(Print)Table S4 Identified Glycopeptides and Glycoproteins Of

Total Page:16

File Type:pdf, Size:1020Kb

(Print)Table S4 Identified Glycopeptides and Glycoproteins Of Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2019 Table S4 Identified N-glycoproteins and N-glycopeptides sequence from the tryptic digest of proteins extracted from HepG2 cells after enrichment by AuGC/ZIF-8 Unique Protein Group No. Sequence Protein Descriptions Sequence Accessions Histone H2A type 1-D OS=Homo sapiens OX=9606 GN=HIST1H2AD PE=1 SV=2 - 1 KGNYSER 603 [H2A1D_HUMAN]|Histone H2A type 1-H OS=Mus musculus OX=10090 P20671;Q8CGP6 GN=Hist1h2ah PE=1 SV=3 - [H2A1H_MOUSE] Spectrin alpha chain, non-erythrocytic 1 OS=Homo sapiens OX=9606 GN=SPTAN1 2 KnNHHEENISSK 3137 Q13813 PE=1 SV=3 - [SPTN1_HUMAN] TATA-binding protein-associated factor 2N OS=Homo sapiens OX=9606 GN=TAF15 3 ENYSHHTQDDRR 3684 Q92804 PE=1 SV=1 - [RBP56_HUMAN] Pre-mRNA 3'-end-processing factor FIP1 OS=Homo sapiens OX=9606 GN=FIP1L1 4 NSTSSQSQTSTASR 3961 Q6UN15 PE=1 SV=1 - [FIP1_HUMAN] Nucleolar and coiled-body phosphoprotein 1 OS=Homo sapiens OX=9606 GN=NOLC1 5 NSSNKPAVTTK 4223 Q14978 PE=1 SV=2 - [NOLC1_HUMAN] 6 SGNLTEDDKHNNAK 4249 Plastin-3 OS=Homo sapiens OX=9606 GN=PLS3 PE=1 SV=4 - [PLST_HUMAN] P13797 Keratin, type I cytoskeletal 18 OS=Homo sapiens OX=9606 GN=KRT18 PE=1 SV=2 - 7 VVSETNDTK 5000 P05783 [K1C18_HUMAN] Osteopetrosis-associated transmembrane protein 1 OS=Homo sapiens OX=9606 8 AAGnTSESQScAR 5528 Q86WC4 GN=OSTM1 PE=1 SV=1 - [OSTM1_HUMAN] Transcription elongation factor A protein 1 OS=Homo sapiens OX=9606 GN=TCEA1 9 EESTSSGNVSNR 5530 P23193 PE=1 SV=2 - [TCEA1_HUMAN] Nuclear protein localization protein 4 homolog OS=Homo sapiens OX=9606 10 nKTGEITASSNK 5849 Q8TAT6 GN=NPLOC4 PE=1 SV=3 - [NPL4_HUMAN] Cysteine and glycine-rich protein 1 OS=Homo sapiens OX=9606 GN=CSRP1 PE=1 11 HEEAPGHRPTTNPNASK 6150 P21291 SV=3 - [CSRP1_HUMAN] Cytochrome b-c1 complex subunit 2, mitochondrial OS=Homo sapiens OX=9606 12 RGSNTTSHLHQAVAK 6163 P22695 GN=UQCRC2 PE=1 SV=3 - [QCR2_HUMAN] Aspartyl/asparaginyl beta-hydroxylase OS=Homo sapiens OX=9606 GN=ASPH PE=1 13 SSGNSSSSGSGSGSTSAGSSSPGAR 6247 Q12797 SV=3 - [ASPH_HUMAN] 14 LIDNnKTEK 6850 Prosaposin OS=Homo sapiens OX=9606 GN=PSAP PE=1 SV=2 - [SAP_HUMAN] P07602 Synaptic functional regulator FMR1 OS=Homo sapiens OX=9606 GN=FMR1 PE=1 15 TLqnTSSEGSR 6998 Q06787 SV=1 - [FMR1_HUMAN] Serpin H1 OS=Homo sapiens OX=9606 GN=SERPINH1 PE=1 SV=2 - 16 SLSnSTAR 7522 P50454 [SERPH_HUMAN] Laminin subunit beta-1 OS=Homo sapiens OX=9606 GN=LAMB1 PE=1 SV=2 - 17 LSDTTSQSnSTAK 7570 P07942 [LAMB1_HUMAN] Heterogeneous nuclear ribonucleoprotein D0 OS=Homo sapiens OX=9606 18 IDASKNEEDEGHSNSSPR 7623 Q14103 GN=HNRNPD PE=1 SV=1 - [HNRPD_HUMAN] 19 GGKnSTWSGESK 7930 Nucleolin OS=Homo sapiens OX=9606 GN=NCL PE=1 SV=3 - [NUCL_HUMAN] P19338 14-3-3 protein gamma OS=Homo sapiens OX=9606 GN=YWHAG PE=1 SV=2 - 20 NcSETQYESK 8385 P61981 [1433G_HUMAN] Ras-related protein Rab-5C OS=Homo sapiens OX=9606 GN=RAB5C PE=1 SV=2 - 21 NEPQNATGAPGR 8396 P51148 [RAB5C_HUMAN] Alpha-enolase OS=Homo sapiens OX=9606 GN=ENO1 PE=1 SV=2 - 22 KLNVTEQEK 8725 P06733 [ENOA_HUMAN] Peroxisomal multifunctional enzyme type 2 OS=Homo sapiens OX=9606 23 IDSEGGVSANHTSR 8823 P51659 GN=HSD17B4 PE=1 SV=3 - [DHB4_HUMAN] Heat shock cognate 71 kDa protein OS=Homo sapiens OX=9606 GN=HSPA8 PE=1 24 NQTAEKEEFEHQQK 8966 P11142 SV=1 - [HSP7C_HUMAN] 25 NSTWSGESK 9577 Nucleolin OS=Homo sapiens OX=9606 GN=NCL PE=1 SV=3 - [NUCL_HUMAN] P19338 Clathrin interactor 1 OS=Homo sapiens OX=9606 GN=CLINT1 PE=1 SV=1 - 26 ASPDQNASTHTPQSSVK 9983 Q14677 [EPN4_HUMAN] Triosephosphate isomerase OS=Pan troglodytes OX=9598 GN=TPI1 PE=2 SV=2 - 27 SNVSDAVAQSTR 10560 P60175 [TPIS_PANTR] Splicing factor U2AF 35 kDa subunit OS=Homo sapiens OX=9606 GN=U2AF1 PE=1 28 NPQNSSQSADGLR 10938 Q01081 SV=3 - [U2AF1_HUMAN] ATP-dependent RNA helicase DDX3X OS=Homo sapiens OX=9606 GN=DDX3X PE=1 SV=3 - [DDX3X_HUMAN]|ATP-dependent RNA helicase DDX3Y OS=Homo O00571;O15523; 29 VGSTSENITQK 10993 sapiens OX=9606 GN=DDX3Y PE=1 SV=2 - [DDX3Y_HUMAN]|ATP-dependent Q62167 RNA helicase DDX3X OS=Mus musculus OX=10090 GN=Ddx3x PE=1 SV=3 - [DDX3X_MOUSE] Eukaryotic translation initiation factor 3 subunit A OS=Homo sapiens OX=9606 30 KnLTQDEMQR 11412 Q14152 GN=EIF3A PE=1 SV=1 - [EIF3A_HUMAN] Torsin-1A-interacting protein 1 OS=Homo sapiens OX=9606 GN=TOR1AIP1 PE=1 31 SELGNQSPSTSSR 11515 Q5JTV8 SV=2 - [TOIP1_HUMAN] Tetraspanin-3 OS=Homo sapiens OX=9606 GN=TSPAN3 PE=2 SV=1 - 32 TYnGTNPDAASR 11449 O60637 [TSN3_HUMAN] Peptidyl-prolyl cis-trans isomerase FKBP10 OS=Homo sapiens OX=9606 GN=FKBP10 33 TLSRPSETcnETTK 11780 Q96AY3 PE=1 SV=1 - [FKB10_HUMAN] Hypoxia up-regulated protein 1 OS=Homo sapiens OX=9606 GN=HYOU1 PE=1 SV=1 34 nATLAEQAK 12139 - [HYOU1_HUMAN]|Hypoxia up-regulated protein 1 OS=Rattus norvegicus Q9Y4L1;Q63617 OX=10116 GN=Hyou1 PE=1 SV=1 - [HYOU1_RAT] SQNRPQGQSTQPSNAAGTNTTSAST Ubiquilin-2 OS=Homo sapiens OX=9606 GN=UBQLN2 PE=1 SV=2 - 35 12200 Q9UHD9 PR [UBQL2_HUMAN] Endoplasmic reticulum resident protein 29 OS=Homo sapiens OX=9606 GN=ERP29 36 QGQDNLSSVK 12464 P30040 PE=1 SV=4 - [ERP29_HUMAN] Proteasome subunit beta type-7 OS=Homo sapiens OX=9606 GN=PSMB7 PE=1 SV=1 37 ATEGMVVADKncSK 12876 Q99436 - [PSB7_HUMAN] Alpha-enolase OS=Homo sapiens OX=9606 GN=ENO1 PE=1 SV=2 - 38 LNVTEQEK 12916 P06733 [ENOA_HUMAN] L-lactate dehydrogenase A chain OS=Homo sapiens OX=9606 GN=LDHA PE=1 SV=2 39 DYNVTANSK 12961 P00338 - [LDHA_HUMAN] Eukaryotic translation initiation factor 3 subunit G OS=Homo sapiens OX=9606 40 VTNLSEDTR 13327 O75821 GN=EIF3G PE=1 SV=2 - [EIF3G_HUMAN] Tetraspanin-6 OS=Homo sapiens OX=9606 GN=TSPAN6 PE=1 SV=1 - 41 QYnSTGDYR 13432 O43657 [TSN6_HUMAN] Zinc finger CCCH domain-containing protein 4 OS=Homo sapiens OX=9606 42 TVNATGSSAAPGSSDKPSDPR 13618 Q9UPT8 GN=ZC3H4 PE=1 SV=3 - [ZC3H4_HUMAN] Myristoylated alanine-rich C-kinase substrate OS=Homo sapiens OX=9606 43 AEDGATPSPSNETPK 12056 P29966 GN=MARCKS PE=1 SV=4 - [MARCS_HUMAN] Chromobox protein homolog 5 OS=Homo sapiens OX=9606 GN=CBX5 PE=1 SV=1 - 44 KSNFSNSADDIK 14211 P45973 [CBX5_HUMAN] Alpha-actinin-1 OS=Homo sapiens OX=9606 GN=ACTN1 PE=1 SV=2 - [ACTN1_HUMAN]|Alpha-actinin-2 OS=Homo sapiens OX=9606 GN=ACTN2 PE=1 45 HTnYTMEHIR 9176 P12814;O43707 SV=1 - [ACTN2_HUMAN]|Alpha-actinin-4 OS=Homo sapiens OX=9606 GN=ACTN4 PE=1 SV=2 - [ACTN4_HUMAN] E3 SUMO-protein ligase RanBP2 OS=Homo sapiens OX=9606 GN=RANBP2 PE=1 46 SNNSETSSVAQSGSESKVEPK 14833 P49792 SV=2 - [RBP2_HUMAN] Tryptophan--tRNA ligase, cytoplasmic OS=Homo sapiens OX=9606 GN=WARS PE=1 47 AGNASKDEIDSAVK 15074 P23381 SV=2 - [SYWC_HUMAN] Alpha-enolase OS=Homo sapiens OX=9606 GN=ENO1 PE=1 SV=2 - 48 KLNVTEQEKIDK 15155 P06733 [ENOA_HUMAN] DNA replication licensing factor MCM7 OS=Homo sapiens OX=9606 GN=MCM7 49 MNKSEDDESGAGELTR 15223 P33993 PE=1 SV=4 - [MCM7_HUMAN] Cytokine receptor-like factor 1 OS=Homo sapiens OX=9606 GN=CRLF1 PE=1 SV=1 - 50 VVDDVSnqTScR 15229 O75462 [CRLF1_HUMAN] E3 SUMO-protein ligase RanBP2 OS=Homo sapiens OX=9606 GN=RANBP2 PE=1 51 QNQTTSAVSTPASSETSK 15234 P49792 SV=2 - [RBP2_HUMAN] Bifunctional glutamate/proline--tRNA ligase OS=Homo sapiens OX=9606 GN=EPRS 52 AIQGGTSHHLGQNFSK 15678 P07814 PE=1 SV=5 - [SYEP_HUMAN] Splicing factor 1 OS=Homo sapiens OX=9606 GN=SF1 PE=1 SV=4 - 53 LnGTLREDDNR 15724 [SF01_HUMAN]|Splicing factor 1 OS=Mus musculus OX=10090 GN=Sf1 PE=1 SV=6 Q15637;Q64213 - [SF01_MOUSE] Vacuole membrane protein 1 OS=Homo sapiens OX=9606 GN=VMP1 PE=1 SV=1 - 54 EHHnGnFTDPSSVNEK 15998 Q96GC9 [VMP1_HUMAN] Alpha-N-acetylglucosaminidase OS=Homo sapiens OX=9606 GN=NAGLU PE=1 SV=2 55 SVYncSGEAcR 16023 P54802 - [ANAG_HUMAN] Tissue factor pathway inhibitor OS=Homo sapiens OX=9606 GN=TFPI PE=1 SV=1 - 56 YSGcGGnENNFTSK 16293 P10646 [TFPI1_HUMAN] Thrombospondin-1 OS=Homo sapiens OX=9606 GN=THBS1 PE=1 SV=2 - 57 VVnSTTGPGEHLR 16418 P07996 [TSP1_HUMAN] 60 kDa heat shock protein, mitochondrial OS=Homo sapiens OX=9606 GN=HSPD1 58 VTDALNATR 16708 P10809 PE=1 SV=2 - [CH60_HUMAN] 59 ALEENnNFSK 16910 Stathmin OS=Homo sapiens OX=9606 GN=STMN1 PE=1 SV=3 - [STMN1_HUMAN] P16949 60 AIEENnNFSK 16910 Stathmin OS=Homo sapiens OX=9606 GN=STMN1 PE=1 SV=3 - [STMN1_HUMAN] P16949 Histone H1.5 OS=Homo sapiens OX=9606 GN=HIST1H1B PE=1 SV=3 - 61 KALAAGGYDVEKnNSR 17035 P16401 [H15_HUMAN] L-lactate dehydrogenase A chain OS=Homo sapiens OX=9606 GN=LDHA PE=1 SV=2 62 IVSGKDYNVTANSK 17049 P00338 - [LDHA_HUMAN] Nuclear pore complex protein Nup88 OS=Homo sapiens OX=9606 GN=NUP88 PE=1 63 STVNcSTTPVAER 17143 Q99567 SV=2 - [NUP88_HUMAN] Regulator of nonsense transcripts 1 OS=Homo sapiens OX=9606 GN=UPF1 PE=1 64 ESQTQDNITVR 17230 Q92900 SV=2 - [RENT1_HUMAN] Histone H1.2 OS=Homo sapiens OX=9606 GN=HIST1H1C PE=1 SV=2 - 65 KALAAAGYDVEKNNSR 17355 [H12_HUMAN]|Histone H1.4 OS=Homo sapiens OX=9606 GN=HIST1H1E PE=1 P16403;P10412 SV=2 - [H14_HUMAN] Inactive tyrosine-protein kinase 7 OS=Homo sapiens OX=9606 GN=PTK7 PE=1 SV=2 66 DGTPLSDGqSNHTVSSK 17488 Q13308 - [PTK7_HUMAN] 67 DVEcGEGHFcHDnQTccR 17844 Progranulin OS=Homo sapiens OX=9606 GN=GRN PE=1 SV=2 - [GRN_HUMAN] P28799 Retrotransposon-derived protein PEG10 OS=Homo sapiens OX=9606 GN=PEG10 68 LTEENTTLR 18072 Q86TG7 PE=1 SV=2 - [PEG10_HUMAN] 60S ribosomal protein L26 OS=Macaca fascicularis OX=9541 GN=RPL26 PE=2 SV=1 69 AnGTTVHVGIHPSK 18248 P61256 - [RL26_MACFA] T-complex protein 1 subunit beta OS=Homo sapiens OX=9606 GN=CCT2 PE=1 SV=4 70 AAHSEGNTTAGLDMR 18303 P78371 - [TCPB_HUMAN] Keratin, type I cytoskeletal 18 OS=Homo sapiens OX=9606 GN=KRT18 PE=1 SV=2 - 71 KVIDDTNITR 18368 P05783 [K1C18_HUMAN] HLA class I histocompatibility antigen, A-2 alpha chain OS=Homo sapiens OX=9606 72 GYYnQSEAGSHTVQR 18527 P01892 GN=HLA-A PE=1 SV=1 - [1A02_HUMAN] Transferrin receptor protein 1 OS=Homo
Recommended publications
  • KO Kidney.Xlsx
    Supplemental Table 18: Dietary Impact on the CGL KO Kidney Sulfhydrome DR/AL Accession Molecular Cysteine Spectral Protein Name Number Alternate ID Weight Residues Count Ratio P‐value Ig gamma‐2A chain C region, A allele P01863 (+1) Ighg 36 kDa 10 C 5.952 0.03767 Heterogeneous nuclear ribonucleoprotein M Q9D0E1 (+1) Hnrnpm 78 kDa 6 C 5.000 0.00595 Phospholipase D3 O35405 Pld3 54 kDa 8 C 4.167 0.04761 Ig kappa chain V‐V region L7 (Fragment) P01642 Gm10881 13 kDa 2 C 2.857 0.01232 UPF0160 protein MYG1, mitochondrial Q9JK81 Myg1 43 kDa 7 C 2.333 0.01613 Copper homeostasis protein cutC homolog Q9D8X1 Cutc 29 kDa 7 C 10.333 0.16419 Corticosteroid‐binding globulin Q06770 Serpina6 45 kDa 3 C 10.333 0.16419 28S ribosomal protein S22, mitochondrial Q9CXW2 Mrps22 41 kDa 2 C 7.333 0.3739 Isoform 3 of Agrin A2ASQ1‐3 Agrn 198 kDa 2 C 7.333 0.3739 3‐oxoacyl‐[acyl‐carrier‐protein] synthase, mitochondrial Q9D404 Oxsm 49 kDa 11 C 7.333 0.3739 Cordon‐bleu protein‐like 1 Q3UMF0 (+3)Cobll1 137 kDa 10 C 5.833 0.10658 ADP‐sugar pyrophosphatase Q9JKX6 Nudt5 24 kDa 5 C 4.167 0.15819 Complement C4‐B P01029 C4b 193 kDa 29 C 3.381 0.23959 Protein‐glutamine gamma‐glutamyltransferase 2 P21981 Tgm2 77 kDa 20 C 3.381 0.23959 Isochorismatase domain‐containing protein 1 Q91V64 Isoc1 32 kDa 5 C 3.333 0.10588 Serpin B8 O08800 Serpinb8 42 kDa 11 C 2.903 0.06902 Heterogeneous nuclear ribonucleoprotein A0 Q9CX86 Hnrnpa0 31 kDa 3 C 2.667 0.5461 Proteasome subunit beta type‐8 P28063 Psmb8 30 kDa 5 C 2.583 0.36848 Ig kappa chain V‐V region MOPC 149 P01636 12 kDa 2 C 2.583 0.36848
    [Show full text]
  • Acetyl-Coa Synthetase 3 Promotes Bladder Cancer Cell Growth Under Metabolic Stress Jianhao Zhang1, Hongjian Duan1, Zhipeng Feng1,Xinweihan1 and Chaohui Gu2
    Zhang et al. Oncogenesis (2020) 9:46 https://doi.org/10.1038/s41389-020-0230-3 Oncogenesis ARTICLE Open Access Acetyl-CoA synthetase 3 promotes bladder cancer cell growth under metabolic stress Jianhao Zhang1, Hongjian Duan1, Zhipeng Feng1,XinweiHan1 and Chaohui Gu2 Abstract Cancer cells adapt to nutrient-deprived tumor microenvironment during progression via regulating the level and function of metabolic enzymes. Acetyl-coenzyme A (AcCoA) is a key metabolic intermediate that is crucial for cancer cell metabolism, especially under metabolic stress. It is of special significance to decipher the role acetyl-CoA synthetase short chain family (ACSS) in cancer cells confronting metabolic stress. Here we analyzed the generation of lipogenic AcCoA in bladder cancer cells under metabolic stress and found that in bladder urothelial carcinoma (BLCA) cells, the proportion of lipogenic AcCoA generated from glucose were largely reduced under metabolic stress. Our results revealed that ACSS3 was responsible for lipogenic AcCoA synthesis in BLCA cells under metabolic stress. Interestingly, we found that ACSS3 was required for acetate utilization and histone acetylation. Moreover, our data illustrated that ACSS3 promoted BLCA cell growth. In addition, through analyzing clinical samples, we found that both mRNA and protein levels of ACSS3 were dramatically upregulated in BLCA samples in comparison with adjacent controls and BLCA patients with lower ACSS3 expression were entitled with longer overall survival. Our data revealed an oncogenic role of ACSS3 via regulating AcCoA generation in BLCA and provided a promising target in metabolic pathway for BLCA treatment. 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; Introduction acetyl-CoA synthetase short chain family (ACSS), which In cancer cells, considerable number of metabolic ligates acetate and CoA6.
    [Show full text]
  • Enzymatic Encoding Methods for Efficient Synthesis Of
    (19) TZZ__T (11) EP 1 957 644 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C12N 15/10 (2006.01) C12Q 1/68 (2006.01) 01.12.2010 Bulletin 2010/48 C40B 40/06 (2006.01) C40B 50/06 (2006.01) (21) Application number: 06818144.5 (86) International application number: PCT/DK2006/000685 (22) Date of filing: 01.12.2006 (87) International publication number: WO 2007/062664 (07.06.2007 Gazette 2007/23) (54) ENZYMATIC ENCODING METHODS FOR EFFICIENT SYNTHESIS OF LARGE LIBRARIES ENZYMVERMITTELNDE KODIERUNGSMETHODEN FÜR EINE EFFIZIENTE SYNTHESE VON GROSSEN BIBLIOTHEKEN PROCEDES DE CODAGE ENZYMATIQUE DESTINES A LA SYNTHESE EFFICACE DE BIBLIOTHEQUES IMPORTANTES (84) Designated Contracting States: • GOLDBECH, Anne AT BE BG CH CY CZ DE DK EE ES FI FR GB GR DK-2200 Copenhagen N (DK) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • DE LEON, Daen SK TR DK-2300 Copenhagen S (DK) Designated Extension States: • KALDOR, Ditte Kievsmose AL BA HR MK RS DK-2880 Bagsvaerd (DK) • SLØK, Frank Abilgaard (30) Priority: 01.12.2005 DK 200501704 DK-3450 Allerød (DK) 02.12.2005 US 741490 P • HUSEMOEN, Birgitte Nystrup DK-2500 Valby (DK) (43) Date of publication of application: • DOLBERG, Johannes 20.08.2008 Bulletin 2008/34 DK-1674 Copenhagen V (DK) • JENSEN, Kim Birkebæk (73) Proprietor: Nuevolution A/S DK-2610 Rødovre (DK) 2100 Copenhagen 0 (DK) • PETERSEN, Lene DK-2100 Copenhagen Ø (DK) (72) Inventors: • NØRREGAARD-MADSEN, Mads • FRANCH, Thomas DK-3460 Birkerød (DK) DK-3070 Snekkersten (DK) • GODSKESEN,
    [Show full text]
  • The Regulation of Carbamoyl Phosphate Synthetase-Aspartate Transcarbamoylase-Dihydroorotase (Cad) by Phosphorylation and Protein-Protein Interactions
    THE REGULATION OF CARBAMOYL PHOSPHATE SYNTHETASE-ASPARTATE TRANSCARBAMOYLASE-DIHYDROOROTASE (CAD) BY PHOSPHORYLATION AND PROTEIN-PROTEIN INTERACTIONS Eric M. Wauson A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Pharmacology. Chapel Hill 2007 Approved by: Lee M. Graves, Ph.D. T. Kendall Harden, Ph.D. Gary L. Johnson, Ph.D. Aziz Sancar M.D., Ph.D. Beverly S. Mitchell, M.D. 2007 Eric M. Wauson ALL RIGHTS RESERVED ii ABSTRACT Eric M. Wauson: The Regulation of Carbamoyl Phosphate Synthetase-Aspartate Transcarbamoylase-Dihydroorotase (CAD) by Phosphorylation and Protein-Protein Interactions (Under the direction of Lee M. Graves, Ph.D.) Pyrimidines have many important roles in cellular physiology, as they are used in the formation of DNA, RNA, phospholipids, and pyrimidine sugars. The first rate- limiting step in the de novo pyrimidine synthesis pathway is catalyzed by the carbamoyl phosphate synthetase II (CPSase II) part of the multienzymatic complex Carbamoyl phosphate synthetase, Aspartate transcarbamoylase, Dihydroorotase (CAD). CAD gene induction is highly correlated to cell proliferation. Additionally, CAD is allosterically inhibited or activated by uridine triphosphate (UTP) or phosphoribosyl pyrophosphate (PRPP), respectively. The phosphorylation of CAD by PKA and ERK has been reported to modulate the response of CAD to allosteric modulators. While there has been much speculation on the identity of CAD phosphorylation sites, no definitive identification of in vivo CAD phosphorylation sites has been performed. Therefore, we sought to determine the specific CAD residues phosphorylated by ERK and PKA in intact cells.
    [Show full text]
  • Proteomic Analysis of the Rad18 Interaction Network in DT40 – a Chicken B Cell Line
    Proteomic analysis of the Rad18 interaction network in DT40 – a chicken B cell line Thesis submitted for the degree of Doctor of Natural Sciences at the Faculty of Biology, Ludwig-Maximilians-University Munich 15th January, 2009 Submitted by Sushmita Gowri Sreekumar Chennai, India Completed at the Helmholtz Zentrum München German Research Center for Environmental Health Institute of Clinical Molecular Biology and Tumor Genetics, Munich Examiners: PD Dr. Berit Jungnickel Prof. Heinrich Leonhardt Prof. Friederike Eckardt-Schupp Prof. Harry MacWilliams Date of Examination: 16th June 2009 To my Parents, Sister, Brother & Rajesh Table of Contents 1. SUMMARY ........................................................................................................................ 1 2. INTRODUCTION ............................................................................................................. 2 2.1. MECHANISMS OF DNA REPAIR ......................................................................................... 3 2.2. ADAPTIVE GENETIC ALTERATIONS – AN ADVANTAGE ....................................................... 5 2.3. THE PRIMARY IG DIVERSIFICATION DURING EARLY B CELL DEVELOPMENT ...................... 6 2.4. THE SECONDARY IG DIVERSIFICATION PROCESSES IN THE GERMINAL CENTER .................. 7 2.4.1. Processing of AID induced DNA lesions during adaptive immunity .................. 9 2.5. TARGETING OF SOMATIC HYPERMUTATION TO THE IG LOCI ............................................ 10 2.6. ROLE OF THE RAD6 PATHWAY IN IG DIVERSIFICATION
    [Show full text]
  • Supplemental Material
    Supplemental Table B ARGs in alphabetical order Symbol Title 3 months 6 months 9 months 12 months 23 months ANOVA Direction Category 38597 septin 2 1557 ± 44 1555 ± 44 1579 ± 56 1655 ± 26 1691 ± 31 0.05219 up Intermediate 0610031j06rik kidney predominant protein NCU-G1 491 ± 6 504 ± 14 503 ± 11 527 ± 13 534 ± 12 0.04747 up Early Adult 1G5 vesicle-associated calmodulin-binding protein 662 ± 23 675 ± 17 629 ± 16 617 ± 20 583 ± 26 0.03129 down Intermediate A2m alpha-2-macroglobulin 262 ± 7 272 ± 8 244 ± 6 290 ± 7 353 ± 16 0.00000 up Midlife Aadat aminoadipate aminotransferase (synonym Kat2) 180 ± 5 201 ± 12 223 ± 7 244 ± 14 275 ± 7 0.00000 up Early Adult Abca2 ATP-binding cassette, sub-family A (ABC1), member 2 958 ± 28 1052 ± 58 1086 ± 36 1071 ± 44 1141 ± 41 0.05371 up Early Adult Abcb1a ATP-binding cassette, sub-family B (MDR/TAP), member 1A 136 ± 8 147 ± 6 147 ± 13 155 ± 9 185 ± 13 0.01272 up Midlife Acadl acetyl-Coenzyme A dehydrogenase, long-chain 423 ± 7 456 ± 11 478 ± 14 486 ± 13 512 ± 11 0.00003 up Early Adult Acadvl acyl-Coenzyme A dehydrogenase, very long chain 426 ± 14 414 ± 10 404 ± 13 411 ± 15 461 ± 10 0.01017 up Late Accn1 amiloride-sensitive cation channel 1, neuronal (degenerin) 242 ± 10 250 ± 9 237 ± 11 247 ± 14 212 ± 8 0.04972 down Late Actb actin, beta 12965 ± 310 13382 ± 170 13145 ± 273 13739 ± 303 14187 ± 269 0.01195 up Midlife Acvrinp1 activin receptor interacting protein 1 304 ± 18 285 ± 21 274 ± 13 297 ± 21 341 ± 14 0.03610 up Late Adk adenosine kinase 1828 ± 43 1920 ± 38 1922 ± 22 2048 ± 30 1949 ± 44 0.00797 up Early
    [Show full text]
  • The Purification and Identification of Interactors to Elucidate Novel Connections in the HEK 293 Cell Line
    The Purification and Identification of Interactors to Elucidate Novel Connections in the HEK 293 Cell Line Brett Hawley Biochemistry, Microbiology and Immunology Faculty of Medicine University of Ottawa © Brett Hawley, Ottawa, Canada, 2012 ABSTRACT The field of proteomics studies the structure and function of proteins in a large scale and high throughput manner. My work in the field of proteomics focuses on identifying interactions between proteins and discovering novel interactions. The identification of these interactions provides new information on metabolic and disease pathways and the working proteome of a cell. Cells are lysed and purified using antibody based affinity purification followed by digestion and identification using an HPLC coupled to a mass spectrometer. In my studies, I looked at the interaction networks of several AD related genes (Apolipoprotein E, Clusterin variant 1 and 2, Low-density lipoprotein receptor, Phosphatidylinositol binding clathrin assembly protein, Alpha- synuclein and Platelet-activating factor receptor) and an endosomal recycling pathway involved in cholesterol metabolism (Eps15 homology domain 1,2 and 4, Proprotein convertase subtilisin/kexin type 9 and Low-density lipoprotein receptor). Several novel and existing interactors were identified and these interactions were validated using co-immunopurification, which could be the basis for future research. ii ACKNOWLEDGEMENTS I would like to take this opportunity to thank my supervisor, Dr. Daniel Figeys, for his support and guidance throughout my studies in his lab. It was a great experience to work in his lab and I am very thankful I was given the chance to learn and work under him. I would also like to thank the members of my lab for all their assistance in learning new techniques and equipment in the lab.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Steroid-Dependent Regulation of the Oviduct: a Cross-Species Transcriptomal Analysis
    University of Kentucky UKnowledge Theses and Dissertations--Animal and Food Sciences Animal and Food Sciences 2015 Steroid-dependent regulation of the oviduct: A cross-species transcriptomal analysis Katheryn L. Cerny University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Cerny, Katheryn L., "Steroid-dependent regulation of the oviduct: A cross-species transcriptomal analysis" (2015). Theses and Dissertations--Animal and Food Sciences. 49. https://uknowledge.uky.edu/animalsci_etds/49 This Doctoral Dissertation is brought to you for free and open access by the Animal and Food Sciences at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Animal and Food Sciences by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known.
    [Show full text]
  • 1 Metabolic Dysfunction Is Restricted to the Sciatic Nerve in Experimental
    Page 1 of 255 Diabetes Metabolic dysfunction is restricted to the sciatic nerve in experimental diabetic neuropathy Oliver J. Freeman1,2, Richard D. Unwin2,3, Andrew W. Dowsey2,3, Paul Begley2,3, Sumia Ali1, Katherine A. Hollywood2,3, Nitin Rustogi2,3, Rasmus S. Petersen1, Warwick B. Dunn2,3†, Garth J.S. Cooper2,3,4,5* & Natalie J. Gardiner1* 1 Faculty of Life Sciences, University of Manchester, UK 2 Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK 3 Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, UK 4 School of Biological Sciences, University of Auckland, New Zealand 5 Department of Pharmacology, Medical Sciences Division, University of Oxford, UK † Present address: School of Biosciences, University of Birmingham, UK *Joint corresponding authors: Natalie J. Gardiner and Garth J.S. Cooper Email: [email protected]; [email protected] Address: University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, United Kingdom Telephone: +44 161 275 5768; +44 161 701 0240 Word count: 4,490 Number of tables: 1, Number of figures: 6 Running title: Metabolic dysfunction in diabetic neuropathy 1 Diabetes Publish Ahead of Print, published online October 15, 2015 Diabetes Page 2 of 255 Abstract High glucose levels in the peripheral nervous system (PNS) have been implicated in the pathogenesis of diabetic neuropathy (DN). However our understanding of the molecular mechanisms which cause the marked distal pathology is incomplete. Here we performed a comprehensive, system-wide analysis of the PNS of a rodent model of DN.
    [Show full text]
  • Protein Identities in Evs Isolated from U87-MG GBM Cells As Determined by NG LC-MS/MS
    Protein identities in EVs isolated from U87-MG GBM cells as determined by NG LC-MS/MS. No. Accession Description Σ Coverage Σ# Proteins Σ# Unique Peptides Σ# Peptides Σ# PSMs # AAs MW [kDa] calc. pI 1 A8MS94 Putative golgin subfamily A member 2-like protein 5 OS=Homo sapiens PE=5 SV=2 - [GG2L5_HUMAN] 100 1 1 7 88 110 12,03704523 5,681152344 2 P60660 Myosin light polypeptide 6 OS=Homo sapiens GN=MYL6 PE=1 SV=2 - [MYL6_HUMAN] 100 3 5 17 173 151 16,91913397 4,652832031 3 Q6ZYL4 General transcription factor IIH subunit 5 OS=Homo sapiens GN=GTF2H5 PE=1 SV=1 - [TF2H5_HUMAN] 98,59 1 1 4 13 71 8,048185945 4,652832031 4 P60709 Actin, cytoplasmic 1 OS=Homo sapiens GN=ACTB PE=1 SV=1 - [ACTB_HUMAN] 97,6 5 5 35 917 375 41,70973209 5,478027344 5 P13489 Ribonuclease inhibitor OS=Homo sapiens GN=RNH1 PE=1 SV=2 - [RINI_HUMAN] 96,75 1 12 37 173 461 49,94108966 4,817871094 6 P09382 Galectin-1 OS=Homo sapiens GN=LGALS1 PE=1 SV=2 - [LEG1_HUMAN] 96,3 1 7 14 283 135 14,70620005 5,503417969 7 P60174 Triosephosphate isomerase OS=Homo sapiens GN=TPI1 PE=1 SV=3 - [TPIS_HUMAN] 95,1 3 16 25 375 286 30,77169764 5,922363281 8 P04406 Glyceraldehyde-3-phosphate dehydrogenase OS=Homo sapiens GN=GAPDH PE=1 SV=3 - [G3P_HUMAN] 94,63 2 13 31 509 335 36,03039959 8,455566406 9 Q15185 Prostaglandin E synthase 3 OS=Homo sapiens GN=PTGES3 PE=1 SV=1 - [TEBP_HUMAN] 93,13 1 5 12 74 160 18,68541938 4,538574219 10 P09417 Dihydropteridine reductase OS=Homo sapiens GN=QDPR PE=1 SV=2 - [DHPR_HUMAN] 93,03 1 1 17 69 244 25,77302971 7,371582031 11 P01911 HLA class II histocompatibility antigen,
    [Show full text]
  • Dependent Traits in Mice Models of Hyperthyroidism and Hypothyroidism
    Phenotypical characterization of sex- dependent traits in mice models of hyperthyroidism and hypothyroidism Inaugural-Dissertation zur Erlangung des Doktorgrades Dr. rer. nat. der Fakultät für Biologie an der Universität Duisburg-Essen vorgelegt von Helena Rakov aus St. Petropawlowsk April 2017 Die der vorliegenden Arbeit zugrunde liegenden Experimente wurden am Universitätsklinikum Essen in der Klinik für Endokrinologie und Stoffwechselerkrankungen durchgeführt. 1. Gutachter: Prof. Dr. Dr. Dagmar Führer-Sakel 2. Gutachter: Prof. Dr. Elke Cario Vorsitzender des Prüfungsausschusses: Prof. Dr. Ruth Grümmer Tag der mündlichen Prüfung: 17.07.2017 Publications Publications Engels Kathrin*, Rakov Helena *, Zwanziger Denise, Moeller Lars C., Homuth Georg, Köhrle Josef, Brix Klaudia, Fuhrer Dagmar. Differences in mouse hepatic thyroid hormone transporter expression with age and hyperthyroidism. Eur Thyroid J 2015;4(suppl 1):81–86. DOI: 10.1159/000381020. *contributed equally Zwanziger Denise*, Rakov Helena*, Engels Kathrin, Moeller Lars C., Fuhrer Dagmar. Sex-dependent claudin-1 expression in liver of eu- and hypothyroid mice. Eur Thyroid J. 2015 Sep; 4(Suppl 1): 67–73. DOI: 10.1159/000431316. *contributed equally Engels Kathrin*, Rakov Helena*, Zwanziger Denise, Hoenes Georg Sebastian, Rehders Maren, Brix Klaudia, Koehrle Josef, Moeller Lars Christian, Fuhrer Dagmar. Efficacy of protocols for induction of chronic hyperthyroidism in male and female mice. Endocrine. 2016 Oct;54(1):47-54. DOI: 10.1007/s12020-016-1020-8. Rakov Helena*, Engels Kathrin*, Hönes Georg Sebastian, Strucksberg Karl-Heinz, Moeller Lars Christian, Köhrle Josef, Zwanziger Denise, Führer Dagmar. Sex-specific phenotypes of hyperthyroidism and hypothyroidism in mice. Biol Sex Differ. 2016 Aug 24;7(1):36. DOI: 10.1186/s13293-016-0089-3.
    [Show full text]