Author Manuscript Faculty of Biology and Medicine Publication

Total Page:16

File Type:pdf, Size:1020Kb

Author Manuscript Faculty of Biology and Medicine Publication Serveur Académique Lausannois SERVAL serval.unil.ch Author Manuscript Faculty of Biology and Medicine Publication This paper has been peer-reviewed but dos not include the final publisher proof-corrections or journal pagination. Published in final edited form as: Title: B-cell receptor-driven MALT1 activity regulates MYC signaling in mantle cell lymphoma. Authors: Dai B, Grau M, Juilland M, Klener P, Höring E, Molinsky J, Schimmack G, Aukema SM, Hoster E, Vogt N, Staiger AM, Erdmann T, Xu W, Erdmann K, Dzyuba N, Madle H, Berdel WE, Trneny M, Dreyling M, Jöhrens K, Lenz P, Rosenwald A, Siebert R, Tzankov A, Klapper W, Anagnostopoulos I, Krappmann D, Ott G, Thome M, Lenz G Journal: Blood Year: 2017 Jan 19 Volume: 129 Issue: 3 Pages: 333-346 DOI: 10.1182/blood-2016-05-718775 In the absence of a copyright statement, users should assume that standard copyright protection applies, unless the article contains an explicit statement to the contrary. In case of doubt, contact the journal publisher to verify the copyright status of an article. 1 B-cell receptor driven MALT1 activity regulates MYC signaling in mantle cell lymphoma Beiying Dai,1-3 Michael Grau,1,2 Mélanie Juilland,4 Pavel Klener,5,6 Elisabeth Höring,7 Jan Molinsky,5,6 Gisela Schimmack,8 Sietse M. Aukema,9 Eva Hoster,10,11 Niklas Vogt,1,12 Annette M. Staiger,13 Tabea Erdmann,1,2 Wendan Xu,1,2 Kristian Erdmann,1,2 Nicole Dzyuba,1,2 Hannelore Madle,1,2 Wolfgang E. Berdel,2,14 Marek Trneny,6 Martin Dreyling,10 Korinna Jöhrens,15 Peter Lenz,16 Andreas Rosenwald,17 Reiner Siebert,9,18 Alexandar Tzankov,19 Wolfram Klapper,12 Ioannis Anagnostopoulos,15 Daniel Krappmann,8 German Ott,13 Margot Thome,4 Georg Lenz1,2,14 1Translational Oncology, Albert-Schweitzer-Campus 1, University Hospital Münster, 48149 Münster, Germany; 2Cluster of Excellence EXC 1003, Cells in Motion, 48149 Münster, Germany; 3Fachbereich Chemie und Pharmazie, University of Münster, 48149 Münster, Germany; 4Department of Biochemistry, University of Lausanne, CH-1066 Epalinges, Switzerland; 5Institute of Pathological Physiology, First Faculty of Medicine, Charles University Prague, Prague, Czech Republic; 6Department of Hematology, Charles University General Hospital Prague, Prague, Czech Republic; 7 Department of Hematology and Oncology, Robert-Bosch-Hospital and Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, and University of Tuebingen, Germany; 8Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764 Neuherberg, Germany; 9Institute of Human Genetics, Christian-Albrechts-University Kiel, 24105 Kiel, Germany; 10Department of Internal Medicine III, Ludwig-Maximilians-University Hospital Munich, Munich, Germany; 11Institute of Medical Informatics, Biometry, and Epidemiology, Ludwig-Maximilians- University of Munich, Munich, Germany; 12Department of Pathology, Hematopathology Section and Lymph Node Registry, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany; 13Department of Clinical Pathology, Robert-Bosch-Hospital and Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, and University of Tuebingen, Germany; 14Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, 48149 Münster, Germany; 15Institute of Pathology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; 16Department of Physics, Philipps-University, 35032 Marburg, Germany; 17Department of Pathology, University of Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany; 18Institute of Human Genetics, University Hospital Ulm, 89081 Ulm, Germany; and 19Institute of Pathology, University Hospital, Schoenbeinstrasse 40, 4031 Basel, Switzerland Short title: MALT1 and MYC signaling in MCL Scientific category: LYMPHOID NEOPLASIA Word count manuscript: 3990 Abstract word count: 183 Number of figures: 7 Number of references: 44 Corresponding author: Georg Lenz, M.D. University Hospital Münster, Translational Oncology Albert-Schweitzer-Campus 1 48149 Münster, Germany Phone: +49 251 83 52995 Fax: +49 251 83 52673 Email: [email protected] Copyright © 2016 American Society of Hematology 2 Key points • MALT1 protease activity stabilizes MYC • The MALT1-MYC network might represent a therapeutic target for MCL patients Abstract Mantle cell lymphoma (MCL) is a mature B-cell lymphoma characterized by poor clinical outcome. Recent studies revealed the importance of B-cell receptor (BCR) signaling in maintaining MCL survival. However, it remains unclear which role MALT1, an essential component of the CARD11-BCL10-MALT1 (CBM) complex that links BCR signaling to the nuclear factor kappa-B (NF-κB) pathway, plays in the biology of MCL. Here we show that a subset of MCLs is addicted to MALT1, as its inhibition by either RNA or pharmacologic interference induced cytotoxicity both in vitro and in vivo. Gene expression profiling following MALT1 inhibition demonstrated that MALT1 controls a MYC-driven gene expression network predominantly through increasing MYC protein stability. Thus, our analyses identify a previously unappreciated regulatory mechanism of MYC expression. Investigating primary mouse splenocytes, we could demonstrate that MALT1-induced MYC regulation is not restricted to MCL, but represents a common mechanism. MYC itself is pivotal for MCL survival as its downregulation and pharmacologic inhibition induced cytotoxicity in all MCL models. Collectively, these results provide a strong mechanistic rationale to investigate the therapeutic efficacy of targeting the MALT1-MYC axis in MCL patients. 3 Introduction Mantle cell lymphoma (MCL) is characterized by an aggressive clinical course and short overall survival.1 Different cytomorphological variants can be distinguished and especially, blastic variants are associated with poor overall survival.2-4 Besides clinical factors summarized in the mantle cell lymphoma international prognostic index (MIPI), high cell proliferation has been identified as a major prognostic factor associated with adverse outcome.5-7 Pathogenetically MCL is characterized by cyclin D1 overexpression due to the chromosomal translocation t(11;14)(q13;q32).8 In addition, various secondary genetic aberrations activating different pathways have been elucidated.9,10 Recently, constitutive activation of B-cell receptor (BCR) signaling and downstream activation of the nuclear factor kappa-B (NF-κB) pathway have been identified to be critical for survival of MCL subsets.11,12 Upon BCR stimulation MALT1 and BCL10 are recruited to CARD11 resulting in the formation of the CARD11-BCL10-MALT1 (CBM) complex and NF-κB activation.13,14 Additionally, the protease activity of MALT1 is enhanced leading to cleavage of NF-κB inhibitors such as A20 and RelB.15,16 Other known MALT1 substrates include BCL10, CYLD, Regnase-1, Roquin-1, Roquin-2, and HOIL1.17-25 Preliminary data suggested that MALT1 is constitutively activated in subsets of MCL.11 However, its precise role in the pathogenesis of MCL remains unknown. Thus, we investigated the role of MALT1 in the biology of MCL in the current study. 4 Methods Patient samples, immunohistochemistry and fluorescence in situ hybridization (FISH) CD20+ MCL cells were separated from peripheral blood mononuclear cells (PBMCs; patient samples #1 and #2) or cell suspensions from lymph nodes (patient samples #3-5) of MCL patients by CD20 magnetic-activated cell sorting (Miltenyi Biotec, Bergisch Gladbach, Germany). The immunohistochemical protocols are summarized in the Supplemental Material and Methods. FISH was performed as described.26,27 Cell culture, retroviral constructs and transductions The experiments were performed as described.28-30 Protocols are available in the Supplemental Material and Methods. The sequences of the utilized small hairpin RNAs (shRNAs) are summarized in Supplemental Table 1. Viability assay, analysis of cell cycle, apoptosis and proliferation The experiments were performed as described.29,31,32 Protocols are available in the Supplemental Material and Methods. Isolation and stimulation of mouse splenocytes Protocols are available in the Supplemental Material and Methods. In vivo xenograft mouse studies The in vivo xenograft mouse studies were done as described.33 Protocols are available in the Supplemental Material and Methods. 5 Gene expression profiling Gene expression profiling was performed 24, 30, 36, 42, 48, and 54 hours following treatment with z-VRPR-fmk or DMSO in Mino and Rec-1 cells and analyzed as described in Supplemental Material and Methods.32,34,35 The gene expression data has been deposited in the GEO database (http://www.ncbi.nlm.nih.gov/geo; accession number GSE81552). Quantitative PCR Quantitative PCR was performed as described using predesigned assays (Applied Biosystems, Carlsbad, CA, USA).29 Western blotting and analysis of MYC stability Protocols are available in the Supplemental Material and Methods. Results MALT1 is expressed and activated in MCL To assess if MALT1 is expressed in MCL, we determined its expression in 60 primary samples by immunohistochemistry. To establish the immunohistochemical assay, we stained five reactive lymph node and tonsil specimens. MALT1 was expressed in both B- and T-cell areas of the lymph node, albeit to varying degrees. The germinal center (GC) B-cells were strongly positive and staining was accentuated in the dark zone of the GC (Supplemental Figure 1). 56/60 (93%) of
Recommended publications
  • Identification and Characterization of TPRKB Dependency in TP53 Deficient Cancers
    Identification and Characterization of TPRKB Dependency in TP53 Deficient Cancers. by Kelly Kennaley A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Molecular and Cellular Pathology) in the University of Michigan 2019 Doctoral Committee: Associate Professor Zaneta Nikolovska-Coleska, Co-Chair Adjunct Associate Professor Scott A. Tomlins, Co-Chair Associate Professor Eric R. Fearon Associate Professor Alexey I. Nesvizhskii Kelly R. Kennaley [email protected] ORCID iD: 0000-0003-2439-9020 © Kelly R. Kennaley 2019 Acknowledgements I have immeasurable gratitude for the unwavering support and guidance I received throughout my dissertation. First and foremost, I would like to thank my thesis advisor and mentor Dr. Scott Tomlins for entrusting me with a challenging, interesting, and impactful project. He taught me how to drive a project forward through set-backs, ask the important questions, and always consider the impact of my work. I’m truly appreciative for his commitment to ensuring that I would get the most from my graduate education. I am also grateful to the many members of the Tomlins lab that made it the supportive, collaborative, and educational environment that it was. I would like to give special thanks to those I’ve worked closely with on this project, particularly Dr. Moloy Goswami for his mentorship, Lei Lucy Wang, Dr. Sumin Han, and undergraduate students Bhavneet Singh, Travis Weiss, and Myles Barlow. I am also grateful for the support of my thesis committee, Dr. Eric Fearon, Dr. Alexey Nesvizhskii, and my co-mentor Dr. Zaneta Nikolovska-Coleska, who have offered guidance and critical evaluation since project inception.
    [Show full text]
  • Protein Identities in Evs Isolated from U87-MG GBM Cells As Determined by NG LC-MS/MS
    Protein identities in EVs isolated from U87-MG GBM cells as determined by NG LC-MS/MS. No. Accession Description Σ Coverage Σ# Proteins Σ# Unique Peptides Σ# Peptides Σ# PSMs # AAs MW [kDa] calc. pI 1 A8MS94 Putative golgin subfamily A member 2-like protein 5 OS=Homo sapiens PE=5 SV=2 - [GG2L5_HUMAN] 100 1 1 7 88 110 12,03704523 5,681152344 2 P60660 Myosin light polypeptide 6 OS=Homo sapiens GN=MYL6 PE=1 SV=2 - [MYL6_HUMAN] 100 3 5 17 173 151 16,91913397 4,652832031 3 Q6ZYL4 General transcription factor IIH subunit 5 OS=Homo sapiens GN=GTF2H5 PE=1 SV=1 - [TF2H5_HUMAN] 98,59 1 1 4 13 71 8,048185945 4,652832031 4 P60709 Actin, cytoplasmic 1 OS=Homo sapiens GN=ACTB PE=1 SV=1 - [ACTB_HUMAN] 97,6 5 5 35 917 375 41,70973209 5,478027344 5 P13489 Ribonuclease inhibitor OS=Homo sapiens GN=RNH1 PE=1 SV=2 - [RINI_HUMAN] 96,75 1 12 37 173 461 49,94108966 4,817871094 6 P09382 Galectin-1 OS=Homo sapiens GN=LGALS1 PE=1 SV=2 - [LEG1_HUMAN] 96,3 1 7 14 283 135 14,70620005 5,503417969 7 P60174 Triosephosphate isomerase OS=Homo sapiens GN=TPI1 PE=1 SV=3 - [TPIS_HUMAN] 95,1 3 16 25 375 286 30,77169764 5,922363281 8 P04406 Glyceraldehyde-3-phosphate dehydrogenase OS=Homo sapiens GN=GAPDH PE=1 SV=3 - [G3P_HUMAN] 94,63 2 13 31 509 335 36,03039959 8,455566406 9 Q15185 Prostaglandin E synthase 3 OS=Homo sapiens GN=PTGES3 PE=1 SV=1 - [TEBP_HUMAN] 93,13 1 5 12 74 160 18,68541938 4,538574219 10 P09417 Dihydropteridine reductase OS=Homo sapiens GN=QDPR PE=1 SV=2 - [DHPR_HUMAN] 93,03 1 1 17 69 244 25,77302971 7,371582031 11 P01911 HLA class II histocompatibility antigen,
    [Show full text]
  • Structural and Functional Diversity of Caspase Homologues in Non-Metazoan Organisms
    Protoplasma DOI 10.1007/s00709-017-1145-5 REVIEW ARTICLE Structural and functional diversity of caspase homologues in non-metazoan organisms Marina Klemenčič1,2 & Christiane Funk1 Received: 1 June 2017 /Accepted: 5 July 2017 # The Author(s) 2017. This article is an open access publication Abstract Caspases, the proteases involved in initiation and supports the role of metacaspases and orthocaspases as im- execution of metazoan programmed cell death, are only pres- portant contributors to cell homeostasis during normal physi- ent in animals, while their structural homologues can be ological conditions or cell differentiation and ageing. found in all domains of life, spanning from simple prokary- otes (orthocaspases) to yeast and plants (metacaspases). All members of this wide protease family contain the p20 do- Keywords Algae . Cyanobacteria . Cell death . Cysteine main, which harbours the catalytic dyad formed by the two protease . Metacaspase . Orthocaspase amino acid residues, histidine and cysteine. Despite the high structural similarity of the p20 domain, metacaspases and orthocaspases were found to exhibit different substrate speci- ficities than caspases. While the former cleave their substrates Introduction after basic amino acid residues, the latter accommodate sub- strates with negative charge. This observation is crucial for BOut of life’s school of war: What does not destroy me, the re-evaluation of non-metazoan caspase homologues being makes me stronger.^ wrote the German philosopher involved in processes of programmed cell death. In this re- Friedrich Nietzsche in his book Twilight of the Idols or view, we analyse the structural diversity of enzymes contain- how to philosophize with a hammer. Even though ing the p20 domain, with focus on the orthocaspases, and reformatted to more common use, this phrase has been summarise recent advances in research of orthocaspases and used to describe the dual nature of caspase homologues metacaspases of cyanobacteria, algae and higher plants.
    [Show full text]
  • IL21R Expressing CD14+CD16+ Monocytes Expand in Multiple
    Plasma Cell Disorders SUPPLEMENTARY APPENDIX IL21R expressing CD14 +CD16 + monocytes expand in multiple myeloma patients leading to increased osteoclasts Marina Bolzoni, 1 Domenica Ronchetti, 2,3 Paola Storti, 1,4 Gaetano Donofrio, 5 Valentina Marchica, 1,4 Federica Costa, 1 Luca Agnelli, 2,3 Denise Toscani, 1 Rosanna Vescovini, 1 Katia Todoerti, 6 Sabrina Bonomini, 7 Gabriella Sammarelli, 1,7 Andrea Vecchi, 8 Daniela Guasco, 1 Fabrizio Accardi, 1,7 Benedetta Dalla Palma, 1,7 Barbara Gamberi, 9 Carlo Ferrari, 8 Antonino Neri, 2,3 Franco Aversa 1,4,7 and Nicola Giuliani 1,4,7 1Myeloma Unit, Dept. of Medicine and Surgery, University of Parma; 2Dept. of Oncology and Hemato-Oncology, University of Milan; 3Hematology Unit, “Fondazione IRCCS Ca’ Granda”, Ospedale Maggiore Policlinico, Milan; 4CoreLab, University Hospital of Parma; 5Dept. of Medical-Veterinary Science, University of Parma; 6Laboratory of Pre-clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture; 7Hematology and BMT Center, University Hospital of Parma; 8Infectious Disease Unit, University Hospital of Parma and 9“Dip. Oncologico e Tecnologie Avanzate”, IRCCS Arcispedale Santa Maria Nuova, Reggio Emilia, Italy ©2017 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol. 2016.153841 Received: August 5, 2016. Accepted: December 23, 2016. Pre-published: January 5, 2017. Correspondence: [email protected] SUPPLEMENTAL METHODS Immunophenotype of BM CD14+ in patients with monoclonal gammopathies. Briefly, 100 μl of total BM aspirate was incubated in the dark with anti-human HLA-DR-PE (clone L243; BD), anti-human CD14-PerCP-Cy 5.5, anti-human CD16-PE-Cy7 (clone B73.1; BD) and anti-human CD45-APC-H 7 (clone 2D1; BD) for 20 min.
    [Show full text]
  • Serine Proteases with Altered Sensitivity to Activity-Modulating
    (19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants.
    [Show full text]
  • RSC Chemical Biology
    RSC Chemical Biology View Article Online PAPER View Journal | View Issue Phosphinate esters as novel warheads for activity-based probes targeting serine proteases† Cite this: RSC Chem. Biol., 2021, 2, 1285 Jan Pascal Kahler a and Steven H. L. Verhelst *ab Activity-based protein profiling enables the specific detection of the active fraction of an enzyme and is of particular use for the profiling of proteases. The technique relies on a mechanism-based reaction between Received 21st May 2021, small molecule activity-based probes (ABPs) with the active enzyme. Here we report a set of new ABPs for Accepted 7th July 2021 serine proteases, specifically neutrophil serine proteases. The probes contain a phenylphosphinate warhead DOI: 10.1039/d1cb00117e that mimics the P1 amino acid recognized by the primary recognition pocket of S1 family serine proteases. The warhead is easily synthesized from commercial starting materials and leads to potent probes which can rsc.li/rsc-chembio be used for fluorescent in-gel protease detection and fluorescent microscopy imaging experiments. Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Introduction Serine proteases are the largest group of proteases. They use an active site serine residue for attack on the scissile peptide bond. Activity-based protein profiling (ABPP) is a powerful technique Many serine reactive electrophiles such as isocoumarins,13,14 that allows for profiling of the active fraction of a given enzyme. It benzoxazinones,15 phosphoramidates16 and oxolactams17 have has been particularly useful for the study of proteases, because been used as warhead for serine protease ABPs. Most applied these enzymes are tightly regulated by post-translational however, are a-aminoalkyl diphenyl phosphonates.18,19 Since these processes.1–3 ABPP relies on activity-based probes (ABPs), small phosphonates bind to the serine protease in a substrate-like molecules that react covalently with the active enzyme in a manner, substrate specificity information can directly be used to mechanism-based manner.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • The Tumor Suppressor Notch Inhibits Head and Neck Squamous Cell
    The Texas Medical Center Library DigitalCommons@TMC The University of Texas MD Anderson Cancer Center UTHealth Graduate School of The University of Texas MD Anderson Cancer Biomedical Sciences Dissertations and Theses Center UTHealth Graduate School of (Open Access) Biomedical Sciences 12-2015 THE TUMOR SUPPRESSOR NOTCH INHIBITS HEAD AND NECK SQUAMOUS CELL CARCINOMA (HNSCC) TUMOR GROWTH AND PROGRESSION BY MODULATING PROTO-ONCOGENES AXL AND CTNNAL1 (α-CATULIN) Shhyam Moorthy Shhyam Moorthy Follow this and additional works at: https://digitalcommons.library.tmc.edu/utgsbs_dissertations Part of the Biochemistry, Biophysics, and Structural Biology Commons, Cancer Biology Commons, Cell Biology Commons, and the Medicine and Health Sciences Commons Recommended Citation Moorthy, Shhyam and Moorthy, Shhyam, "THE TUMOR SUPPRESSOR NOTCH INHIBITS HEAD AND NECK SQUAMOUS CELL CARCINOMA (HNSCC) TUMOR GROWTH AND PROGRESSION BY MODULATING PROTO-ONCOGENES AXL AND CTNNAL1 (α-CATULIN)" (2015). The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access). 638. https://digitalcommons.library.tmc.edu/utgsbs_dissertations/638 This Dissertation (PhD) is brought to you for free and open access by the The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences at DigitalCommons@TMC. It has been accepted for inclusion in The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access) by an authorized administrator of DigitalCommons@TMC. For more information, please contact [email protected]. THE TUMOR SUPPRESSOR NOTCH INHIBITS HEAD AND NECK SQUAMOUS CELL CARCINOMA (HNSCC) TUMOR GROWTH AND PROGRESSION BY MODULATING PROTO-ONCOGENES AXL AND CTNNAL1 (α-CATULIN) by Shhyam Moorthy, B.S.
    [Show full text]
  • Phylogenetic Distribution and Diversity of Bacterial Pseudo-Orthocaspases Underline Their Putative Role in Photosynthesis
    http://www.diva-portal.org This is the published version of a paper published in Frontiers in Plant Science. Citation for the original published paper (version of record): Klemenčič, M., Asplund-Samuelsson, J., Dolinar, M., Funk, C. (2019) Phylogenetic Distribution and Diversity of Bacterial Pseudo-Orthocaspases Underline Their Putative Role in Photosynthesis Frontiers in Plant Science, 10: 293 https://doi.org/10.3389/fpls.2019.00293 Access to the published version may require subscription. N.B. When citing this work, cite the original published paper. Permanent link to this version: http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-157749 fpls-10-00293 March 12, 2019 Time: 19:11 # 1 ORIGINAL RESEARCH published: 14 March 2019 doi: 10.3389/fpls.2019.00293 Phylogenetic Distribution and Diversity of Bacterial Pseudo-Orthocaspases Underline Their Putative Role in Photosynthesis Marina Klemenciˇ cˇ 1,2, Johannes Asplund-Samuelsson3, Marko Dolinar2 and Christiane Funk1* 1 Department of Chemistry, Umeå University, Umeå, Sweden, 2 Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia, 3 Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna, Sweden Orthocaspases are prokaryotic caspase homologs – proteases, which cleave their substrates after positively charged residues using a conserved histidine – cysteine (HC) dyad situated in a catalytic p20 domain. However, in orthocaspases pseudo-variants have been identified, which instead of the catalytic HC residues contain tyrosine and Edited by: serine, respectively. The presence and distribution of these presumably proteolytically Mercedes Diaz-Mendoza, inactive p20-containing enzymes has until now escaped attention.
    [Show full text]
  • SUPPLEMENTARY NOTE Co-Activation of GR and NFKB
    SUPPLEMENTARY NOTE Co-activation of GR and NFKB alters the repertoire of their binding sites and target genes. Nagesha A.S. Rao1*, Melysia T. McCalman1,*, Panagiotis Moulos2,4, Kees-Jan Francoijs1, 2 2 3 3,5 Aristotelis Chatziioannou , Fragiskos N. Kolisis , Michael N. Alexis , Dimitra J. Mitsiou and 1,5 Hendrik G. Stunnenberg 1Department of Molecular Biology, Radboud University Nijmegen, the Netherlands 2Metabolic Engineering and Bioinformatics Group, Institute of Biological Research and Biotechnology, National Hellenic Research Foundation, Athens, Greece 3Molecular Endocrinology Programme, Institute of Biological Research and Biotechnology, National Hellenic Research Foundation, Greece 4These authors contributed equally to this work 5 Corresponding authors E-MAIL: [email protected] ; TEL: +31-24-3610524; FAX: +31-24-3610520 E-MAIL: [email protected] ; TEL: +30-210-7273741; FAX: +30-210-7273677 Running title: Global GR and NFKB crosstalk Keywords: GR, p65, genome-wide, binding sites, crosstalk SUPPLEMENTARY FIGURES/FIGURE LEGENDS AND SUPPLEMENTARY TABLES 1 Rao118042_Supplementary Fig. 1 A Primary transcript Mature mRNA TNF/DMSO TNF/DMSO 8 12 r=0.74, p< 0.001 r=0.61, p< 0.001 ) 2 ) 10 2 6 8 4 6 4 2 2 0 Fold change (mRNA) (log Fold change (primRNA) (log 0 −2 −2 −2 0 2 4 −2 0 2 4 Fold change (RNAPII) (log2) Fold change (RNAPII) (log2) B chr5: chrX: 56 _ 104 _ DMSO DMSO 1 _ 1 _ 56 _ 104 _ TA TA 1 _ 1 _ 56 _ 104 _ TNF TNF Cluster 1 1 _ Cluster 2 1 _ 56 _ 104 _ TA+TNF TA+TNF 1 _ 1 _ CCNB1 TSC22D3 chr20: chr17: 25 _ 33 _ DMSO DMSO 1 _ 1 _ 25 _ 33 _ TA TA 1 _ 1 _ 25 _ 33 _ TNF TNF Cluster 3 1 _ Cluster 4 1 _ 25 _ 33 _ TA+TNF TA+TNF 1 _ 1 _ GPCPD1 CCL2 chr6: chr22: 77 _ 35 _ DMSO DMSO 1 _ 77 _ 1 _ 35 _ TA TA 1 _ 1 _ 77 _ 35 _ TNF Cluster 5 Cluster 6 TNF 1 _ 1 _ 77 _ 35 _ TA+TNF TA+TNF 1 _ 1 _ TNFAIP3 DGCR6 2 Supplementary Figure 1.
    [Show full text]
  • This Thesis Has Been Submitted in Fulfilment of the Requirements for a Postgraduate Degree (E.G
    This thesis has been submitted in fulfilment of the requirements for a postgraduate degree (e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following terms and conditions of use: This work is protected by copyright and other intellectual property rights, which are retained by the thesis author, unless otherwise stated. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given. Protein secretion and encystation in Acanthamoeba Alvaro de Obeso Fernández del Valle Doctor of Philosophy The University of Edinburgh 2018 Abstract Free-living amoebae (FLA) are protists of ubiquitous distribution characterised by their changing morphology and their crawling movements. They have no common phylogenetic origin but can be found in most protist evolutionary branches. Acanthamoeba is a common FLA that can be found worldwide and is capable of infecting humans. The main disease is a life altering infection of the cornea named Acanthamoeba keratitis. Additionally, Acanthamoeba has a close relationship to bacteria. Acanthamoeba feeds on bacteria. At the same time, some bacteria have adapted to survive inside Acanthamoeba and use it as transport or protection to increase survival. When conditions are adverse, Acanthamoeba is capable of differentiating into a protective cyst.
    [Show full text]
  • Data-Mining Approaches Reveal Hidden Families of Proteases in The
    Downloaded from genome.cshlp.org on October 5, 2021 - Published by Cold Spring Harbor Laboratory Press Letter Data-Mining Approaches Reveal Hidden Families of Proteases in the Genome of Malaria Parasite Yimin Wu,1,4 Xiangyun Wang,2 Xia Liu,1 and Yufeng Wang3,5 1Department of Protistology, American Type Culture Collection, Manassas, Virginia 20110, USA; 2EST Informatics, Astrazeneca Pharmaceuticals, Wilmington, Delaware 19810, USA; 3Department of Bioinformatics, American Type Culture Collection, Manassas, Virginia 20110, USA The search for novel antimalarial drug targets is urgent due to the growing resistance of Plasmodium falciparum parasites to available drugs. Proteases are attractive antimalarial targets because of their indispensable roles in parasite infection and development,especially in the processes of host e rythrocyte rupture/invasion and hemoglobin degradation. However,to date,only a small number of protease s have been identified and characterized in Plasmodium species. Using an extensive sequence similarity search,we have identifi ed 92 putative proteases in the P. falciparum genome. A set of putative proteases including calpain,metacaspase,and s ignal peptidase I have been implicated to be central mediators for essential parasitic activity and distantly related to the vertebrate host. Moreover,of the 92,at least 88 have been demonstrate d to code for gene products at the transcriptional levels,based upon the microarray and RT-PCR results,an d the publicly available microarray and proteomics data. The present study represents an initial effort to identify a set of expressed,active,and essential proteases as targets for inhibitor-based drug design. [Supplemental material is available online at www.genome.org.] Malaria remains one of the most dangerous infectious diseases metalloprotease (falcilysin; Eggleson et al.
    [Show full text]