Novel Mechanisms of Innate Immunity

Total Page:16

File Type:pdf, Size:1020Kb

Novel Mechanisms of Innate Immunity Novel mechanisms of innate immunity Von der Fakultät für Lebenswissenschaften der Technischen Universität Carolo-Wilhelmina zu Braunschweig zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte D i s s e r t a t i o n von Björn Bulitta aus Wolfenbüttel 1. Referent: Professor Dr. Lothar Jänsch 2. Referentin: Professorin Dr. Dunja Bruder 3. Referent: Professor Dr. Stephan Dübel eingereicht am: 3.8.2015 mündliche Prüfung (Disputation) am: 15.12.2015 Druckjahr 2016 Vorveröffentlichungen der Dissertation Teilergebnisse aus dieser Arbeit wurden mit Genehmigung der Fakultät für Lebenswissenschaften, vertreten durch den Mentor der Arbeit, in folgenden Beiträgen vorab veröffentlicht: Abschlussarbeiten Bulitta, B. (2011). Modulation of NK cell effector function by kinase inhibitors, Masterarbeit, Technische Universität Braunschweig Publikationen Scheiter, M. & Bulitta, B., Van Ham, M., Klawonn, F., König, S., & Jänsch, L. (2013). Protein kinase inhibitors CK59 and CID755673 alter primary human NK cell effector functions. Front Immunol, 4(MAR). Tagungsbeiträge Bulitta B., Scheiter M., Garritsen H., Klawonn F., & Jänsch L.: Novel kinases involved in NK cell effector responses and microtubule dynamics. (Poster) 14th Meeting of the Society for Natural Immunity, Heidelberg (2013) Bulitta B., Scheiter M., Gröbe L., & Jänsch L.: Proteomic definition of primary human MAIT cells. (Poster) 44th Annual Meeting of the German Society for Immunology, Bonn (2014) I II Abstract Over decades, one of the central dogmas of immunity has been that immune cells can be classified as parts of either the adaptive or innate immune system. In recent years, however, the lines between these two systems have become increasingly blurred. For example, subsets of innate natural killer (NK) cells have been demonstrated to display memory phenotypes, while recently identified mucosal-associated invariant CD8 T cells (MAIT cells) realize innate cytotoxicity. MAIT and NK cells both constitute predominant populations in human blood and other organs and share a high expression of CD161. NK cells detect virus infected, and abnormally transformed cells, and MAIT cells are able to identify and directly lyse bacterial-infected cells. While NK activation is controlled by a multitude of receptors, MAIT responses essentially depend on a TCRa chain that is invariant, as opposed to what is found in conventional T cells. Although NK cell activation is well defined, the underlying signaling networks are still obscure. In the first part of this thesis, the role of several kinases in NK cell activity was inves- tigated. It could be shown that chemical inhibition of CaMKII and PKD kinases, respectively, leads to a significant decrease of NK cell cytotoxicity and cytokine release, underscoring the importance of kinases CaMKII and PKDs in NK cell activation. Notably, these experiments also indicate significant donor-variations, inhibitory pathways and further involved cell types, which concertedly bias drug-modulated NK responses. In the second part, new mechanisms of innate immunity were investigated for the first time in primary human MAIT cells. Currently, the exact role of MAIT cells in health and disease remains widely undefined, and proteomic data about this innate-like T cell subset is missing. Proteomes of primary human MAIT were quantitatively compared donor-dependently with innate NK cells and conventional CD8 T cells by mass spectrometry. In total, 5500 proteins could be identified from five representative human donors. These data reveal a functional inventory of MAIT cells that integrates phenotypes from both NK and CD8 cells. Donor-dependent analyses then defined a MAIT-specific profile of effector molecules, and regulators of exocytosis and proliferation, respectively. Furthermore, this thesis provides candidates that can now be considered as novel MAIT markers and/or likely contribute to their anti-bacterial unique phenotype. In this context, the first observation of III the immunological synapse (IS) of a MAIT cell interacting with a bacterial infected target cell is presented and recruitment of candidate protein S100A4 to the site of anti-microbial activity is confirmed. IV Contents 1 Introduction 1 1.1 Functions and components of innate and adaptive immunity . .1 1.2 Function and activation of innate natural killer cells . .4 1.3 The biology of adaptive cytotoxic T cells . .6 1.3.1 Priming and activation of CD8 T cells . .6 1.3.2 Formation of the cytotoxic T cell immunological synapse, and CD8+ T cell effector functions . .9 1.4 Mucosal-associated invariant T cells . 10 1.4.1 Phenotype of MAIT cells . 10 1.4.2 Activation and function of MAIT cells . 12 1.4.3 Development of MAIT cells . 15 1.4.4 MAIT cells and diseases . 16 1.5 Aim of thesis . 18 2 Material and Methods 19 2.1 Equipment and software . 19 2.1.1 Equipment . 19 2.1.2 Software . 19 2.2 Chemicals, buffers and media . 20 2.2.1 Buffers . 20 2.2.2 Media . 21 2.2.3 Kinase inhibitors . 22 2.3 Cells . 22 2.4 Antibodies . 22 2.5 Methods of Microbiology . 24 2.5.1 Used bacterial strains . 24 2.5.2 Cultivation and fixation of bacteria . 24 2.6 Methods of Cell Biology . 25 2.6.1 Culturing of cells . 25 V Contents 2.6.2 Isolation of PBMCs from human peripheral blood . 25 2.6.3 Fluorescence activated cells sorting of primary human immune cells cells . 25 2.6.4 Immunofluorescence analysis of MAIT cell activation . 26 2.6.5 Flow cytometric analysis of MAIT cell activation . 27 2.6.6 Magnetic activated sorting of human NK cells . 27 2.6.7 NK cell degranulation assay . 28 2.6.8 NK cell cytokine release assay . 28 2.6.9 Flow cytometric analysis of NK cell degranulation and cytokine release 29 2.7 Semi-quantitative proteomic analysis . 29 2.7.1 Cell lysis and digestion (urea lysis) . 29 2.7.2 Reverse-phase peptide clean up and desalting . 30 2.7.3 Peptide labeling with iTRAQTM ........................ 30 2.7.4 Subfractionation of complex peptide samples through SCX chromatog- raphy . 31 2.7.5 Mass spectrometric analyses and data interpretation . 31 2.8 Statistical evaluation and determination of significantly regulated proteins . 32 3 Results 35 3.1 The role of Src kinases, CamKII and PKD kinases in NK cell activation . 35 3.1.1 Inhibition of Src kinases, CaMKII and PKD kinases decreases NK cell degranulation and cytokine release in primary human PBMCs . 35 3.1.2 Donor-specific responses of pure NK cells treated with Dasatinib, CK59 and CID755673 . 37 3.2 MAIT cells isolated from human donor blood are suitable material for proteomic analyses . 41 3.3 First insights into the proteome of primary human MAIT cells reveal T cell specific proteins and pathways . 44 3.4 Mass spectrometry generates highly reproducible data from small cell numbers 52 3.5 Conserved and novel functions in innate immunity in MAIT cells . 56 3.5.1 Flow cytometry allows the generation of highly pure MAIT cells, CD8+ T cell and NK cell samples . 56 3.5.2 Protein identification in MAIT, NK and cCD8+ T cells shows large overlap of proteins in different donors . 59 3.5.3 Differential protein expression in MAIT, NK and cCD8+ T cells . 62 VI Contents 3.5.3.1 MAITs cells are a cell type distinct from NK and cCD8+ T cells on the proteomic level . 62 3.5.3.2 Robust identification of regulated proteins in MAIT, NK and cCD8+ T cells indicates distinct proteomic profiles . 67 3.5.3.3 Proteomic data is validated by flow cytometry . 71 3.5.4 Immunological effector proteins show distinct abundance in MAIT cells 72 3.5.4.1 MAIT cells possess a unique set set of effector molecules . 72 3.5.4.2 Proteins regulating exocytosis and proliferation are upregu- lated in MAIT cells . 73 3.6 First-time characterization of the MAIT cell immunological synapse . 77 3.6.1 Formation of the MAIT immunological synapses . 77 3.6.2 S100A4 is associated with microtubules in MAIT cells . 79 3.6.3 S100A4 localizes at the MAIT IS in a time-dependent manner . 81 4 Discussion 87 4.1 Chemical inhibition of NK cell effector functions . 87 4.1.1 Specificity of used kinase inhibitors . 87 4.1.2 Role of PKD and CaMKII in NK cell activation . 88 4.1.3 Perspectives for kinase inhibitors in cancer and NK cell therapy . 89 4.2 Novel mechanisms of innate immunity in MAIT cells . 91 4.2.1 Proteomic analysis of low-abundant primary immune cells . 91 4.2.2 Proteomic results are in accordance with current knowledge . 91 4.2.3 Is the definition of a “typical” MAIT cell possible with proteomics? . 93 4.2.4 Best of both worlds: Typical MAIT cells between NK cells and CD8 T cells 94 4.2.5 Defining the typical MAIT cell phenotype with proteomics . 95 4.2.5.1 A new set of markers for human MAIT cells . 95 4.2.5.2 The arsenal of MAIT cells - innate immunity requires a specific pattern of effector molecules . 96 4.2.5.3 Increased capacity for exocytosis in typical human MAIT cells 101 4.2.5.4 Controlling the killer: MAIT cells display a unique set of proteins that regulate proliferation . 103 4.2.6 First insights into the molecular mechanisms of MAIT cytotoxicity . 105 5 Summary and outlook 109 5.1 Coordination of NK effector function by kinases Fyn, CaMKII and PKD . 109 5.2 Proteomic analysis reveals novel mechanisms of innate immunity in MAIT cells110 5.3 First-time characterization of the MAIT cell immunological synapse . 112 VII Contents Appendix 115 List of Figures 179 List of Tables 181 List of Abbreviations 183 Bibliography 187 Acknowledgements 209 VIII 1 Introduction 1.1 Functions and components of innate and adaptive immunity During the course of evolution, even the smallest of life forms have developed rudimentary protection mechanisms to shield themselves from the potential harmful influence of infectious agents.
Recommended publications
  • KO Kidney.Xlsx
    Supplemental Table 18: Dietary Impact on the CGL KO Kidney Sulfhydrome DR/AL Accession Molecular Cysteine Spectral Protein Name Number Alternate ID Weight Residues Count Ratio P‐value Ig gamma‐2A chain C region, A allele P01863 (+1) Ighg 36 kDa 10 C 5.952 0.03767 Heterogeneous nuclear ribonucleoprotein M Q9D0E1 (+1) Hnrnpm 78 kDa 6 C 5.000 0.00595 Phospholipase D3 O35405 Pld3 54 kDa 8 C 4.167 0.04761 Ig kappa chain V‐V region L7 (Fragment) P01642 Gm10881 13 kDa 2 C 2.857 0.01232 UPF0160 protein MYG1, mitochondrial Q9JK81 Myg1 43 kDa 7 C 2.333 0.01613 Copper homeostasis protein cutC homolog Q9D8X1 Cutc 29 kDa 7 C 10.333 0.16419 Corticosteroid‐binding globulin Q06770 Serpina6 45 kDa 3 C 10.333 0.16419 28S ribosomal protein S22, mitochondrial Q9CXW2 Mrps22 41 kDa 2 C 7.333 0.3739 Isoform 3 of Agrin A2ASQ1‐3 Agrn 198 kDa 2 C 7.333 0.3739 3‐oxoacyl‐[acyl‐carrier‐protein] synthase, mitochondrial Q9D404 Oxsm 49 kDa 11 C 7.333 0.3739 Cordon‐bleu protein‐like 1 Q3UMF0 (+3)Cobll1 137 kDa 10 C 5.833 0.10658 ADP‐sugar pyrophosphatase Q9JKX6 Nudt5 24 kDa 5 C 4.167 0.15819 Complement C4‐B P01029 C4b 193 kDa 29 C 3.381 0.23959 Protein‐glutamine gamma‐glutamyltransferase 2 P21981 Tgm2 77 kDa 20 C 3.381 0.23959 Isochorismatase domain‐containing protein 1 Q91V64 Isoc1 32 kDa 5 C 3.333 0.10588 Serpin B8 O08800 Serpinb8 42 kDa 11 C 2.903 0.06902 Heterogeneous nuclear ribonucleoprotein A0 Q9CX86 Hnrnpa0 31 kDa 3 C 2.667 0.5461 Proteasome subunit beta type‐8 P28063 Psmb8 30 kDa 5 C 2.583 0.36848 Ig kappa chain V‐V region MOPC 149 P01636 12 kDa 2 C 2.583 0.36848
    [Show full text]
  • Analysis of Gene Expression Data for Gene Ontology
    ANALYSIS OF GENE EXPRESSION DATA FOR GENE ONTOLOGY BASED PROTEIN FUNCTION PREDICTION A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Master of Science Robert Daniel Macholan May 2011 ANALYSIS OF GENE EXPRESSION DATA FOR GENE ONTOLOGY BASED PROTEIN FUNCTION PREDICTION Robert Daniel Macholan Thesis Approved: Accepted: _______________________________ _______________________________ Advisor Department Chair Dr. Zhong-Hui Duan Dr. Chien-Chung Chan _______________________________ _______________________________ Committee Member Dean of the College Dr. Chien-Chung Chan Dr. Chand K. Midha _______________________________ _______________________________ Committee Member Dean of the Graduate School Dr. Yingcai Xiao Dr. George R. Newkome _______________________________ Date ii ABSTRACT A tremendous increase in genomic data has encouraged biologists to turn to bioinformatics in order to assist in its interpretation and processing. One of the present challenges that need to be overcome in order to understand this data more completely is the development of a reliable method to accurately predict the function of a protein from its genomic information. This study focuses on developing an effective algorithm for protein function prediction. The algorithm is based on proteins that have similar expression patterns. The similarity of the expression data is determined using a novel measure, the slope matrix. The slope matrix introduces a normalized method for the comparison of expression levels throughout a proteome. The algorithm is tested using real microarray gene expression data. Their functions are characterized using gene ontology annotations. The results of the case study indicate the protein function prediction algorithm developed is comparable to the prediction algorithms that are based on the annotations of homologous proteins.
    [Show full text]
  • Protein Identities in Evs Isolated from U87-MG GBM Cells As Determined by NG LC-MS/MS
    Protein identities in EVs isolated from U87-MG GBM cells as determined by NG LC-MS/MS. No. Accession Description Σ Coverage Σ# Proteins Σ# Unique Peptides Σ# Peptides Σ# PSMs # AAs MW [kDa] calc. pI 1 A8MS94 Putative golgin subfamily A member 2-like protein 5 OS=Homo sapiens PE=5 SV=2 - [GG2L5_HUMAN] 100 1 1 7 88 110 12,03704523 5,681152344 2 P60660 Myosin light polypeptide 6 OS=Homo sapiens GN=MYL6 PE=1 SV=2 - [MYL6_HUMAN] 100 3 5 17 173 151 16,91913397 4,652832031 3 Q6ZYL4 General transcription factor IIH subunit 5 OS=Homo sapiens GN=GTF2H5 PE=1 SV=1 - [TF2H5_HUMAN] 98,59 1 1 4 13 71 8,048185945 4,652832031 4 P60709 Actin, cytoplasmic 1 OS=Homo sapiens GN=ACTB PE=1 SV=1 - [ACTB_HUMAN] 97,6 5 5 35 917 375 41,70973209 5,478027344 5 P13489 Ribonuclease inhibitor OS=Homo sapiens GN=RNH1 PE=1 SV=2 - [RINI_HUMAN] 96,75 1 12 37 173 461 49,94108966 4,817871094 6 P09382 Galectin-1 OS=Homo sapiens GN=LGALS1 PE=1 SV=2 - [LEG1_HUMAN] 96,3 1 7 14 283 135 14,70620005 5,503417969 7 P60174 Triosephosphate isomerase OS=Homo sapiens GN=TPI1 PE=1 SV=3 - [TPIS_HUMAN] 95,1 3 16 25 375 286 30,77169764 5,922363281 8 P04406 Glyceraldehyde-3-phosphate dehydrogenase OS=Homo sapiens GN=GAPDH PE=1 SV=3 - [G3P_HUMAN] 94,63 2 13 31 509 335 36,03039959 8,455566406 9 Q15185 Prostaglandin E synthase 3 OS=Homo sapiens GN=PTGES3 PE=1 SV=1 - [TEBP_HUMAN] 93,13 1 5 12 74 160 18,68541938 4,538574219 10 P09417 Dihydropteridine reductase OS=Homo sapiens GN=QDPR PE=1 SV=2 - [DHPR_HUMAN] 93,03 1 1 17 69 244 25,77302971 7,371582031 11 P01911 HLA class II histocompatibility antigen,
    [Show full text]
  • Nucleolin and Its Role in Ribosomal Biogenesis
    NUCLEOLIN: A NUCLEOLAR RNA-BINDING PROTEIN INVOLVED IN RIBOSOME BIOGENESIS Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf vorgelegt von Julia Fremerey aus Hamburg Düsseldorf, April 2016 2 Gedruckt mit der Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf Referent: Prof. Dr. A. Borkhardt Korreferent: Prof. Dr. H. Schwender Tag der mündlichen Prüfung: 20.07.2016 3 Die vorgelegte Arbeit wurde von Juli 2012 bis März 2016 in der Klinik für Kinder- Onkologie, -Hämatologie und Klinische Immunologie des Universitätsklinikums Düsseldorf unter Anleitung von Prof. Dr. A. Borkhardt und in Kooperation mit dem ‚Laboratory of RNA Molecular Biology‘ an der Rockefeller Universität unter Anleitung von Prof. Dr. T. Tuschl angefertigt. 4 Dedicated to my family TABLE OF CONTENTS 5 TABLE OF CONTENTS TABLE OF CONTENTS ............................................................................................... 5 LIST OF FIGURES ......................................................................................................10 LIST OF TABLES .......................................................................................................12 ABBREVIATION .........................................................................................................13 ABSTRACT ................................................................................................................19 ZUSAMMENFASSUNG
    [Show full text]
  • The Tumor Suppressor Notch Inhibits Head and Neck Squamous Cell
    The Texas Medical Center Library DigitalCommons@TMC The University of Texas MD Anderson Cancer Center UTHealth Graduate School of The University of Texas MD Anderson Cancer Biomedical Sciences Dissertations and Theses Center UTHealth Graduate School of (Open Access) Biomedical Sciences 12-2015 THE TUMOR SUPPRESSOR NOTCH INHIBITS HEAD AND NECK SQUAMOUS CELL CARCINOMA (HNSCC) TUMOR GROWTH AND PROGRESSION BY MODULATING PROTO-ONCOGENES AXL AND CTNNAL1 (α-CATULIN) Shhyam Moorthy Shhyam Moorthy Follow this and additional works at: https://digitalcommons.library.tmc.edu/utgsbs_dissertations Part of the Biochemistry, Biophysics, and Structural Biology Commons, Cancer Biology Commons, Cell Biology Commons, and the Medicine and Health Sciences Commons Recommended Citation Moorthy, Shhyam and Moorthy, Shhyam, "THE TUMOR SUPPRESSOR NOTCH INHIBITS HEAD AND NECK SQUAMOUS CELL CARCINOMA (HNSCC) TUMOR GROWTH AND PROGRESSION BY MODULATING PROTO-ONCOGENES AXL AND CTNNAL1 (α-CATULIN)" (2015). The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access). 638. https://digitalcommons.library.tmc.edu/utgsbs_dissertations/638 This Dissertation (PhD) is brought to you for free and open access by the The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences at DigitalCommons@TMC. It has been accepted for inclusion in The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access) by an authorized administrator of DigitalCommons@TMC. For more information, please contact [email protected]. THE TUMOR SUPPRESSOR NOTCH INHIBITS HEAD AND NECK SQUAMOUS CELL CARCINOMA (HNSCC) TUMOR GROWTH AND PROGRESSION BY MODULATING PROTO-ONCOGENES AXL AND CTNNAL1 (α-CATULIN) by Shhyam Moorthy, B.S.
    [Show full text]
  • Identification of Biomarkers of Metastatic Disease in Uveal
    Identification of biomarkers of metastatic disease in uveal melanoma using proteomic analyses Thesis submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor in Philosophy Martina Angi June 2015 To Mario, the wind beneath my wings 2 Acknowledgments First and foremost, I would like to acknowledge my primary supervisor, Prof. Sarah Coupland, for encouraging me to undergo a PhD and for supporting me in this long journey. I am truly grateful to Dr Helen Kalirai for being the person I could always turn to, for a word of advice on cell culture as much as on parenting skills. I would also like to acknowledge Prof. Bertil Damato for being an inspiration and a mentor; and Dr Sarah Lake and Dr Joseph Slupsky for their precious advice. I would like to thank Dawn, Haleh, Fidan and Fatima for becoming my family away from home, and the other members of the LOORG for the fruitful discussions and lovely cakes. I would like to acknowledge Prof. Heinrich Heimann and the clinical team at LOOC, especially Sisters Hebbar, Johnston, Hachuela and Kaye, for their admirable dedication to UM patients and for their invaluable support to clinical research. I would also like to thank the members of staff in St Paul’s theatre and Simon Biddolph and Anna Ikin in Pathology for their precious help in sample collection. I am grateful to Dr Rosalind Jenkins who guided my first steps in the mysterious word of proteomics, and to Dr Deb Simpsons and Prof. Rob Beynon for showing me its beauty.
    [Show full text]
  • A High-Throughput Approach to Uncover Novel Roles of APOBEC2, a Functional Orphan of the AID/APOBEC Family
    Rockefeller University Digital Commons @ RU Student Theses and Dissertations 2018 A High-Throughput Approach to Uncover Novel Roles of APOBEC2, a Functional Orphan of the AID/APOBEC Family Linda Molla Follow this and additional works at: https://digitalcommons.rockefeller.edu/ student_theses_and_dissertations Part of the Life Sciences Commons A HIGH-THROUGHPUT APPROACH TO UNCOVER NOVEL ROLES OF APOBEC2, A FUNCTIONAL ORPHAN OF THE AID/APOBEC FAMILY A Thesis Presented to the Faculty of The Rockefeller University in Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy by Linda Molla June 2018 © Copyright by Linda Molla 2018 A HIGH-THROUGHPUT APPROACH TO UNCOVER NOVEL ROLES OF APOBEC2, A FUNCTIONAL ORPHAN OF THE AID/APOBEC FAMILY Linda Molla, Ph.D. The Rockefeller University 2018 APOBEC2 is a member of the AID/APOBEC cytidine deaminase family of proteins. Unlike most of AID/APOBEC, however, APOBEC2’s function remains elusive. Previous research has implicated APOBEC2 in diverse organisms and cellular processes such as muscle biology (in Mus musculus), regeneration (in Danio rerio), and development (in Xenopus laevis). APOBEC2 has also been implicated in cancer. However the enzymatic activity, substrate or physiological target(s) of APOBEC2 are unknown. For this thesis, I have combined Next Generation Sequencing (NGS) techniques with state-of-the-art molecular biology to determine the physiological targets of APOBEC2. Using a cell culture muscle differentiation system, and RNA sequencing (RNA-Seq) by polyA capture, I demonstrated that unlike the AID/APOBEC family member APOBEC1, APOBEC2 is not an RNA editor. Using the same system combined with enhanced Reduced Representation Bisulfite Sequencing (eRRBS) analyses I showed that, unlike the AID/APOBEC family member AID, APOBEC2 does not act as a 5-methyl-C deaminase.
    [Show full text]
  • Cell-Specific Proteomic Analysis in Caenorhabditis Elegans
    Supporting Information Appendix (265 Pages) for Cell-Specific Proteomic Analysis in Caenorhabditis elegans Authors: Kai P. Yueta, Meenakshi K. Domab, c, John T. Ngoa, 2, Michael J. Sweredoskid, Robert L. J. Grahamd, 3, Annie Moradiand, Sonja Hessd, Erin M. Schumane, Paul W. Sternbergb,c and David A. Tirrella,1 Author Affiliations: aDivision of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America bDivision of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America cHoward Hughes Medical Institute, California Institute of Technology, Pasadena, California, United States of America dProteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, California, United States of America eMax Planck Institute for Brain Research, Frankfurt am Main, Germany 1To whom correspondence may be addressed. 2Current Address: Department of Pharmacology, University of California, San Diego, La Jolla, California, United States of America 3Current Address: Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom Supporting Information Materials and Methods - Adenosine Triphosphate (ATP)-Pyrophosphate (PPi) Exchange Assay - Chloroform/Methanol Precipitation - Enrichment of p-Azido-L-Phenylalanine-Labeled Proteins - Fluorescence Microscopy of Live C. elegans - Fluorescence Microscopy of p-Azido-L-Phenylalanine-Labeled Proteins in Fixed C. elegans - In-Gel Fluorescence
    [Show full text]
  • Supplementary Data.Xlsx
    Electronic Supplementary Material (ESI) for Molecular BioSystems. This journal is © The Royal Society of Chemistry 2016 Average Average spectral spectral Fold UniProt IDGene Protein Name counts- counts- enrichm negative positive ent sample sample P12821 ACE HUMAN - ACE Angiotensin-converting enzyme 0 79.75 #DIV/0! Q71U36 TBA1A HUMAN - TUBA1A Tubulin alpha-1A chain 0 59.5 #DIV/0! P17812 PYRG1 HUMAN - CTPS1 CTP synthase 1 0 43.5 #DIV/0! P23921 RIR1 HUMAN - RRM1 Ribonucleoside-diphosphate reductase large subunit 0 35 #DIV/0! P49915GUAA HUMAN - GMPS GMP synthase 0 30.5 #DIV/0! P30153 2AAA HUMAN - PPP2R1A Serine/threonine-protein phosphatase 2A 65 kDa0 regulatory subunit29 A#DIV/0! alpha isoform P55786 PSA HUMAN - NPEPPS Puromycin-sensitive aminopeptidase 0 28.75 #DIV/0! O43143 DHX15 HUMAN - DHX15 Putative pre-mRNA-splicing factor ATP-dependent RNA0 helicase28.25 DHX15#DIV/0! P15170 ERF3A HUMAN - GSPT1 Eukaryotic peptide chain release factor GTP-binding0 subunit ERF3A24.75 #DIV/0! P09874PARP1HUMAN - PARP1 Poly 0 23.5 #DIV/0! Q9BXJ9 NAA15 HUMAN - NAA15 N-alpha-acetyltransferase 15, NatA auxiliary subunit0 23 #DIV/0! B0V043 B0V043 HUMAN - VARS Valyl-tRNA synthetase 0 20 #DIV/0! Q86VP6 CAND1 HUMAN - CAND1 Cullin-associated NEDD8-dissociated protein 1 0 19.5 #DIV/0! P04080CYTB HUMAN - CSTB Cystatin-B 0 19 #DIV/0! Q93009 UBP7 HUMAN - USP7 Ubiquitin carboxyl-terminal hydrolase 7 0 18 #DIV/0! Q9Y2L1 RRP44 HUMAN - DIS3 Exosome complex exonuclease RRP44 0 18 #DIV/0! Q13748 TBA3C HUMAN - TUBA3D Tubulin alpha-3C/D chain 0 18 #DIV/0! P29144 TPP2 HUMAN
    [Show full text]
  • Inda, María Carolina. 2017 03 15
    Tesis Doctoral Caracterización de distintas fuentes de cAMP en la señalización del GPCR CRHR1 Inda, María Carolina 2017-03-15 Este documento forma parte de la colección de tesis doctorales y de maestría de la Biblioteca Central Dr. Luis Federico Leloir, disponible en digital.bl.fcen.uba.ar. Su utilización debe ser acompañada por la cita bibliográfica con reconocimiento de la fuente. This document is part of the doctoral theses collection of the Central Library Dr. Luis Federico Leloir, available in digital.bl.fcen.uba.ar. It should be used accompanied by the corresponding citation acknowledging the source. Cita tipo APA: Inda, María Carolina. (2017-03-15). Caracterización de distintas fuentes de cAMP en la señalización del GPCR CRHR1. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Cita tipo Chicago: Inda, María Carolina. "Caracterización de distintas fuentes de cAMP en la señalización del GPCR CRHR1". Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. 2017-03- 15. Dirección: Biblioteca Central Dr. Luis F. Leloir, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Contacto: [email protected] Intendente Güiraldes 2160 - C1428EGA - Tel. (++54 +11) 4789-9293 UNIVERSIDAD DE BUENOS AIRES Facultad de Ciencias Exactas y Naturales Caracterización de distintas fuentes de cAMP en la señalización del GPCR CRHR1 Tesis presentada para optar al título de Doctor de la Universidad de Buenos Aires en el área de Ciencias Biológicas Lic. María Carolina Inda Directora de tesis: Dr. Susana Silberstein Cuña Consejero de Estudios: Dr. Eduardo Arzt Instituto de Investigación en Biomedicina de Buenos Aires CONICET - Partner Institute of the Max Planck Society Buenos Aires, 2017 Gracias Susana por la confianza y el apoyo para trabajar todos estos años.
    [Show full text]
  • COVALENT DRUG BINDING: a MECHANISTIC EXPLORATION to ENHANCE SAFETY and EFFICACY CHAN CHUN YIP (B.Sc. Pharm (Hons.), NUS) a THES
    COVALENT DRUG BINDING: A MECHANISTIC EXPLORATION TO ENHANCE SAFETY AND EFFICACY CHAN CHUN YIP (B.Sc. Pharm (Hons.), NUS) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF PHARMACY NATIONAL UNIVERSITY OF SINGAPORE 2015 Declaration I hereby declare that this thesis is my original work and it has been written by me in its entirety. I have duly acknowledged all the sources of information which have been used in the thesis. This thesis has also not been submitted for any degree in any university previously. _______________ Chan Chun Yip 18 November 2015 i Acknowledgments This thesis represents the collective contributions of numerous individuals to whom I would like to express my deepest gratitude. First and foremost, my heartfelt thanks to Prof Eric Chan, my doctoral advisor who has been a wonderful mentor since I was an Honors Year student. Thank you for taking a chance on someone rough around the edges, and investing time and effort in shaping and moulding me to be a better person both professionally and personally. You are a person who truly leads by example and clearly walks the talk. I am grateful that you are always challenging and inspiring me, and in the process, you have taught me that I have, in myself, the capacity to achieve greater heights. Thank you for trusting me, giving me the freedom and encouraging me to explore new ideas and research interests, and for providing all the necessary support to ensure the success of these endeavours. You are always ready to lend a listening ear despite your busy schedule, and I deeply appreciate all your advice and counsel.
    [Show full text]
  • Bioanalytical and Proteomic Approaches in the Study of Pathologic Ecs Dysfunctionality, Oxidative Stress and the Effects of PFKFB3 Modulators
    Bioanalytical and proteomic approaches in the study of pathologic ECs dysfunctionality, oxidative stress and the effects of PFKFB3 modulators Sarath Babu Nukala ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tdx.cat) i a través del Dipòsit Digital de la UB (diposit.ub.edu) ha estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX ni al Dipòsit Digital de la UB. No s’autoritza la presentació del seu contingut en una finestra o marc aliè a TDX o al Dipòsit Digital de la UB (framing). Aquesta reserva de drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la persona autora. ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tdx.cat) y a través del Repositorio Digital de la UB (diposit.ub.edu) ha sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR o al Repositorio Digital de la UB.
    [Show full text]