Supplementary File 1

Total Page:16

File Type:pdf, Size:1020Kb

Supplementary File 1 Supplemental Materials GFP DNA GFP DNA Figure S1. Fluorescence microscopy images of GFP-labelled hCECs cultured in 2D monocultures shows high GFP expression. F-actin F-actin PKH26 PKH26 DNA DNA F-actin PKH26 DNA Figure S2. PKH26-stained hCFs show broad cytosolic fluorescent staining. Relatively equal distribution of PKH26 throughout the culture shown in low (left side) and high magnification images (right side). Cells 2019, 8, x; doi: FOR PEER REVIEW www.mdpi.com/journal/cells Cells 2019, 8, x FOR PEER REVIEW 2 of 21 F-actin F-actin CD63 CD9 DNA DNA Figure S3. Expression of exosomal markers, CD63 and CD9, in hCECs cultured in 2D monocultures. Figure S4. Representative brightfield images of the collagen contraction assay. Cells 2019, 8, x FOR PEER REVIEW 3 of 21 Table S1. Proteins identified in isolated epithelial-derived (hCE-TJ) EVs categorized by dominant subcellular origin. Proteins are classified based on nine major subcellular locations: 1) Cytoplasm (Soluble), 2) Cytoplasm (Cytoskeleton/Motor), 3) Cytoplasm (Endosomal Trafficking), 4) Extracellular (Secreted), 5) Plasma Membrane, 6) Mitochondria, 7) Nucleus, 8) ER/Golgi, and 9) Other (Lysosome, Unknown). Classification is based on subcellular localization information described in the the UniProtKB database according to the dominant location based on the epithelial cell type (Ref. Breuza L., et al. Database (Oxford). 2016 Feb 20;2016. pii: bav120). MW Protein Name Accession Localization # Peptides [kDa] 1-phosphatidylinositol 4,5-bisphosphate Q4KWH8 Cytoplasm (Soluble) 1 189.1 phosphodiesterase 1,4-alpha-glucan-branching enzyme Q04446 Cytoplasm (Soluble) 6 80.4 3-hydroxybutyrate dehydrogenase type 2 Q9BUT1 Cytoplasm (Soluble) 1 26.7 3-phosphoinositide-dependent protein kinase 1 O15530 Cytoplasm (Soluble) 1 63.1 3'(2'),5'-bisphosphate nucleotidase 1 O95861 Cytoplasm (Soluble) 1 33.4 4-trimethylaminobutyraldehyde dehydrogenase P49189 Cytoplasm (Soluble) 5 53.8 6-phosphogluconolactonase O95336 Cytoplasm (Soluble) 2 27.5 6-phosphogluconate dehydrogenase P52209 Cytoplasm (Soluble) 6 53.1 14-3-3 protein gamma P61981 Cytoplasm (Soluble) 7 28.3 14-3-3 protein epsilon P62258 Cytoplasm (Soluble) 3 29.2 14-3-3 protein eta Q04917 Cytoplasm (Soluble) 5 28.2 14-3-3 protein theta P27348 Cytoplasm (Soluble) 12 27.7 14-3-3 protein zeta/delta P63104 Cytoplasm (Soluble) 6 27.7 26S proteasome non-ATPase regulatory subunit 2 Q13200 Cytoplasm (Soluble) 3 100.1 26S proteasome non-ATPase regulatory subunit 3 O43242 Cytoplasm (Soluble) 4 60.9 26S protease regulatory subunit 4 P62191 Cytoplasm (Soluble) 5 49.2 26S protease regulatory subunit 6A P17980 Cytoplasm (Soluble) 2 49.2 26S protease regulatory subunit 6B P43686 Cytoplasm (Soluble) 3 47.3 26S protease regulatory subunit 7 P35998 Cytoplasm (Soluble) 5 48.6 26S proteasome non-ATPase regulatory subunit 8 P48556 Cytoplasm (Soluble) 2 39.6 26S protease regulatory subunit 10B P62333 Cytoplasm (Soluble) 2 44.1 26S proteasome non-ATPase regulatory subunit 11 O00231 Cytoplasm (Soluble) 2 47.4 26S proteasome non-ATPase regulatory subunit 12 O00232 Cytoplasm (Soluble) 4 52.9 26S proteasome non-ATPase regulatory subunit 13 Q9UNM6 Cytoplasm (Soluble) 4 42.9 26S proteasome non-ATPase regulatory subunit 14 O00487 Cytoplasm (Soluble) 1 34.6 40S ribosomal protein S2 P15880 Cytoplasm (Soluble) 8 31.3 40S ribosomal protein SA P08865 Cytoplasm (Soluble) 3 32.8 40S ribosomal protein S3 P23396 Cytoplasm (Soluble) 12 26.7 40S ribosomal protein S3a P61247 Cytoplasm (Soluble) 5 29.9 40S ribosomal protein S4, X isoform P62701 Cytoplasm (Soluble) 9 29.6 40S ribosomal protein S5 P46782 Cytoplasm (Soluble) 2 22.9 40S ribosomal protein S7 P62081 Cytoplasm (Soluble) 1 22.1 Cells 2019, 8, x FOR PEER REVIEW 4 of 21 40S ribosomal protein S8 P62241 Cytoplasm (Soluble) 1 24.2 40S ribosomal protein S9 P46781 Cytoplasm (Soluble) 6 22.6 40S ribosomal protein S11 P62280 Cytoplasm (Soluble) 3 18.4 40S ribosomal protein S13 P62277 Cytoplasm (Soluble) 5 17.2 40S ribosomal protein S14 P62263 Cytoplasm (Soluble) 1 16.3 40S ribosomal protein S15a P62244 Cytoplasm (Soluble) 2 14.8 40S ribosomal protein S16 P62249 Cytoplasm (Soluble) 5 16.4 40S ribosomal protein S18 P62269 Cytoplasm (Soluble) 1 17.7 40S ribosomal protein S19 P39019 Cytoplasm (Soluble) 1 16.1 40S ribosomal protein S25 P62851 Cytoplasm (Soluble) 3 13.7 40S ribosomal protein S26 P62854 Cytoplasm (Soluble) 1 13 40S ribosomal protein S27-like Q71UM5 Cytoplasm (Soluble) 1 9.5 60S ribosomal protein L4 P36578 Cytoplasm (Soluble) 2 47.7 60S ribosomal protein L5 P46777 Cytoplasm (Soluble) 3 34.3 60S ribosomal protein L7 P18124 Cytoplasm (Soluble) 2 29.2 60S ribosomal protein L9 P32969 Cytoplasm (Soluble) 1 21.9 60S ribosomal protein L10a P62906 Cytoplasm (Soluble) 1 24.8 60S ribosomal protein L11 P62913 Cytoplasm (Soluble) 3 20.2 60S ribosomal protein L12 P30050 Cytoplasm (Soluble) 2 17.8 60S ribosomal protein L13 P26373 Cytoplasm (Soluble) 1 24.2 60S ribosomal protein L22 P35268 Cytoplasm (Soluble) 1 14.8 60S ribosomal protein L23 P62829 Cytoplasm (Soluble) 1 14.9 60S ribosomal protein L30 P62888 Cytoplasm (Soluble) 1 12.8 60S ribosomal protein L34 P49207 Cytoplasm (Soluble) 2 13.3 60S ribosomal protein L35 P42766 Cytoplasm (Soluble) 1 14.5 60S ribosomal protein L36 Q9Y3U8 Cytoplasm (Soluble) 1 12.2 60S acidic ribosomal protein P0 P05388 Cytoplasm (Soluble) 4 34.3 60S acidic ribosomal protein P2 P05387 Cytoplasm (Soluble) 1 11.7 Acyl-protein thioesterase 2 O95372 Cytoplasm (Soluble) 1 24.7 Adenylate kinase isoenzyme 1 P00568 Cytoplasm (Soluble) 2 21.6 Adenosylhomocysteinase P23526 Cytoplasm (Soluble) 9 47.7 Adenylyl cyclase-associated protein 1 Q01518 Cytoplasm (Soluble) 1 51.9 ADP-ribosylation factor 3 P61204 Cytoplasm (Soluble) 4 20.6 Adenosine kinase P55263 Cytoplasm (Soluble) 2 40.5 Adenosylhomocysteinase 2 O43865 Cytoplasm (Soluble) 6 58.9 Alanine-tRNA ligase P49588 Cytoplasm (Soluble) 3 106.7 Alcohol dehydrogenase class-3 P11766 Cytoplasm (Soluble) 5 39.7 Alcohol dehydrogenase P14550 Cytoplasm (Soluble) 2 36.6 Aldehyde dehydrogenase family 1 member A3 P47895 Cytoplasm (Soluble) 4 56.1 Aldose 1-epimerase Q96C23 Cytoplasm (Soluble) 1 37.7 Aldose reductase P15121 Cytoplasm (Soluble) 5 35.8 Alpha-aminoadipic semialdehyde dehydrogenase P49419 Cytoplasm (Soluble) 5 58.5 Cells 2019, 8, x FOR PEER REVIEW 5 of 21 Alpha-enolase P06733 Cytoplasm (Soluble) 8 47.1 Aminoacyl tRNA synthase complex Q12904 Cytoplasm (Soluble) 1 34.3 AMP deaminase 2 Q01433 Cytoplasm (Soluble) 2 100.6 Asparagine-tRNA ligase O43776 Cytoplasm (Soluble) 1 62.9 Aspartyl aminopeptidase Q9ULA0 Cytoplasm (Soluble) 1 52.4 Aspartate aminotransferase P17174 Cytoplasm (Soluble) 4 46.2 Aspartate-tRNA ligase P14868 Cytoplasm (Soluble) 2 57.1 ATP-citrate synthase P53396 Cytoplasm (Soluble) 8 120.8 ATP-dependent RNA helicase DDX1 Q92499 Cytoplasm (Soluble) 3 82.4 Basic leucine zipper and W2 domain-containing Q7L1Q6 Cytoplasm (Soluble) 1 48 protein 1 Bifunctional glutamate/proline--tRNA ligase P07814 Cytoplasm (Soluble) 3 170.5 Bifunctional purine biosynthesis protein PURH P31939 Cytoplasm (Soluble) 6 64.6 Bleomycin hydrolase Q13867 Cytoplasm (Soluble) 1 52.5 C-1-tetrahydrofolate synthase, cytoplasmic P11586 Cytoplasm (Soluble) 5 101.5 C-terminal-binding protein 1 Q13363 Cytoplasm (Soluble) 2 47.5 Calcyclin-binding protein Q9HB71 Cytoplasm (Soluble) 1 26.2 Calreticulin P27797 Cytoplasm (Soluble) 1 48.1 cAMP-dependent protein kinase catalytic subunit P22694 Cytoplasm (Soluble) 1 40.6 beta cGMP-dependent protein kinase 1 Q13976 Cytoplasm (Soluble) 1 76.3 Coatomer subunit beta' P35606 Cytoplasm (Soluble) 2 102.4 Complement C3 P01024 Cytoplasm (Soluble) 5 187 Complement factor I P05156 Cytoplasm (Soluble) 3 65.7 COP9 signalosome complex subunit 1 Q13098 Cytoplasm (Soluble) 3 55.5 COP9 signalosome complex subunit 2 P61201 Cytoplasm (Soluble) 2 51.6 COP9 signalosome complex subunit 4 Q9BT78 Cytoplasm (Soluble) 3 46.2 COP9 signalosome complex subunit 5 Q92905 Cytoplasm (Soluble) 2 37.6 CTP synthase 2 Q9NRF8 Cytoplasm (Soluble) 1 65.6 Cullin-associated NEDD8-dissociated protein 1 Q86VP6 Cytoplasm (Soluble) 11 136.3 Cytoplasm aminopeptidase P28838 Cytoplasm (Soluble) 2 56.1 D-3-phosphoglycerate dehydrogenase O43175 Cytoplasm (Soluble) 3 56.6 Dihydropteridine reductase P09417 Cytoplasm (Soluble) 1 25.8 Dihydropyrimidinase-related protein 2 Q16555 Cytoplasm (Soluble) 11 62.3 Dihydropyrimidinase-related protein 3 Q14195 Cytoplasm (Soluble) 7 61.9 Dihydropyrimidinase-related protein 5 Q9BPU6 Cytoplasm (Soluble) 3 61.4 DNA damage-binding protein 1 Q16531 Cytoplasm (Soluble) 5 126.9 DnaJ homolog subfamily B member 1 P25685 Cytoplasm (Soluble) 1 38 E3 ubiquitin-protein ligase HUWE1 Q7Z6Z7 Cytoplasm (Soluble) 2 481.6 E3 ubiquitin-protein ligase RNF213 Q63HN8 Cytoplasm (Soluble) 1 591 Elongation factor 1-alpha 1 P68104 Cytoplasm (Soluble) 12 50.1 Elongation factor 1-gamma P26641 Cytoplasm (Soluble) 9 50.1 Cells 2019, 8, x FOR PEER REVIEW 6 of 21 Elongation factor 2 P13639 Cytoplasm (Soluble) 19 95.3 Eukaryotic initiation factor 4A-II Q14240 Cytoplasm (Soluble) 5 46.4 Eukaryotic peptide chain release factor P15170 Cytoplasm (Soluble) 2 55.7 Eukaryotic translation initiation factor 2 subunit 1 P05198 Cytoplasm (Soluble) 4 36.1 Eukaryotic translation initiation factor 2 subunit 3 P41091 Cytoplasm (Soluble) 2 51.1 Eukaryotic translation initiation factor 3 B5ME19 Cytoplasm (Soluble) 3 105.4 Eukaryotic translation initiation factor 3 subunit A Q14152 Cytoplasm (Soluble) 1 166.5 Eukaryotic translation initiation factor 3 subunit D O15371 Cytoplasm (Soluble) 1 63.9 Eukaryotic translation initiation
Recommended publications
  • KO Kidney.Xlsx
    Supplemental Table 18: Dietary Impact on the CGL KO Kidney Sulfhydrome DR/AL Accession Molecular Cysteine Spectral Protein Name Number Alternate ID Weight Residues Count Ratio P‐value Ig gamma‐2A chain C region, A allele P01863 (+1) Ighg 36 kDa 10 C 5.952 0.03767 Heterogeneous nuclear ribonucleoprotein M Q9D0E1 (+1) Hnrnpm 78 kDa 6 C 5.000 0.00595 Phospholipase D3 O35405 Pld3 54 kDa 8 C 4.167 0.04761 Ig kappa chain V‐V region L7 (Fragment) P01642 Gm10881 13 kDa 2 C 2.857 0.01232 UPF0160 protein MYG1, mitochondrial Q9JK81 Myg1 43 kDa 7 C 2.333 0.01613 Copper homeostasis protein cutC homolog Q9D8X1 Cutc 29 kDa 7 C 10.333 0.16419 Corticosteroid‐binding globulin Q06770 Serpina6 45 kDa 3 C 10.333 0.16419 28S ribosomal protein S22, mitochondrial Q9CXW2 Mrps22 41 kDa 2 C 7.333 0.3739 Isoform 3 of Agrin A2ASQ1‐3 Agrn 198 kDa 2 C 7.333 0.3739 3‐oxoacyl‐[acyl‐carrier‐protein] synthase, mitochondrial Q9D404 Oxsm 49 kDa 11 C 7.333 0.3739 Cordon‐bleu protein‐like 1 Q3UMF0 (+3)Cobll1 137 kDa 10 C 5.833 0.10658 ADP‐sugar pyrophosphatase Q9JKX6 Nudt5 24 kDa 5 C 4.167 0.15819 Complement C4‐B P01029 C4b 193 kDa 29 C 3.381 0.23959 Protein‐glutamine gamma‐glutamyltransferase 2 P21981 Tgm2 77 kDa 20 C 3.381 0.23959 Isochorismatase domain‐containing protein 1 Q91V64 Isoc1 32 kDa 5 C 3.333 0.10588 Serpin B8 O08800 Serpinb8 42 kDa 11 C 2.903 0.06902 Heterogeneous nuclear ribonucleoprotein A0 Q9CX86 Hnrnpa0 31 kDa 3 C 2.667 0.5461 Proteasome subunit beta type‐8 P28063 Psmb8 30 kDa 5 C 2.583 0.36848 Ig kappa chain V‐V region MOPC 149 P01636 12 kDa 2 C 2.583 0.36848
    [Show full text]
  • Generate Metabolic Map Poster
    Authors: Pallavi Subhraveti Anamika Kothari Quang Ong Ron Caspi An online version of this diagram is available at BioCyc.org. Biosynthetic pathways are positioned in the left of the cytoplasm, degradative pathways on the right, and reactions not assigned to any pathway are in the far right of the cytoplasm. Transporters and membrane proteins are shown on the membrane. Ingrid Keseler Peter D Karp Periplasmic (where appropriate) and extracellular reactions and proteins may also be shown. Pathways are colored according to their cellular function. Csac1394711Cyc: Candidatus Saccharibacteria bacterium RAAC3_TM7_1 Cellular Overview Connections between pathways are omitted for legibility. Tim Holland TM7C00001G0420 TM7C00001G0109 TM7C00001G0953 TM7C00001G0666 TM7C00001G0203 TM7C00001G0886 TM7C00001G0113 TM7C00001G0247 TM7C00001G0735 TM7C00001G0001 TM7C00001G0509 TM7C00001G0264 TM7C00001G0176 TM7C00001G0342 TM7C00001G0055 TM7C00001G0120 TM7C00001G0642 TM7C00001G0837 TM7C00001G0101 TM7C00001G0559 TM7C00001G0810 TM7C00001G0656 TM7C00001G0180 TM7C00001G0742 TM7C00001G0128 TM7C00001G0831 TM7C00001G0517 TM7C00001G0238 TM7C00001G0079 TM7C00001G0111 TM7C00001G0961 TM7C00001G0743 TM7C00001G0893 TM7C00001G0630 TM7C00001G0360 TM7C00001G0616 TM7C00001G0162 TM7C00001G0006 TM7C00001G0365 TM7C00001G0596 TM7C00001G0141 TM7C00001G0689 TM7C00001G0273 TM7C00001G0126 TM7C00001G0717 TM7C00001G0110 TM7C00001G0278 TM7C00001G0734 TM7C00001G0444 TM7C00001G0019 TM7C00001G0381 TM7C00001G0874 TM7C00001G0318 TM7C00001G0451 TM7C00001G0306 TM7C00001G0928 TM7C00001G0622 TM7C00001G0150 TM7C00001G0439 TM7C00001G0233 TM7C00001G0462 TM7C00001G0421 TM7C00001G0220 TM7C00001G0276 TM7C00001G0054 TM7C00001G0419 TM7C00001G0252 TM7C00001G0592 TM7C00001G0628 TM7C00001G0200 TM7C00001G0709 TM7C00001G0025 TM7C00001G0846 TM7C00001G0163 TM7C00001G0142 TM7C00001G0895 TM7C00001G0930 Detoxification Carbohydrate Biosynthesis DNA combined with a 2'- di-trans,octa-cis a 2'- Amino Acid Degradation an L-methionyl- TM7C00001G0190 superpathway of pyrimidine deoxyribonucleotides de novo biosynthesis (E.
    [Show full text]
  • Stem Cells® Original Article
    ® Stem Cells Original Article Properties of Pluripotent Human Embryonic Stem Cells BG01 and BG02 XIANMIN ZENG,a TAKUMI MIURA,b YONGQUAN LUO,b BHASKAR BHATTACHARYA,c BRIAN CONDIE,d JIA CHEN,a IRENE GINIS,b IAN LYONS,d JOSEF MEJIDO,c RAJ K. PURI,c MAHENDRA S. RAO,b WILLIAM J. FREEDa aCellular Neurobiology Research Branch, National Institute on Drug Abuse, Department of Health and Human Services (DHHS), Baltimore, Maryland, USA; bLaboratory of Neuroscience, National Institute of Aging, DHHS, Baltimore, Maryland, USA; cLaboratory of Molecular Tumor Biology, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, USA; dBresaGen Inc., Athens, Georgia, USA Key Words. Embryonic stem cells · Differentiation · Microarray ABSTRACT Human ES (hES) cell lines have only recently been compared with pooled human RNA. Ninety-two of these generated, and differences between human and mouse genes were also highly expressed in four other hES lines ES cells have been identified. In this manuscript we (TE05, GE01, GE09, and pooled samples derived from describe the properties of two human ES cell lines, GE01, GE09, and GE07). Included in the list are genes BG01 and BG02. By immunocytochemistry and reverse involved in cell signaling and development, metabolism, transcription polymerase chain reaction, undifferenti- transcription regulation, and many hypothetical pro- ated cells expressed markers that are characteristic of teins. Two focused arrays designed to examine tran- ES cells, including SSEA-3, SSEA-4, TRA-1-60, TRA-1- scripts associated with stem cells and with the 81, and OCT-3/4. Both cell lines were readily main- transforming growth factor-β superfamily were tained in an undifferentiated state and could employed to examine differentially expressed genes.
    [Show full text]
  • Interactions of Natural Polyamines with Mammalian Proteins
    Article in press - uncorrected proof BioMol Concepts, Vol. 2 (2011), pp. 79–94 • Copyright ᮊ by Walter de Gruyter • Berlin • New York. DOI 10.1515/BMC.2011.007 Review Interactions of natural polyamines with mammalian proteins Inge Schuster1 and Rita Bernhardt2,* ecules, such as phospholipids or nucleotides, thereby mas- 1 Institute for Theoretical Chemistry, University Vienna, sively affecting their structures and functions (9, 10). A-1090 Vienna, Austria Accordingly, polyamines were found to modulate numerous 2 Institute of Biochemistry, Saarland University, Campus regulatory processes in model systems that range from cel- B2.2, D-66123 Saarbru¨cken, Germany lular signaling to the control of gene expression and trans- lation and offer explanations for the obvious involvement of * Corresponding author polyamines in the regulation of cell growth, differentiation, e-mail: [email protected] and death wreviewed in (1, 11–14)x. The broad actions of polyamines on essential life functions are reflected by their effects on global gene expression. A recent study in a yeast Abstract mutant, an eukaryotic system comprising a three times small- er genome than mammalians, showed a significant regulation The ubiquitously expressed natural polyamines putrescine, of some 10% of the genome in (direct or indirect) response spermidine, and spermine are small, flexible cationic com- to spermidine or spermine (15). The essential requirement pounds that exert pleiotropic actions on various regulatory for polyamines and balanced levels of polyamines is under- systems and, accordingly, are essentially involved in diverse lined from studying knockouts that lack distinct genes life functions. These roles of polyamines result from their involved in polyamine synthesis and are not viable (10).
    [Show full text]
  • Cell-Specific Proteomic Analysis in Caenorhabditis Elegans
    Supporting Information Appendix (265 Pages) for Cell-Specific Proteomic Analysis in Caenorhabditis elegans Authors: Kai P. Yueta, Meenakshi K. Domab, c, John T. Ngoa, 2, Michael J. Sweredoskid, Robert L. J. Grahamd, 3, Annie Moradiand, Sonja Hessd, Erin M. Schumane, Paul W. Sternbergb,c and David A. Tirrella,1 Author Affiliations: aDivision of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America bDivision of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America cHoward Hughes Medical Institute, California Institute of Technology, Pasadena, California, United States of America dProteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, California, United States of America eMax Planck Institute for Brain Research, Frankfurt am Main, Germany 1To whom correspondence may be addressed. 2Current Address: Department of Pharmacology, University of California, San Diego, La Jolla, California, United States of America 3Current Address: Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom Supporting Information Materials and Methods - Adenosine Triphosphate (ATP)-Pyrophosphate (PPi) Exchange Assay - Chloroform/Methanol Precipitation - Enrichment of p-Azido-L-Phenylalanine-Labeled Proteins - Fluorescence Microscopy of Live C. elegans - Fluorescence Microscopy of p-Azido-L-Phenylalanine-Labeled Proteins in Fixed C. elegans - In-Gel Fluorescence
    [Show full text]
  • Supplementary Data.Xlsx
    Electronic Supplementary Material (ESI) for Molecular BioSystems. This journal is © The Royal Society of Chemistry 2016 Average Average spectral spectral Fold UniProt IDGene Protein Name counts- counts- enrichm negative positive ent sample sample P12821 ACE HUMAN - ACE Angiotensin-converting enzyme 0 79.75 #DIV/0! Q71U36 TBA1A HUMAN - TUBA1A Tubulin alpha-1A chain 0 59.5 #DIV/0! P17812 PYRG1 HUMAN - CTPS1 CTP synthase 1 0 43.5 #DIV/0! P23921 RIR1 HUMAN - RRM1 Ribonucleoside-diphosphate reductase large subunit 0 35 #DIV/0! P49915GUAA HUMAN - GMPS GMP synthase 0 30.5 #DIV/0! P30153 2AAA HUMAN - PPP2R1A Serine/threonine-protein phosphatase 2A 65 kDa0 regulatory subunit29 A#DIV/0! alpha isoform P55786 PSA HUMAN - NPEPPS Puromycin-sensitive aminopeptidase 0 28.75 #DIV/0! O43143 DHX15 HUMAN - DHX15 Putative pre-mRNA-splicing factor ATP-dependent RNA0 helicase28.25 DHX15#DIV/0! P15170 ERF3A HUMAN - GSPT1 Eukaryotic peptide chain release factor GTP-binding0 subunit ERF3A24.75 #DIV/0! P09874PARP1HUMAN - PARP1 Poly 0 23.5 #DIV/0! Q9BXJ9 NAA15 HUMAN - NAA15 N-alpha-acetyltransferase 15, NatA auxiliary subunit0 23 #DIV/0! B0V043 B0V043 HUMAN - VARS Valyl-tRNA synthetase 0 20 #DIV/0! Q86VP6 CAND1 HUMAN - CAND1 Cullin-associated NEDD8-dissociated protein 1 0 19.5 #DIV/0! P04080CYTB HUMAN - CSTB Cystatin-B 0 19 #DIV/0! Q93009 UBP7 HUMAN - USP7 Ubiquitin carboxyl-terminal hydrolase 7 0 18 #DIV/0! Q9Y2L1 RRP44 HUMAN - DIS3 Exosome complex exonuclease RRP44 0 18 #DIV/0! Q13748 TBA3C HUMAN - TUBA3D Tubulin alpha-3C/D chain 0 18 #DIV/0! P29144 TPP2 HUMAN
    [Show full text]
  • Inda, María Carolina. 2017 03 15
    Tesis Doctoral Caracterización de distintas fuentes de cAMP en la señalización del GPCR CRHR1 Inda, María Carolina 2017-03-15 Este documento forma parte de la colección de tesis doctorales y de maestría de la Biblioteca Central Dr. Luis Federico Leloir, disponible en digital.bl.fcen.uba.ar. Su utilización debe ser acompañada por la cita bibliográfica con reconocimiento de la fuente. This document is part of the doctoral theses collection of the Central Library Dr. Luis Federico Leloir, available in digital.bl.fcen.uba.ar. It should be used accompanied by the corresponding citation acknowledging the source. Cita tipo APA: Inda, María Carolina. (2017-03-15). Caracterización de distintas fuentes de cAMP en la señalización del GPCR CRHR1. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Cita tipo Chicago: Inda, María Carolina. "Caracterización de distintas fuentes de cAMP en la señalización del GPCR CRHR1". Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. 2017-03- 15. Dirección: Biblioteca Central Dr. Luis F. Leloir, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Contacto: [email protected] Intendente Güiraldes 2160 - C1428EGA - Tel. (++54 +11) 4789-9293 UNIVERSIDAD DE BUENOS AIRES Facultad de Ciencias Exactas y Naturales Caracterización de distintas fuentes de cAMP en la señalización del GPCR CRHR1 Tesis presentada para optar al título de Doctor de la Universidad de Buenos Aires en el área de Ciencias Biológicas Lic. María Carolina Inda Directora de tesis: Dr. Susana Silberstein Cuña Consejero de Estudios: Dr. Eduardo Arzt Instituto de Investigación en Biomedicina de Buenos Aires CONICET - Partner Institute of the Max Planck Society Buenos Aires, 2017 Gracias Susana por la confianza y el apoyo para trabajar todos estos años.
    [Show full text]
  • COVALENT DRUG BINDING: a MECHANISTIC EXPLORATION to ENHANCE SAFETY and EFFICACY CHAN CHUN YIP (B.Sc. Pharm (Hons.), NUS) a THES
    COVALENT DRUG BINDING: A MECHANISTIC EXPLORATION TO ENHANCE SAFETY AND EFFICACY CHAN CHUN YIP (B.Sc. Pharm (Hons.), NUS) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF PHARMACY NATIONAL UNIVERSITY OF SINGAPORE 2015 Declaration I hereby declare that this thesis is my original work and it has been written by me in its entirety. I have duly acknowledged all the sources of information which have been used in the thesis. This thesis has also not been submitted for any degree in any university previously. _______________ Chan Chun Yip 18 November 2015 i Acknowledgments This thesis represents the collective contributions of numerous individuals to whom I would like to express my deepest gratitude. First and foremost, my heartfelt thanks to Prof Eric Chan, my doctoral advisor who has been a wonderful mentor since I was an Honors Year student. Thank you for taking a chance on someone rough around the edges, and investing time and effort in shaping and moulding me to be a better person both professionally and personally. You are a person who truly leads by example and clearly walks the talk. I am grateful that you are always challenging and inspiring me, and in the process, you have taught me that I have, in myself, the capacity to achieve greater heights. Thank you for trusting me, giving me the freedom and encouraging me to explore new ideas and research interests, and for providing all the necessary support to ensure the success of these endeavours. You are always ready to lend a listening ear despite your busy schedule, and I deeply appreciate all your advice and counsel.
    [Show full text]
  • Norspermine Substitutes for Thermospermine in the Control of Stem Elongation in Arabidopsis Thaliana
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector FEBS Letters 584 (2010) 3042–3046 journal homepage: www.FEBSLetters.org Norspermine substitutes for thermospermine in the control of stem elongation in Arabidopsis thaliana Jun-Ichi Kakehi a, Yoshitaka Kuwashiro a, Hiroyasu Motose a, Kazuei Igarashi b, Taku Takahashi a,* a Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan b Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan article info abstract Article history: Thermospermine is a structural isomer of spermine and is required for stem elongation in Arabid- Received 26 March 2010 opsis thaliana. We noted the C3C3 arrangement of carbon chains in thermospermine (C3C3C4), Revised 16 May 2010 which is not present in spermine (C3C4C3), and examined if it is functionally replaced with norsper- Accepted 17 May 2010 mine (C3C3C3) or not. Exogenous application of norspermine to acl5, a mutant defective in the syn- Available online 24 May 2010 thesis of thermospermine, partially suppressed its dwarf phenotype, and down-regulated the level Edited by Ulf-Ingo Flügge of the acl5 transcript which is much higher than that of the ACL5 transcript in the wild type. Further- more, in the Zinnia culture, differentiation of mesophyll cells into tracheary elements was blocked by thermospermine and norspermine but not by spermine. Our results indicate that norspermine Keywords: Arabidopsis can functionally substitute for thermospermine. Thermospermine Ó 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved. Norspermine Polyamine Stem elongation Xylem 1.
    [Show full text]
  • O O2 Enzymes Available from Sigma Enzymes Available from Sigma
    COO 2.7.1.15 Ribokinase OXIDOREDUCTASES CONH2 COO 2.7.1.16 Ribulokinase 1.1.1.1 Alcohol dehydrogenase BLOOD GROUP + O O + O O 1.1.1.3 Homoserine dehydrogenase HYALURONIC ACID DERMATAN ALGINATES O-ANTIGENS STARCH GLYCOGEN CH COO N COO 2.7.1.17 Xylulokinase P GLYCOPROTEINS SUBSTANCES 2 OH N + COO 1.1.1.8 Glycerol-3-phosphate dehydrogenase Ribose -O - P - O - P - O- Adenosine(P) Ribose - O - P - O - P - O -Adenosine NICOTINATE 2.7.1.19 Phosphoribulokinase GANGLIOSIDES PEPTIDO- CH OH CH OH N 1 + COO 1.1.1.9 D-Xylulose reductase 2 2 NH .2.1 2.7.1.24 Dephospho-CoA kinase O CHITIN CHONDROITIN PECTIN INULIN CELLULOSE O O NH O O O O Ribose- P 2.4 N N RP 1.1.1.10 l-Xylulose reductase MUCINS GLYCAN 6.3.5.1 2.7.7.18 2.7.1.25 Adenylylsulfate kinase CH2OH HO Indoleacetate Indoxyl + 1.1.1.14 l-Iditol dehydrogenase L O O O Desamino-NAD Nicotinate- Quinolinate- A 2.7.1.28 Triokinase O O 1.1.1.132 HO (Auxin) NAD(P) 6.3.1.5 2.4.2.19 1.1.1.19 Glucuronate reductase CHOH - 2.4.1.68 CH3 OH OH OH nucleotide 2.7.1.30 Glycerol kinase Y - COO nucleotide 2.7.1.31 Glycerate kinase 1.1.1.21 Aldehyde reductase AcNH CHOH COO 6.3.2.7-10 2.4.1.69 O 1.2.3.7 2.4.2.19 R OPPT OH OH + 1.1.1.22 UDPglucose dehydrogenase 2.4.99.7 HO O OPPU HO 2.7.1.32 Choline kinase S CH2OH 6.3.2.13 OH OPPU CH HO CH2CH(NH3)COO HO CH CH NH HO CH2CH2NHCOCH3 CH O CH CH NHCOCH COO 1.1.1.23 Histidinol dehydrogenase OPC 2.4.1.17 3 2.4.1.29 CH CHO 2 2 2 3 2 2 3 O 2.7.1.33 Pantothenate kinase CH3CH NHAC OH OH OH LACTOSE 2 COO 1.1.1.25 Shikimate dehydrogenase A HO HO OPPG CH OH 2.7.1.34 Pantetheine kinase UDP- TDP-Rhamnose 2 NH NH NH NH N M 2.7.1.36 Mevalonate kinase 1.1.1.27 Lactate dehydrogenase HO COO- GDP- 2.4.1.21 O NH NH 4.1.1.28 2.3.1.5 2.1.1.4 1.1.1.29 Glycerate dehydrogenase C UDP-N-Ac-Muramate Iduronate OH 2.4.1.1 2.4.1.11 HO 5-Hydroxy- 5-Hydroxytryptamine N-Acetyl-serotonin N-Acetyl-5-O-methyl-serotonin Quinolinate 2.7.1.39 Homoserine kinase Mannuronate CH3 etc.
    [Show full text]
  • Bioanalytical and Proteomic Approaches in the Study of Pathologic Ecs Dysfunctionality, Oxidative Stress and the Effects of PFKFB3 Modulators
    Bioanalytical and proteomic approaches in the study of pathologic ECs dysfunctionality, oxidative stress and the effects of PFKFB3 modulators Sarath Babu Nukala ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tdx.cat) i a través del Dipòsit Digital de la UB (diposit.ub.edu) ha estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX ni al Dipòsit Digital de la UB. No s’autoritza la presentació del seu contingut en una finestra o marc aliè a TDX o al Dipòsit Digital de la UB (framing). Aquesta reserva de drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la persona autora. ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tdx.cat) y a través del Repositorio Digital de la UB (diposit.ub.edu) ha sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR o al Repositorio Digital de la UB.
    [Show full text]
  • Isolation and Characterization of S-Adenosylmethionine Synthase Gene from Cucumber and Responsive to Abiotic Stress T
    Plant Physiology and Biochemistry 141 (2019) 431–445 Contents lists available at ScienceDirect Plant Physiology and Biochemistry journal homepage: www.elsevier.com/locate/plaphy Research article Isolation and characterization of S-Adenosylmethionine synthase gene from cucumber and responsive to abiotic stress T ∗ Mei-Wen Hea, Yu Wanga, Jian-Qiang Wua, Sheng Shua,b, Jin Suna,b, Shi-Rong Guoa,b, a Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China b Suqian Academy of Protected Horticulture, Nanjing Agricultural University, Suqian, 223800, China ARTICLE INFO ABSTRACT Keywords: S-adenosylmethionine synthetase (SAMS) catalyzes methionine and ATP to generate S-adenosyl-L-methionine Cucumis sativus (SAM). In plants, accumulating SAMS genes have been characterized and the majority of them are reported to S-adenosylmethionine synthetase participate in development and stress response. In this study, two putative SAMS genes (CsSAMS1 and CsSAMS2) Gene expression were identified in cucumber (Cucumis Sativus L.). They displayed 95% similarity and had a high identity with Function their homologous of Arabidopsis thaliana and Nicotiana tabacum. The qRT-PCR test showed that CsSAMS1 was Salt stress predominantly expressed in stem, male flower, and young fruit, whereas CsSAMS2 was preferentially accumu- lated in stem and female flower. And they displayed differential expression profiles under stimuli, including NaCl, ABA, SA, MeJA, drought and low temperature. To elucidate the function of cucumber SAMS, the full- length CDS of CsSAMS1 was cloned, and prokaryotic expression system and transgenic materials were con- structed. Expressing CsSAMS1 in Escherichia coli BL21 (DE3) improved the growth of the engineered strain under salt stress.
    [Show full text]