COVALENT DRUG BINDING: a MECHANISTIC EXPLORATION to ENHANCE SAFETY and EFFICACY CHAN CHUN YIP (B.Sc. Pharm (Hons.), NUS) a THES

Total Page:16

File Type:pdf, Size:1020Kb

COVALENT DRUG BINDING: a MECHANISTIC EXPLORATION to ENHANCE SAFETY and EFFICACY CHAN CHUN YIP (B.Sc. Pharm (Hons.), NUS) a THES COVALENT DRUG BINDING: A MECHANISTIC EXPLORATION TO ENHANCE SAFETY AND EFFICACY CHAN CHUN YIP (B.Sc. Pharm (Hons.), NUS) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF PHARMACY NATIONAL UNIVERSITY OF SINGAPORE 2015 Declaration I hereby declare that this thesis is my original work and it has been written by me in its entirety. I have duly acknowledged all the sources of information which have been used in the thesis. This thesis has also not been submitted for any degree in any university previously. _______________ Chan Chun Yip 18 November 2015 i Acknowledgments This thesis represents the collective contributions of numerous individuals to whom I would like to express my deepest gratitude. First and foremost, my heartfelt thanks to Prof Eric Chan, my doctoral advisor who has been a wonderful mentor since I was an Honors Year student. Thank you for taking a chance on someone rough around the edges, and investing time and effort in shaping and moulding me to be a better person both professionally and personally. You are a person who truly leads by example and clearly walks the talk. I am grateful that you are always challenging and inspiring me, and in the process, you have taught me that I have, in myself, the capacity to achieve greater heights. Thank you for trusting me, giving me the freedom and encouraging me to explore new ideas and research interests, and for providing all the necessary support to ensure the success of these endeavours. You are always ready to lend a listening ear despite your busy schedule, and I deeply appreciate all your advice and counsel. I continue to learn from you in so many ways, and I thank God for blessing me with you as my mentor and role model. I am deeply appreciative of my collaborators at the Singapore Eye Research Institute: Dr Zhou Lei and Ms Koh Siew Kwan, who believed in the potential of this project, and has tirelessly and generously provided invaluable support and technical expertise, without which our investigation on drug-induced protein glutathionylation would not have commenced and now come to fruition. I am very grateful for your strong commitment to this work and belief in its potential that helped sustain it through difficult times. My sincere gratitude to Dr Ong Pei Shi for partnering us in investigating the pharmacodynamic interaction between lapatinib and endoxifen. Thank you for personally teaching me the cell culture ii and molecular biology techniques needed for this study, and for tirelessly co- supervising 2 Honors Year students with us. I have learnt a great deal from your guidance in and out of the lab. To my collaborators at GlaxoSmithKline R&D Singapore: Dr Edward Browne, Dr Kishore Pasikanti and Ms Su Zhiting, my deepest gratitude for their unwavering support with investigating the pharmacokinetic interaction between lapatinib and endoxifen using the MDCKII- MDR1 model. A big thank you to Prof Christina Chai for hosting me in your lab to perform organic synthesis, for kindly treating me as part of your research group and for all the advice, support and encouragement. I am thankful to Dr Ngai Mun Hong, Yan Ting, Yanbo and Kuan Chieh for help with the synthetic work, and more memorably the camaraderie in and out of the Chai lab. My warmest gratitude also to Dr Vinita Uttamsingh and Dr Sophia Nguyen from Concert Pharmaceuticals for providing deuterated lapatinib analogues for our evaluation. My sincere thanks to past and present members of the Metabolic Profiling Research Group: Lee Sun for her guidance and friendship from my days as an Honours student; Alex, Davis, Devester, Kwok Foong, Preben, Peirong and Wanjing for their invaluable contributions as undergraduate students to the different parts of this work, making it greater than the sum of its individual parts; Hui Ting, Lee Cheng, Lian Yee, Yanjun, Gopal, Yee Min and Dorinda for providing me with their kind assistance for parts of my project; Liyan, Aneesh, Aparna, Yun Shan, Thiru, Kai Lun, Ronald, Gopal and Theebarina for making MPRG a wonderful and fun group, as well as Hai Ning for being a great friend and generously sharing resources; you are all part of precious memories and have left an indelible mark in my journey. A special thanks to Lian Yee for all the encouragement you have provided to me; your treasured friendship, cherished iii care and unflagging support through thick and thin made it possible to complete this journey, and I would not exchange it for anything in this world. I would like to convey my gratefulness to the Department of Pharmacy, NUS, for my education and I would like to thank in particular Dr Chew Eng Hui and Dr Ho Han Kiat for their sharp comments and suggestions which kept this project on the right track; Ms Ng Sek Eng, Ms Tan Bee Jen and Mr Sukaman for their excellent technical support and administrative efficiency. I would also like to acknowledge the financial support from NUS Pharmacy, GlaxoSmithKline, the President’s Graduate Fellowship and funding from the FYP research grants for making this project a reality. I would also like to remember the late Prof Sidney Nelson, who carried out pionerring investigations on acetaminophen toxicity and inspired us to investigate acetaminophen-induced protein glutathionylation. To my dad and mum: no words can adequately express my thanks and gratitude for all your love, care, concern and patience; supporting me through difficult times, and celebrating my achievements and successes; for your unwavering belief and unceasing encouragement; and being ever ready with a listening ear and a comforting shoulder. As difficult as it sometimes was for me during these eight years that I was away from home, it must have been harder for you; I am grateful for your trust and support which enabled me to pursue my dreams. Thank you for making countless trips between home and Singapore to visit me and keep me well-stocked with necessities, and never once griping or complaining. To the rest of my family and loved ones: I could not have completed this journey without you. Each of you gave of yourself in some way that made this possible. I thank God every day that I have you in my life. iv And finally, to my Lord and Saviour Jesus Christ: thank you for leading me through all these years, and for placing me at the right time and right place, with the right people, doing the right thing. Looking back, I can see Your hand in action guiding me and providing me with all that I need. Thank you for giving me a new perspective of Your creation as a scientist. Having glimpsed the marvelous intricacies of Your work in this thesis, I am utterly convinced that “… in Him all things were created: things in heaven and on earth, visible and invisible, whether thrones or powers or rulers or authorities; all things have been created through Him and for Him. He is before all things, and in Him all things hold together.” (Col 1:16-17, NIV). Glory be to Him. v Table of Contents DECLARATION ................................................................................................... I ACKNOWLEDGMENTS ................................................................................... II TABLE OF CONTENTS ................................................................................... VI SUMMARY ........................................................................................................... X PUBLICATIONS AND CONFERENCE ABSTRACTS ................................ XI LIST OF TABLES ........................................................................................... XIII LIST OF FIGURES ........................................................................................... XV LIST OF SUPPLEMENTARY TABLES ...................................................... XXI LIST OF SUPPLEMENTARY FIGURES ................................................... XXII LIST OF ABBREVIATIONS ...................................................................... XXIII CHAPTER 1 INTRODUCTION ....................................................................1 1.1 The Burden of Adverse Drug Reactions .....................................................1 1.2 Classification of ADRs ..................................................................................2 1.3 Xenobiotic Metabolism and Reactive Metabolite Formation ...................4 1.4 Covalent Drug Binding and Protein Adduct Formation ...........................5 1.5 Toxicological Significance of Covalent Binding .........................................6 1.5.1 Overt Consequences of Covalent Binding ........................................................... 6 1.5.1.1 Mechanism-based Inactivation ................................................................... 6 1.5.1.2 Type B idiosyncratic drug reactions ........................................................... 9 1.5.1.3 Type C dose-dependent toxicity ............................................................... 11 1.5.2 Covert Effects of Covalent Binding ................................................................... 12 1.5.3 Limitations of the Covalent Binding Hypothesis................................................ 15 1.6 Pharmacological Significance of Covalent Binding .................................16 1.7 Research Objectives and Significance .......................................................19 1.7.1 Research Question and Objectives .................................................................... 19 1.7.2 Thesis Outline .................................................................................................
Recommended publications
  • KO Kidney.Xlsx
    Supplemental Table 18: Dietary Impact on the CGL KO Kidney Sulfhydrome DR/AL Accession Molecular Cysteine Spectral Protein Name Number Alternate ID Weight Residues Count Ratio P‐value Ig gamma‐2A chain C region, A allele P01863 (+1) Ighg 36 kDa 10 C 5.952 0.03767 Heterogeneous nuclear ribonucleoprotein M Q9D0E1 (+1) Hnrnpm 78 kDa 6 C 5.000 0.00595 Phospholipase D3 O35405 Pld3 54 kDa 8 C 4.167 0.04761 Ig kappa chain V‐V region L7 (Fragment) P01642 Gm10881 13 kDa 2 C 2.857 0.01232 UPF0160 protein MYG1, mitochondrial Q9JK81 Myg1 43 kDa 7 C 2.333 0.01613 Copper homeostasis protein cutC homolog Q9D8X1 Cutc 29 kDa 7 C 10.333 0.16419 Corticosteroid‐binding globulin Q06770 Serpina6 45 kDa 3 C 10.333 0.16419 28S ribosomal protein S22, mitochondrial Q9CXW2 Mrps22 41 kDa 2 C 7.333 0.3739 Isoform 3 of Agrin A2ASQ1‐3 Agrn 198 kDa 2 C 7.333 0.3739 3‐oxoacyl‐[acyl‐carrier‐protein] synthase, mitochondrial Q9D404 Oxsm 49 kDa 11 C 7.333 0.3739 Cordon‐bleu protein‐like 1 Q3UMF0 (+3)Cobll1 137 kDa 10 C 5.833 0.10658 ADP‐sugar pyrophosphatase Q9JKX6 Nudt5 24 kDa 5 C 4.167 0.15819 Complement C4‐B P01029 C4b 193 kDa 29 C 3.381 0.23959 Protein‐glutamine gamma‐glutamyltransferase 2 P21981 Tgm2 77 kDa 20 C 3.381 0.23959 Isochorismatase domain‐containing protein 1 Q91V64 Isoc1 32 kDa 5 C 3.333 0.10588 Serpin B8 O08800 Serpinb8 42 kDa 11 C 2.903 0.06902 Heterogeneous nuclear ribonucleoprotein A0 Q9CX86 Hnrnpa0 31 kDa 3 C 2.667 0.5461 Proteasome subunit beta type‐8 P28063 Psmb8 30 kDa 5 C 2.583 0.36848 Ig kappa chain V‐V region MOPC 149 P01636 12 kDa 2 C 2.583 0.36848
    [Show full text]
  • Cell-Specific Proteomic Analysis in Caenorhabditis Elegans
    Supporting Information Appendix (265 Pages) for Cell-Specific Proteomic Analysis in Caenorhabditis elegans Authors: Kai P. Yueta, Meenakshi K. Domab, c, John T. Ngoa, 2, Michael J. Sweredoskid, Robert L. J. Grahamd, 3, Annie Moradiand, Sonja Hessd, Erin M. Schumane, Paul W. Sternbergb,c and David A. Tirrella,1 Author Affiliations: aDivision of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America bDivision of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America cHoward Hughes Medical Institute, California Institute of Technology, Pasadena, California, United States of America dProteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, California, United States of America eMax Planck Institute for Brain Research, Frankfurt am Main, Germany 1To whom correspondence may be addressed. 2Current Address: Department of Pharmacology, University of California, San Diego, La Jolla, California, United States of America 3Current Address: Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom Supporting Information Materials and Methods - Adenosine Triphosphate (ATP)-Pyrophosphate (PPi) Exchange Assay - Chloroform/Methanol Precipitation - Enrichment of p-Azido-L-Phenylalanine-Labeled Proteins - Fluorescence Microscopy of Live C. elegans - Fluorescence Microscopy of p-Azido-L-Phenylalanine-Labeled Proteins in Fixed C. elegans - In-Gel Fluorescence
    [Show full text]
  • Supplementary Data.Xlsx
    Electronic Supplementary Material (ESI) for Molecular BioSystems. This journal is © The Royal Society of Chemistry 2016 Average Average spectral spectral Fold UniProt IDGene Protein Name counts- counts- enrichm negative positive ent sample sample P12821 ACE HUMAN - ACE Angiotensin-converting enzyme 0 79.75 #DIV/0! Q71U36 TBA1A HUMAN - TUBA1A Tubulin alpha-1A chain 0 59.5 #DIV/0! P17812 PYRG1 HUMAN - CTPS1 CTP synthase 1 0 43.5 #DIV/0! P23921 RIR1 HUMAN - RRM1 Ribonucleoside-diphosphate reductase large subunit 0 35 #DIV/0! P49915GUAA HUMAN - GMPS GMP synthase 0 30.5 #DIV/0! P30153 2AAA HUMAN - PPP2R1A Serine/threonine-protein phosphatase 2A 65 kDa0 regulatory subunit29 A#DIV/0! alpha isoform P55786 PSA HUMAN - NPEPPS Puromycin-sensitive aminopeptidase 0 28.75 #DIV/0! O43143 DHX15 HUMAN - DHX15 Putative pre-mRNA-splicing factor ATP-dependent RNA0 helicase28.25 DHX15#DIV/0! P15170 ERF3A HUMAN - GSPT1 Eukaryotic peptide chain release factor GTP-binding0 subunit ERF3A24.75 #DIV/0! P09874PARP1HUMAN - PARP1 Poly 0 23.5 #DIV/0! Q9BXJ9 NAA15 HUMAN - NAA15 N-alpha-acetyltransferase 15, NatA auxiliary subunit0 23 #DIV/0! B0V043 B0V043 HUMAN - VARS Valyl-tRNA synthetase 0 20 #DIV/0! Q86VP6 CAND1 HUMAN - CAND1 Cullin-associated NEDD8-dissociated protein 1 0 19.5 #DIV/0! P04080CYTB HUMAN - CSTB Cystatin-B 0 19 #DIV/0! Q93009 UBP7 HUMAN - USP7 Ubiquitin carboxyl-terminal hydrolase 7 0 18 #DIV/0! Q9Y2L1 RRP44 HUMAN - DIS3 Exosome complex exonuclease RRP44 0 18 #DIV/0! Q13748 TBA3C HUMAN - TUBA3D Tubulin alpha-3C/D chain 0 18 #DIV/0! P29144 TPP2 HUMAN
    [Show full text]
  • Inda, María Carolina. 2017 03 15
    Tesis Doctoral Caracterización de distintas fuentes de cAMP en la señalización del GPCR CRHR1 Inda, María Carolina 2017-03-15 Este documento forma parte de la colección de tesis doctorales y de maestría de la Biblioteca Central Dr. Luis Federico Leloir, disponible en digital.bl.fcen.uba.ar. Su utilización debe ser acompañada por la cita bibliográfica con reconocimiento de la fuente. This document is part of the doctoral theses collection of the Central Library Dr. Luis Federico Leloir, available in digital.bl.fcen.uba.ar. It should be used accompanied by the corresponding citation acknowledging the source. Cita tipo APA: Inda, María Carolina. (2017-03-15). Caracterización de distintas fuentes de cAMP en la señalización del GPCR CRHR1. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Cita tipo Chicago: Inda, María Carolina. "Caracterización de distintas fuentes de cAMP en la señalización del GPCR CRHR1". Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. 2017-03- 15. Dirección: Biblioteca Central Dr. Luis F. Leloir, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Contacto: [email protected] Intendente Güiraldes 2160 - C1428EGA - Tel. (++54 +11) 4789-9293 UNIVERSIDAD DE BUENOS AIRES Facultad de Ciencias Exactas y Naturales Caracterización de distintas fuentes de cAMP en la señalización del GPCR CRHR1 Tesis presentada para optar al título de Doctor de la Universidad de Buenos Aires en el área de Ciencias Biológicas Lic. María Carolina Inda Directora de tesis: Dr. Susana Silberstein Cuña Consejero de Estudios: Dr. Eduardo Arzt Instituto de Investigación en Biomedicina de Buenos Aires CONICET - Partner Institute of the Max Planck Society Buenos Aires, 2017 Gracias Susana por la confianza y el apoyo para trabajar todos estos años.
    [Show full text]
  • Bioanalytical and Proteomic Approaches in the Study of Pathologic Ecs Dysfunctionality, Oxidative Stress and the Effects of PFKFB3 Modulators
    Bioanalytical and proteomic approaches in the study of pathologic ECs dysfunctionality, oxidative stress and the effects of PFKFB3 modulators Sarath Babu Nukala ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tdx.cat) i a través del Dipòsit Digital de la UB (diposit.ub.edu) ha estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX ni al Dipòsit Digital de la UB. No s’autoritza la presentació del seu contingut en una finestra o marc aliè a TDX o al Dipòsit Digital de la UB (framing). Aquesta reserva de drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la persona autora. ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tdx.cat) y a través del Repositorio Digital de la UB (diposit.ub.edu) ha sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR o al Repositorio Digital de la UB.
    [Show full text]
  • (Print)Table S4 Identified Glycopeptides and Glycoproteins Of
    Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2019 Table S4 Identified N-glycoproteins and N-glycopeptides sequence from the tryptic digest of proteins extracted from HepG2 cells after enrichment by AuGC/ZIF-8 Unique Protein Group No. Sequence Protein Descriptions Sequence Accessions Histone H2A type 1-D OS=Homo sapiens OX=9606 GN=HIST1H2AD PE=1 SV=2 - 1 KGNYSER 603 [H2A1D_HUMAN]|Histone H2A type 1-H OS=Mus musculus OX=10090 P20671;Q8CGP6 GN=Hist1h2ah PE=1 SV=3 - [H2A1H_MOUSE] Spectrin alpha chain, non-erythrocytic 1 OS=Homo sapiens OX=9606 GN=SPTAN1 2 KnNHHEENISSK 3137 Q13813 PE=1 SV=3 - [SPTN1_HUMAN] TATA-binding protein-associated factor 2N OS=Homo sapiens OX=9606 GN=TAF15 3 ENYSHHTQDDRR 3684 Q92804 PE=1 SV=1 - [RBP56_HUMAN] Pre-mRNA 3'-end-processing factor FIP1 OS=Homo sapiens OX=9606 GN=FIP1L1 4 NSTSSQSQTSTASR 3961 Q6UN15 PE=1 SV=1 - [FIP1_HUMAN] Nucleolar and coiled-body phosphoprotein 1 OS=Homo sapiens OX=9606 GN=NOLC1 5 NSSNKPAVTTK 4223 Q14978 PE=1 SV=2 - [NOLC1_HUMAN] 6 SGNLTEDDKHNNAK 4249 Plastin-3 OS=Homo sapiens OX=9606 GN=PLS3 PE=1 SV=4 - [PLST_HUMAN] P13797 Keratin, type I cytoskeletal 18 OS=Homo sapiens OX=9606 GN=KRT18 PE=1 SV=2 - 7 VVSETNDTK 5000 P05783 [K1C18_HUMAN] Osteopetrosis-associated transmembrane protein 1 OS=Homo sapiens OX=9606 8 AAGnTSESQScAR 5528 Q86WC4 GN=OSTM1 PE=1 SV=1 - [OSTM1_HUMAN] Transcription elongation factor A protein 1 OS=Homo sapiens OX=9606 GN=TCEA1 9 EESTSSGNVSNR 5530 P23193 PE=1 SV=2 - [TCEA1_HUMAN] Nuclear protein localization protein
    [Show full text]
  • Protein List
    Protein Accession Protein Id Protein Name P11171 41 Protein 4.
    [Show full text]
  • Deficiency of MMP17/MT4-MMP Proteolytic Activity Predisposes to Aortic Aneurysm in Mice
    Deficiency of MMP17/MT4-MMP Proteolytic Activity Predisposes to Aortic Aneurysm in Mice Mara Martín-Alonso1, Ana B. García-Redondo2, Dongchuan Guo3, Emilio Camafeita4, Fernando Martínez5, Arántzazu Alfranca1, Nerea Méndez-Barbero1, Ángela Pollán1, Cristina Sánchez-Camacho6, David T. Denhardt7, Motoharu Seiki8, Jesús Vázquez1,4, Mercedes Salaices2, Juan Miguel Redondo1, Dianna Milewicz3 and Alicia G. Arroyo1 1Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid Spain; 2Department of Pharmacology/Nephrology, Faculty of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain; 3Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, 77030 Texas, USA;4Proteomics Unit; 5Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid Spain; 6Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; 7Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, USA, and; 8Division of Cancer Cell Research, Institute of Medical Science, University of Tokyo, Minato-ku, 108-8639 Tokyo, Japan. Running title: MMP17 in Aortic Pathology Subject codes: [162] Smooth muscle proliferation and differentiation [130] Animal models of human disease Address correspondence to: Dr. Alicia G. Arroyo Matrix Metalloproteinases Lab Centro Nacional de Investigaciones Cardiovasculares (CNIC) Melchor Fernández Almagro 3 28029 Madrid Spain Tel 34 91 4531241 ext 1159 Fax 34 914531265 [email protected] In April 2015, the average time from submission to first decision for all original research papers submitted to Circulation Research was 13.84 days. DOI: 10.1161/CIRCRESAHA.117.305108 1 Downloaded from http://circres.ahajournals.org/ at CNIC -F.C.Nac.Inv.Cardiovasculares Carlos III on May 25, 2016 ABSTRACT Rationale: Aortic dissection or rupture resulting from aneurysm causes 1-2% of deaths in developed countries.
    [Show full text]
  • Identifying Longevity Associated Genes by Integrating Gene Expression and Curated Annotations
    bioRxiv preprint doi: https://doi.org/10.1101/2020.01.31.929232; this version posted February 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Identifying Longevity Associated Genes by Integrating Gene Expression and Curated Annotations F. William Townes1, Jeffrey W. Miller2 1Department of Computer Science, Princeton University, Princeton, NJ 2Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA [email protected], [email protected] January 31, 2020 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.01.31.929232; this version posted February 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Townes and Miller 2020 Longevity Associated Genes Summary Aging is a complex process with poorly understood genetic mechanisms. Recent studies have sought to classify genes as pro-longevity or anti-longevity using a variety of machine learning algorithms. However, it is not clear which types of features are best for optimizing classification performance and which algorithms are best suited to this task. Further, performance assessments based on held-out test data are lacking. We systematically compare five popular classification algorithms using gene ontology and gene expression datasets as features to predict the pro-longevity versus anti-longevity status of genes for two model organisms (C.
    [Show full text]
  • A Deep Proteomics Perspective on CRM1-Mediated Nuclear Export and Nucleocytoplasmic Partitioning
    A deep proteomics perspective on CRM1-mediated nuclear export and nucleocytoplasmic partitioning Koray Kırlı 1#, Samir Karaca1,2#, Heinz-Jürgen Dehne 1, Matthias Samwer 1,4, Kuan- Ting Pan 2, Christof Lenz 2,3, Henning Urlaub2,3* and Dirk Görlich1* 1 Department of Cellular Logistics and 2 Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany; 3 Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany. 4 Current address: Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria. # Joint first authors; *Joint corresponding authors; E-mail: [email protected]; [email protected] Abstract CRM1 is a highly conserved, RanGTPase-driven exportin that carries proteins and RNPs from the nucleus to the cytoplasm. We now explored the cargo-spectrum of CRM1 in depth and identified surprisingly large numbers, namely >700 export substrates from the yeast S. cerevisiae, ≈ 1000 from Xenopus oocytes and >1050 from human cells. In addition, we quantified the partitioning of ≈5000 unique proteins between nucleus and cytoplasm of Xenopus oocytes. The data suggest new CRM1 functions in spatial control of vesicle coat-assembly, centrosomes, autophagy, peroxisome biogenesis, cytoskeleton, ribosome maturation, translation, mRNA degradation, and more generally in precluding a potentially detrimental action of cytoplasmic pathways within the nuclear interior. There are also numerous new instances where CRM1 appears to act in regulatory circuits. Altogether, our dataset allows unprecedented insights into the nucleocytoplasmic organisation of eukaryotic cells, into the contributions of an exceedingly promiscuous exportin and it provides a new basis for NES prediction. 2 Introduction The nuclear envelope (NE) separates the cell nucleus from the cytoplasm.
    [Show full text]
  • The Endosome Is a Master Regulator of Plasma Membrane Collagen Fibril Assembly
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.25.436925; this version posted March 25, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The endosome is a master regulator of plasma membrane collagen fibril assembly 1Joan Chang*, 1Adam Pickard, 1Richa Garva, 1Yinhui Lu, 2Donald Gullberg and 1Karl E. Kadler* 1Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medical and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT UK, 2Department of Biomedicine and Center for Cancer Biomarkers, Norwegian Center of Excellence, University of Bergen, Norway. * Co-corresponding authors: JC email: [email protected] (orcid.org/0000-0002-7283- 9759); KEK email: [email protected] (orcid.org/0000-0003-4977-4683) Keywords: collagen-I, endocytosis, extracellular matrix, fibril, fibrillogenesis, integrin-a11, trafficking, VPS33b, [abstract] [149 word max] Collagen fibrils are the principal supporting elements in vertebrate tissues. They account for 25% of total protein mass, exhibit a broad range of size and organisation depending on tissue and stage of development, and can be under circadian clock control. Here we show that the remarkable dynamic pleomorphism of collagen fibrils is underpinned by a mechanism that distinguishes between collagen secretion and initiation of fibril assembly, at the plasma membrane. Collagen fibrillogenesis occurring at the plasma membrane requires vacuolar protein sorting (VPS) 33b (which is under circadian clock control), collagen-binding integrin-a11 subunit, and is reduced when endocytosis is inhibited. Fibroblasts lacking VPS33b secrete soluble collagen without assembling fibrils, whereas constitutive over-expression of VPS33b increases fibril number with loss of fibril rhythmicity.
    [Show full text]
  • ACTG BOVIN Actin, Cytoplasmic 2 OS=Bos Taurus OX=9913 GN=ACTG1 PE=1 SV=1 TBB4B MOUSE Tubulin Beta-4B Chain OS=Mus Musculus OX=10
    Supplementary Data 2. Proteomics results, neurons Actin, cytoplasmic 2 OS=Bos taurus OX=9913 ACTG_BOVIN GN=ACTG1 PE=1 SV=1 Tubulin beta-4B chain OS=Mus musculus TBB4B_MOUSE OX=10090 GN=Tubb4b PE=1 SV=1 Spectrin alpha chain, non-erythrocytic 1 OS=Mus SPTN1_MOUSE musculus OX=10090 GN=Sptan1 PE=1 SV=4 Sodium/potassium-transporting ATPase subunit AT1A3_MOUSE alpha-3 OS=Mus musculus OX=10090 GN=Atp1a3 PE=1 SV=1 Spectrin beta chain, non-erythrocytic 1 OS=Mus SPTB2_MOUSE musculus OX=10090 GN=Sptbn1 PE=1 SV=2 Heat shock protein HSP 90-beta OS=Mus HS90B_MOUSE musculus OX=10090 GN=Hsp90ab1 PE=1 SV=3 Myosin-10 OS=Mus musculus OX=10090 MYH10_MOUSE GN=Myh10 PE=1 SV=2 ATP synthase subunit beta, mitochondrial ATPB_MOUSE OS=Mus musculus OX=10090 GN=Atp5f1b PE=1 SV=2 Heat shock cognate 71 kDa protein OS=Mus HSP7C_MOUSE musculus OX=10090 GN=Hspa8 PE=1 SV=1 Glyceraldehyde-3-phosphate dehydrogenase G3P_MOUSE OS=Mus musculus OX=10090 GN=Gapdh PE=1 SV=2 Elongation factor 1-alpha 1 OS=Mus musculus EF1A1_MOUSE OX=10090 GN=Eef1a1 PE=1 SV=3 Ubiquitin-like modifier-activating enzyme 1 UBA1_MOUSE OS=Mus musculus OX=10090 GN=Uba1 PE=1 SV=1 Microtubule-associated protein 1B OS=Mus MAP1B_MOUSE musculus OX=10090 GN=Map1b PE=1 SV=2 Transitional endoplasmic reticulum ATPase TERA_HUMAN OS=Homo sapiens OX=9606 GN=VCP PE=1 SV=4 Elongation factor 2 OS=Mus musculus EF2_MOUSE OX=10090 GN=Eef2 PE=1 SV=2 ATP synthase subunit alpha, mitochondrial ATPA_MOUSE OS=Mus musculus OX=10090 GN=Atp5f1a PE=1 SV=1 Fatty acid synthase OS=Mus musculus OX=10090 FAS_MOUSE GN=Fasn PE=1 SV=2 60
    [Show full text]