Optical Replication Mapping Supports a Stochastic Model of Eukaryotic Replication Weitao Wang, Kyle Klein, Karel Proesmans, Hongbo Yang, Claire Marchal, Xiaopeng Zhu, Tyler Borman, Alex Hastie, Zhiping Weng, John Bechhoefer, et al. To cite this version: Weitao Wang, Kyle Klein, Karel Proesmans, Hongbo Yang, Claire Marchal, et al.. Genome-Wide Mapping of Human DNA Replication by Optical Replication Mapping Supports a Stochastic Model of Eukaryotic Replication. 2020. hal-03014247 HAL Id: hal-03014247 https://hal.archives-ouvertes.fr/hal-03014247 Preprint submitted on 24 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. bioRxiv preprint doi: https://doi.org/10.1101/2020.08.24.263459. this version posted August 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. It is made available under a CC-BY-NC 4.0 International license. Genome-Wide Mapping of Human DNA Replication by Optical Replication Mapping Supports a Stochastic Model of Eukaryotic Replication Timing Weitao Wang1*, Kyle Klein2*, Karel Proesmans3*, Hongbo Yang4*, Claire Marchal2§, Xiaopeng Zhu5, Tyler Borman6, Alex Hastie7, Zhiping Weng6, John Bechhoefer3†, Chun-Long Chen1,8†, David M. -
Lessons from The
Pennsylvania State University The Graduate School Eberly College of Science MICROBES IN LIFE HISTORY TRANSITIONS: LESSONS FROM THE UPSIDE-DOWN JELLYFISH CASSIOPEA XAMACHANA A Dissertation in Biology by Aki Ohdera © 2018 Aki Ohdera Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2018 The Dissertation of Aki Ohdera was reviewed and approved* by the following: Mónica Medina Associate Professor of Biology Dissertation Advisor Todd C. LaJeunesse Associate Professor of Biology Chair or Committee Timothy Jegla Associate Professor of Biology Paul Medvedev Assistant Professor of Computer Science and Engineering Assistant Professor of Biochemistry and Molecular Biology Stephen W. Schaeffer Professor of Biology Associate Department Head of Graduate Education * Signatures are on file in the graduate school ! ii! Abstract The ubiquity of symbiotic associations that exist in nature demonstrates the importance mutualism plays in the life history of virtually all metazoans. Even closely related species of hosts can associated with different species or genera of symbionts, with varying degrees of specificity. The co-evolutionary implications of these associations underline the genetic and molecular innovations that are a result of symbiosis. This is highlighted in the symbiosis between insects and Buchnera, as well as the bob-tail squid and Vibrio fischeri, where symbiont specific organs have evolved to facilitate the symbiosis. Genomic evolution can also be observed in bacteria as dramatic reductions in gene content, indicating evolution can act on both host and symbiont. Despite the importance and prevalence of symbiosis in nature, we still lack an understanding of how symbiosis is established and maintained for many of the associations. -
Investigating the Molecular Basis of Concussion Using
INVESTIGATING THE MOLECULAR BASIS OF CONCUSSION USING WHOLE EXOME SEQUENCING AND BIOINFORMATICS Omar Ezzeldin Ibrahim Abdelrahman BBehavSc(HonsPsych), GCertBiotech Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy School of Biomedical Sciences Faculty of Health Queensland University of Technology 2021 LIST OF PUBLICATIONS: 1- Heidi G. Sutherland, Neven Maksemous, Cassie L. Albury, Omar Ibrahim, Robert A. Smith, Rod A. Lea, Larisa M. Haupt, Bronwyn Jenkins, Benjamin Tsang, Lyn R. Griffiths. Comprehensive exonic sequencing of hemiplegic migraine related genes in a cohort of suspected probands identifies known and potential pathogenic variants. Accepted in Cells. 2- Ibrahim O, Sutherland HG, Maksemous N, Smith R, Haupt LM, Griffiths LR. Exploring Neuronal Vulnerability to Head Trauma Using a Whole Exome Approach. J Neurotrauma. 2020 Sep 1;37(17):1870-1879. doi: 10.1089/neu.2019.6962. Epub 2020 May 4. PMID: 32233732; PMCID: PMC7462038. Q1 Journal 3- Maksemous N, Smith RA, Sutherland HG, Maher BH, Ibrahim O, Nicholson GA, Carpenter EP, Lea RA, Cader MZ, Griffiths LR. Targeted next generation sequencing identifies a genetic spectrum of DNA variants in patients with hemiplegic migraine. Cephalalgia Reports. 2019 Oct 11;2:2515816319881630. 4- Ibrahim O, Sutherland HG, Haupt LM, Griffiths LR. Saliva as a comparable-quality source of DNA for Whole Exome Sequencing on Ion platforms. Genomics. 2020 Mar;112(2):1437-1443. doi: 10.1016/j.ygeno.2019.08.014. Epub 2019 Aug 21. PMID: 31445087. Q1 Journal 5- Ibrahim O, Sutherland HG, Avgan N, Spriggens LK, Lea RA, Haupt LM, Shum DH, Griffiths LR. Investigation of the CADM2 polymorphism rs17518584 in memory and executive functions measures in a cohort of young healthy individuals. -
Phd Thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden and Wageningen University, the Netherlands (2016) with References, with Summary in English
Mapping and ne-mapping of genetic factors affecting bovine milk composition Sandrine Isolde Duchemin Acta Universitatis Agriculturae Sueciae Doctoral Thesis No. 2016:39 Propositions 1. Imputation is the limiting factor for detection of rare-variant quantitative trait loci in traditional genome-wide association studies. (this thesis) 2. Good annotation of the cattle genome is crucial for gene discovery. (this thesis) 3. The real CRISPR/Cas9 revolution is the editing of human somatic cells, not the editing of human germ-line cells. 4. Diseases in animals as dynamic events are best modelled, diagnosed and treated by veterinarians. 5. Women who accept a gender quota are in fact agreeing they are less than men. 6. In science sand grains from publications build up to mountains of knowledge. Propositions belonging to the thesis, entitled: “Mapping and fine-mapping of genetic factors affecting bovine milk composition” Sandrine Isolde Duchemin Wageningen, 30 May 2016 Mapping and fine-mapping of genetic factors affecting bovine milk composition Thesis committee Promotors Prof. Dr. ir. J.A.M. van Arendonk Professor of Animal Breeding and Genetics Wageningen University Co-promotor Dr. ir. H. Bovenhuis Associate professor, Animal Breeding and Genomics Centre Wageningen University Dr. ir. M.H.P.W. Visker Researcher, Animal Breeding and Genomics Centre Wageningen University Dr. ir. W.F. Fikse Senior researcher, Department of Animal Breeding and Genetics Swedish University of Agricultural Sciences Other members (assessment committee) Prof. Dr. E.J.M. Feskens, Wageningen University Prof. Dr. A.C.M. van Hooijdonk, Wageningen University Prof. Dr. L. Andersson-Eklund, Swedish University of Agricultural Sciences, Sweden Dr. -
Long Noncoding Rnas Are Critical Regulators of Pancreatic Islet Development and Function
Long noncoding RNAs are critical regulators of pancreatic islet development and function Ruth A. Singer Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy under the Executive Committee of the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2019 © 2018 Ruth A. Singer All rights reserved ABSTRACT Long noncoding RNAs are critical regulators of pancreatic islet development and function Ruth A. Singer Diabetes is a complex group of metabolic disorders with genetic, immunological, and environmental etiologies. Decades of diabetes research have elucidated many genetic drivers of normal islet function and dysfunction. Furthermore, genome wide associated studies (GWAS) have discovered that most diabetes susceptibility loci fall outside of coding regions, which suggests a role for noncoding elements in the development of disease. This highlights our incomplete understanding of the islet regulome and suggests the need for detailed functional analyses of noncoding genes to precisely determine their contribution to diabetes susceptibility and disease progression. Transcriptome analyses have revealed that the eukaryotic genome is pervasively transcribed. Strikingly, only a small proportion of the transcriptome is subsequently translated into protein; the majority is made up non-protein coding RNAs (ncRNAs). The most abundant class of these ncRNAs are called long noncoding RNAs (lncRNAs), defined as transcripts longer than 200 nucleotides that lack protein-coding potential. The establishment of lncRNAs, once dismissed as genomic dark matter, as essential gene regulators in many biological processes has redefined the central role for RNA in cells. While evidence suggests a role for lncRNAs in islets and diabetes, in vivo functional characterization of islet lncRNAs is lacking. -
The 8P11-P12 Amplicon Oncogenes ASH2L and NSD3 Regulate Cell
Medical University of South Carolina MEDICA MUSC Theses and Dissertations 2017 The 8p11-P12 Amplicon Oncogenes ASH2L and NSD3 Regulate Cell Cycle Progression via Epigenetic Alterations and Result in Overexpression and Estrogen-Independent Activation of ERα in Breast Cancer Jamie Nicole Mills Medical University of South Carolina Follow this and additional works at: https://medica-musc.researchcommons.org/theses Recommended Citation Mills, Jamie Nicole, "The 8p11-P12 Amplicon Oncogenes ASH2L and NSD3 Regulate Cell Cycle Progression via Epigenetic Alterations and Result in Overexpression and Estrogen-Independent Activation of ERα in Breast Cancer" (2017). MUSC Theses and Dissertations. 335. https://medica-musc.researchcommons.org/theses/335 This Dissertation is brought to you for free and open access by MEDICA. It has been accepted for inclusion in MUSC Theses and Dissertations by an authorized administrator of MEDICA. For more information, please contact [email protected]. TABLE OF CONTENTS Acknowledgements…………………………………………………………….…...... ii List of Figures…………………………………………………….………………....... iii List of Tables.…………………………………………………………………….…… iv List of Appendices……………………………………………………………...…….. v List of Abbreviations………………………………………………………………….. vi ABSTRACT.…………………………………………………………….….…………. viii CHAPTER 1: Introduction and Review of Literature…………….…………..……. 2 CHAPTER 2: NSD3 amplification and overexpression results in overexpression and estrogen-independent activation of the estrogen receptor in human breast cancer……………………………………………………………… 55 CHAPTER