Allosteric Activation of MALT1 by Its Ubiquitin-Binding Ig3 Domain

Total Page:16

File Type:pdf, Size:1020Kb

Allosteric Activation of MALT1 by Its Ubiquitin-Binding Ig3 Domain Allosteric activation of MALT1 by its ubiquitin-binding Ig3 domain Rebekka Schairera,1, Gareth Hallb,c,1, Ming Zhanga,1,2, Richard Cowanb,c, Roberta Baravalleb,c, Frederick W. Muskettb,c, Peter J. Coombsd, Chido Mpamhangad, Lisa R. Haled, Barbara Saxtyd, Justyna Iwaszkiewicze, Chantal Décailleta, Mai Perrouda, Mark D. Carrb,c,3, and Margot Thomea,3 aDepartment of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland; bDepartment of Molecular and Cell Biology, University of Leicester, LE1 7RH Leicester, United Kingdom; cLeicester Institute of Structural and Chemical Biology, University of Leicester, LE1 7RH Leicester, United Kingdom; dLifeArc, Accelerator Building, Open Innovation Campus, SG1 2FX Stevenage, United Kingdom; and eSwiss Institute of Bioinformatics, 1015 Lausanne, Switzerland Edited by Tak W. Mak, University Health Network, Toronto, Canada, and approved December 30, 2019 (received for review July 23, 2019) The catalytic activity of the protease MALT1 is required for Using biochemical approaches, we have previously shown that adaptive immune responses and regulatory T (Treg)-cell develop- MALT1 activation requires its monoubiquitination on K644, a ment, while dysregulated MALT1 activity can lead to lymphoma. lysine residue situated at the surface of the Ig3 domain (15). MALT1 activation requires its monoubiquitination on lysine 644 Moreover, we demonstrated an interaction of ubiquitin with an (K644) within the Ig3 domain, localized adjacent to the protease unknown binding site within the C-terminal half of MALT1, which domain. The molecular requirements for MALT1 monoubiquitina- comprises the protease domain, the Ig3 domain, and a non- tion and the mechanism by which monoubiquitination activates structured C-terminal extension (15). However, the precise loca- MALT1 had remained elusive. Here, we show that the Ig3 domain tion of the ubiquitin-binding site and the way by which ubiquitin interacts directly with ubiquitin and that an intact Ig3-ubiquitin binding contributes to MALT1 activation have remained unknown. interaction surface is required for the conjugation of ubiquitin to Here, we present experimental evidence that suggests that K644. Moreover, by generating constitutively active MALT1 mutants ubiquitin binding to the Ig3 domain is required for MALT1 that overcome the need for monoubiquitination, we reveal an allosteric communication between the ubiquitination site K644, the monoubiquitination, which, in turn, perturbs an inhibitory in- Ig3-protease interaction surface, and the active site of the protease teraction of the Ig3 domain with the protease domain and in- domain. Finally, we show that MALT1 mutants that alter the Ig3- duces conformational changes within the catalytic domain that IMMUNOLOGY AND INFLAMMATION ubiquitin interface impact the biological response of T cells. Thus, lead to enhanced activity. ubiquitin binding by the Ig3 domain promotes MALT1 activation by Results an allosteric mechanism that is essential for its biological function. Monomeric Ubiquitin Binds to the Ig3 Domain of MALT1. We had protease | structure | ubiquitin | signaling | Tcell previously shown that ubiquitin can interact physically with a C- terminal portion of MALT1 that comprises its protease domain, he paracaspase MALT1 is a proteolytic enzyme whose the Ig3 domain, and a nonstructured C-terminal extension (15). Tfunction is essential for adaptive immune responses and the development of particular lymphocyte subsets, such as Treg cells, Significance marginal zone, and B1 B cells (1–6). MALT1 is activated upon triggering of the B- or T cell antigen receptors and other immu- The protease MALT1 has been shown to play an essential role in noreceptors, such as activating natural killer cell (NK) receptors or the adaptive immune response and the development of lym- Fc receptors (7). A variety of G protein coupled receptors and phoma. The catalytic activity of MALT1 is tightly regulated by certain tyrosine receptor kinases have also been reported to signal via monoubiquitination, however, how ubiquitin is conjugated to MALT1 (7). A common feature of MALT1-activating receptors is MALT1 and the manner by which this modification regulates their capacity to induce the formation of so-called CARMA-BCL10- MALT1 activity remains poorly understood. Our data suggest that MALT1 (CBM) complexes, comprising a CARD-containing scaffold the Ig3 domain of MALT1 physically recruits ubiquitin to enable protein, the adaptor protein BCL10, and MALT1 (8). monoubiquitination and that ubiquitin conjugation to MALT1 ac- Based on structural studies on in vitro reconstituted CBM tivates the protease by inducing conformational changes in the Ig3 signalosomes from lymphocytes, which contain the scaffold domain that are communicated to the active site. These findings protein CARMA1 (also known as CARD11), it has been pro- identify the Ig3 domain of MALT1 as a novel ubiquitin-binding posed that the CBM complex adopts a helical filamentous structure domain and provide insight into the molecular requirements for in which CARMA1 nucleates the polymerization of BCL10 into MALT1 activation that could be of therapeutic interest. filaments that can incorporate MALT1 (9, 10). MALT1 contains an N-terminal death domain (DD) that binds to the core of the BCL10 Author contributions: R.S., G.H., M.Z., R.C., R.B., F.W.M., P.J.C., C.M., L.R.H., B.S., M.D.C., and M.T. designed research; R.S., G.H., M.Z., C.D., and M.P. performed research; R.S., G.H., filament by interacting with the BCL10 CARD motif (9). The M.Z., R.C., R.B., F.W.M., P.J.C., C.M., L.R.H., B.S., J.I., M.D.C., and M.T. analyzed data; and MALT1 DD is followed by two Ig-like domains, the protease do- R.S., G.H., M.D.C., and M.T. wrote the paper. main, a third Ig-like domain, and an unstructured C-terminal ex- The authors declare no competing interest. tension (11, 12). The C-terminal part of MALT1 that comprises the This article is a PNAS Direct Submission. protease domain is thought to protrude from the filamentous core Published under the PNAS license. (9), but the exact conformation and activation status of MALT1 1R.S., G.H., and M.Z. contributed equally to this work. within the BCL10/MALT1 fibers remain unknown. The crystallo- 2Present address: Division of Systems Biology and Personalised Medicine, The Walter and graphic analysis of highly purified constructs of MALT1 containing Eliza Hall Institute of Medical Research, 3052 Parkville, Melbourne, VIC, Australia. the protease and the adjacent Ig3 domain has revealed that the 3To whom correspondence may be addressed. Email: [email protected] or Margot. protease domain can dimerize (13, 14). The dimer crystals addi- [email protected]. tionally show that the protease and Ig3 domains physically interact This article contains supporting information online at https://www.pnas.org/lookup/suppl/ and undergo a rotational movement upon binding of a substrate doi:10.1073/pnas.1912681117/-/DCSupplemental. analog (13, 14). www.pnas.org/cgi/doi/10.1073/pnas.1912681117 PNAS Latest Articles | 1of10 Downloaded by guest on September 27, 2021 To identify key ubiquitin residues involved in the binding to MALT1 residues involved in the interaction with ubiquitin, we MALT1, we monitored differences in the 15N/1H HSQC spec- then generated a soluble monomeric MALT1 construct com- trum of uniformly labeled ubiquitin (1–76) induced by the ad- prising the protease and Ig3 domain (residues 339–719) and dition of MALT1 (Fig. 1A). The observed minimal shifts in monitored changes in the 15N/1H TROSY spectrum of uniformly backbone amide signals of ubiquitin upon MALT1 addition labeled MALT1 induced by the addition of ubiquitin. Upon clearly identified a contiguous interaction surface showing sig- addition of increasing concentrations of free ubiquitin, we ob- nificant shifts for 10 residues, including I13, G47, K6, K48, H68, served significant shifts in the backbone amide signals of several Q49, L69, V70, L71, and R72, centered around I44 (Fig. 1A and residues of MALT1, including E624, I625, Y692, L695, E696, SI Appendix, Fig. S1A). These residues are predominantly lo- D697, and T698 (Fig. 1D and SI Appendix, Fig. S1B). These calized to the β3–β5 strands collectively forming a continuous residues are mainly located within the β3/β4 and β6/β7 loops at patch of ∼172 Å2 on the surface of ubiquitin (Fig. 1B). This the surface of the MALT1 Ig3 domain on the side opposing the surface patch comprises several positively charged amino acids, Ig3-protease domain interaction surface (Fig. 1E), which com- including K6, K48, H68, and R72, which together form a striking bine to form a negatively charged area of ∼246 Å2 on the surface positively charged region on ubiquitin (Fig. 1C). To identify the of MALT1 (Fig. 1F). To provide additional evidence for the A D K48 0.06 G47 E696 D697 0.40 Q49 L71 I13 0.20 0.04 V70 K6 L69 R72 0.10 H68 0.02 0.05 0.00 0.00 Chemical Shift Change (ppm) 010203040506070 Chemical Shift Change (ppm) 580 600 620 640 660 680 700 Residue Number Residue Number B C E F K6 K6 Ig3 Domain Protease H68 H68 E696 D697 K48 I44 K48 I44 180° Q49 Q49 R72 R72 0.0 0.1 -+ 0.0 0.2 -+ Chemical Shift Charge Chemical Shift Charge G H MALT1 alone 0.02 MALT1 + 1.6 mM Ubiquitin ] ] ] m m m p p p p p p [ [ [ 1 1 1 F F F 6 . 0 2 K702 1 4 . 5 1 8 1 . 8 4 . 2 0 1 2 1 6 . 5 1 E624 1 0 0 . 5 0.01 1 2 2 1 8 1 . 5 1 Ubiquitin WT 1 Y692 2 . 2 . 0 1 . 5 2 6 2 1 1 1 1 2 . 4 . 6 1 4 1 . 2 1 5 1 2 Ubiquitin K6A 1 4 MALT1 WT . 6 1 6 . 1 1 2 6 . 1 0.00 5 2 1 6 .
Recommended publications
  • The CARMA3-Bcl10-MALT1 Signalosome Drives NF-Κb Activation and Promotes Aggressiveness in Angiotensin II Receptor-Positive Breast Cancer
    Author Manuscript Published OnlineFirst on December 19, 2017; DOI: 10.1158/0008-5472.CAN-17-1089 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Molecular and Cellular Pathobiology .. The CARMA3-Bcl10-MALT1 Signalosome Drives NF-κB Activation and Promotes Aggressiveness in Angiotensin II Receptor-positive Breast Cancer. Prasanna Ekambaram1, Jia-Ying (Lloyd) Lee1, Nathaniel E. Hubel1, Dong Hu1, Saigopalakrishna Yerneni2, Phil G. Campbell2,3, Netanya Pollock1, Linda R. Klei1, Vincent J. Concel1, Phillip C. Delekta4, Arul M. Chinnaiyan4, Scott A. Tomlins4, Daniel R. Rhodes4, Nolan Priedigkeit5,6, Adrian V. Lee5,6, Steffi Oesterreich5,6, Linda M. McAllister-Lucas1,*, and Peter C. Lucas1,* 1Departments of Pathology and Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 2Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 3McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 4Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 5Women’s Cancer Research Center, Magee-Womens Research Institute, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 6Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania Current address for P.C. Delekta: Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, Michigan Current address for D.R. Rhodes: Strata
    [Show full text]
  • The LUBAC Participates in Lysophosphatidic Acid-Induced NF-Κb Activation
    bioRxiv preprint doi: https://doi.org/10.1101/2020.02.13.948125; this version posted February 13, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The LUBAC participates in Lysophosphatidic Acid-induced NF-κB Activation Tiphaine Douanne1, Sarah Chapelier1, Robert Rottapel2, Julie Gavard1,3, Nicolas Bidère1,* 1Université de Nantes, INSERM, CNRS, CRCINA, Team SOAP, F-440000 Nantes, France; 2Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada ; 3Institut de Cancérologie de l’Ouest, Site René Gauducheau, 44800 Saint-Herblain, France *Author for correspondence: [email protected] Abstract The natural bioactive glycerophospholipid lysophosphatidic acid (LPA) binds to its cognate G protein-coupled receptors (GPCRs) on the cell surface to promote the activation of several transcription factors, including NF-κB. LPA-mediated activation of NF-κB relies on the formation of a signalosome that contains the scaffold CARMA3, the adaptor BCL10 and the paracaspase MALT1 (CBM complex). The CBM has been extensively studied in lymphocytes, where it links antigen receptors to NF-κB activation via the recruitment of the linear ubiquitin assembly complex (LUBAC), a tripartite complex of HOIP, HOIL1 and SHARPIN. Moreover, MALT1 cleaves the LUBAC subunit HOIL1 to further enhance NF- κB activation. However, the contribution of the LUBAC downstream of GPCRs has not been investigated. By using murine embryonic fibroblasts from mice deficient for HOIP, HOIL1 and SHARPIN, we report that the LUBAC is crucial for the activation of NF-κB in response to LPA. Further echoing the situation in lymphocytes, LPA unbridles the protease activity of MALT1, which cleaves HOIL1 at the Arginine 165.
    [Show full text]
  • Structural and Functional Diversity of Caspase Homologues in Non-Metazoan Organisms
    Protoplasma DOI 10.1007/s00709-017-1145-5 REVIEW ARTICLE Structural and functional diversity of caspase homologues in non-metazoan organisms Marina Klemenčič1,2 & Christiane Funk1 Received: 1 June 2017 /Accepted: 5 July 2017 # The Author(s) 2017. This article is an open access publication Abstract Caspases, the proteases involved in initiation and supports the role of metacaspases and orthocaspases as im- execution of metazoan programmed cell death, are only pres- portant contributors to cell homeostasis during normal physi- ent in animals, while their structural homologues can be ological conditions or cell differentiation and ageing. found in all domains of life, spanning from simple prokary- otes (orthocaspases) to yeast and plants (metacaspases). All members of this wide protease family contain the p20 do- Keywords Algae . Cyanobacteria . Cell death . Cysteine main, which harbours the catalytic dyad formed by the two protease . Metacaspase . Orthocaspase amino acid residues, histidine and cysteine. Despite the high structural similarity of the p20 domain, metacaspases and orthocaspases were found to exhibit different substrate speci- ficities than caspases. While the former cleave their substrates Introduction after basic amino acid residues, the latter accommodate sub- strates with negative charge. This observation is crucial for BOut of life’s school of war: What does not destroy me, the re-evaluation of non-metazoan caspase homologues being makes me stronger.^ wrote the German philosopher involved in processes of programmed cell death. In this re- Friedrich Nietzsche in his book Twilight of the Idols or view, we analyse the structural diversity of enzymes contain- how to philosophize with a hammer. Even though ing the p20 domain, with focus on the orthocaspases, and reformatted to more common use, this phrase has been summarise recent advances in research of orthocaspases and used to describe the dual nature of caspase homologues metacaspases of cyanobacteria, algae and higher plants.
    [Show full text]
  • PRKCQ / PKC-Theta Antibody (Aa640-690) Rabbit Polyclonal Antibody Catalog # ALS16240
    10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 PRKCQ / PKC-Theta Antibody (aa640-690) Rabbit Polyclonal Antibody Catalog # ALS16240 Specification PRKCQ / PKC-Theta Antibody (aa640-690) - Product Information Application WB, IHC Primary Accession Q04759 Reactivity Human, Mouse, Rat Host Rabbit Clonality Polyclonal Calculated MW 82kDa KDa PRKCQ / PKC-Theta Antibody (aa640-690) - Additional Information Gene ID 5588 Other Names Protein kinase C theta type, 2.7.11.13, Western blot of PKC (N670) pAb in extracts nPKC-theta, PRKCQ, PRKCT from A549 cells. Target/Specificity Human PKC Theta Reconstitution & Storage Store at 4°C short term. Aliquot and store at -20°C long term. Avoid freeze-thaw cycles. Precautions PRKCQ / PKC-Theta Antibody (aa640-690) is for research use only and not for use in diagnostic or therapeutic procedures. Anti-PRKCQ / PKC-Theta antibody IHC staining of human brain, cerebellum. PRKCQ / PKC-Theta Antibody (aa640-690) - Protein Information PRKCQ / PKC-Theta Antibody (aa640-690) - Name PRKCQ Background Synonyms PRKCT Calcium-independent, phospholipid- and diacylglycerol (DAG)-dependent Function serine/threonine-protein kinase that mediates Calcium-independent, phospholipid- and non- redundant functions in T-cell receptor diacylglycerol (DAG)- dependent (TCR) signaling, including T-cells activation, serine/threonine-protein kinase that proliferation, differentiation and survival, by mediates non-redundant functions in T-cell mediating activation of multiple transcription receptor (TCR) signaling, including T-cells factors such as NF-kappa-B, JUN, NFATC1 and activation, proliferation, differentiation and NFATC2. In TCR-CD3/CD28-co-stimulated Page 1/3 10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 survival, by mediating activation of multiple T-cells, is required for the activation of transcription factors such as NF-kappa-B, NF-kappa-B and JUN, which in turn are JUN, NFATC1 and NFATC2.
    [Show full text]
  • Serine Proteases with Altered Sensitivity to Activity-Modulating
    (19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants.
    [Show full text]
  • RSC Chemical Biology
    RSC Chemical Biology View Article Online PAPER View Journal | View Issue Phosphinate esters as novel warheads for activity-based probes targeting serine proteases† Cite this: RSC Chem. Biol., 2021, 2, 1285 Jan Pascal Kahler a and Steven H. L. Verhelst *ab Activity-based protein profiling enables the specific detection of the active fraction of an enzyme and is of particular use for the profiling of proteases. The technique relies on a mechanism-based reaction between Received 21st May 2021, small molecule activity-based probes (ABPs) with the active enzyme. Here we report a set of new ABPs for Accepted 7th July 2021 serine proteases, specifically neutrophil serine proteases. The probes contain a phenylphosphinate warhead DOI: 10.1039/d1cb00117e that mimics the P1 amino acid recognized by the primary recognition pocket of S1 family serine proteases. The warhead is easily synthesized from commercial starting materials and leads to potent probes which can rsc.li/rsc-chembio be used for fluorescent in-gel protease detection and fluorescent microscopy imaging experiments. Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Introduction Serine proteases are the largest group of proteases. They use an active site serine residue for attack on the scissile peptide bond. Activity-based protein profiling (ABPP) is a powerful technique Many serine reactive electrophiles such as isocoumarins,13,14 that allows for profiling of the active fraction of a given enzyme. It benzoxazinones,15 phosphoramidates16 and oxolactams17 have has been particularly useful for the study of proteases, because been used as warhead for serine protease ABPs. Most applied these enzymes are tightly regulated by post-translational however, are a-aminoalkyl diphenyl phosphonates.18,19 Since these processes.1–3 ABPP relies on activity-based probes (ABPs), small phosphonates bind to the serine protease in a substrate-like molecules that react covalently with the active enzyme in a manner, substrate specificity information can directly be used to mechanism-based manner.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • NF-B in Hematological Malignancies
    biomedicines Review NF-κB in Hematological Malignancies Véronique Imbert * and Jean-François Peyron Centre Méditerranéen de Médecine Moléculaire, INSERM U1065, Université Côte d’Azur, 06204 Nice, France; [email protected] * Correspondence: [email protected]; Tel.: +33-489-064-315 Academic Editor: Véronique Baud Received: 28 April 2017; Accepted: 26 May 2017; Published: 31 May 2017 Abstract: NF-κB (Nuclear Factor K-light-chain-enhancer of activated B cells) transcription factors are critical regulators of immunity, stress response, apoptosis, and differentiation. Molecular defects promoting the constitutive activation of canonical and non-canonical NF-κB signaling pathways contribute to many diseases, including cancer, diabetes, chronic inflammation, and autoimmunity. In the present review, we focus our attention on the mechanisms of NF-κB deregulation in hematological malignancies. Key positive regulators of NF-κB signaling can act as oncogenes that are often prone to chromosomal translocation, amplifications, or activating mutations. Negative regulators of NF-κB have tumor suppressor functions, and are frequently inactivated either by genomic deletions or point mutations. NF-κB activation in tumoral cells is also driven by the microenvironment or chronic signaling that does not rely on genetic alterations. Keywords: NF-κB; leukemia; lymphoma 1. Introduction The NF-κB family of transcription factors coordinates inflammatory responses, innate and adaptive immunity, cellular differentiation, proliferation, and survival in all multicellular organisms. The NF-κB system is tightly controlled at various levels, and deregulations of NF-κB homeostasis have been implicated in a wide range of diseases, ranging from inflammatory and immune disorders to cancer [1,2]. In particular, NF-κB is a key link between chronic inflammation and cancer transformation [3].
    [Show full text]
  • Phylogenetic Distribution and Diversity of Bacterial Pseudo-Orthocaspases Underline Their Putative Role in Photosynthesis
    http://www.diva-portal.org This is the published version of a paper published in Frontiers in Plant Science. Citation for the original published paper (version of record): Klemenčič, M., Asplund-Samuelsson, J., Dolinar, M., Funk, C. (2019) Phylogenetic Distribution and Diversity of Bacterial Pseudo-Orthocaspases Underline Their Putative Role in Photosynthesis Frontiers in Plant Science, 10: 293 https://doi.org/10.3389/fpls.2019.00293 Access to the published version may require subscription. N.B. When citing this work, cite the original published paper. Permanent link to this version: http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-157749 fpls-10-00293 March 12, 2019 Time: 19:11 # 1 ORIGINAL RESEARCH published: 14 March 2019 doi: 10.3389/fpls.2019.00293 Phylogenetic Distribution and Diversity of Bacterial Pseudo-Orthocaspases Underline Their Putative Role in Photosynthesis Marina Klemenciˇ cˇ 1,2, Johannes Asplund-Samuelsson3, Marko Dolinar2 and Christiane Funk1* 1 Department of Chemistry, Umeå University, Umeå, Sweden, 2 Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia, 3 Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna, Sweden Orthocaspases are prokaryotic caspase homologs – proteases, which cleave their substrates after positively charged residues using a conserved histidine – cysteine (HC) dyad situated in a catalytic p20 domain. However, in orthocaspases pseudo-variants have been identified, which instead of the catalytic HC residues contain tyrosine and Edited by: serine, respectively. The presence and distribution of these presumably proteolytically Mercedes Diaz-Mendoza, inactive p20-containing enzymes has until now escaped attention.
    [Show full text]
  • The Roles of Malt1 in Nf-Κb Activation and Solid Tumor Progression
    The Texas Medical Center Library DigitalCommons@TMC The University of Texas MD Anderson Cancer Center UTHealth Graduate School of The University of Texas MD Anderson Cancer Biomedical Sciences Dissertations and Theses Center UTHealth Graduate School of (Open Access) Biomedical Sciences 5-2016 THE ROLES OF MALT1 IN NF-κB ACTIVATION AND SOLID TUMOR PROGRESSION Deng Pan Follow this and additional works at: https://digitalcommons.library.tmc.edu/utgsbs_dissertations Part of the Animal Diseases Commons, Animals Commons, Biochemistry Commons, Cancer Biology Commons, Cell Biology Commons, Disease Modeling Commons, Molecular Biology Commons, Molecular Genetics Commons, and the Oncology Commons Recommended Citation Pan, Deng, "THE ROLES OF MALT1 IN NF-κB ACTIVATION AND SOLID TUMOR PROGRESSION" (2016). The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access). 651. https://digitalcommons.library.tmc.edu/utgsbs_dissertations/651 This Dissertation (PhD) is brought to you for free and open access by the The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences at DigitalCommons@TMC. It has been accepted for inclusion in The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access) by an authorized administrator of DigitalCommons@TMC. For more information, please contact [email protected]. THE ROLES OF MALT1 IN NF-κB ACTIVATION AND SOLID TUMOR PROGRESSION by Deng Pan, B.S. APPROVED: ______________________________ Xin Lin, Ph.D. , Advisory Professor ______________________________ Paul Chiao, Ph.D. ______________________________ Dos Sarbassov, Ph.D. ______________________________ M. James You, M.D., Ph.D. ______________________________ Chengming Zhu, Ph.D.
    [Show full text]
  • Anticancer Activity of Lesbicoumestan in Jurkat Cells Via Inhibition of Oxidative Stress-Mediated Apoptosis and MALT1 Protease
    molecules Article Anticancer Activity of Lesbicoumestan in Jurkat Cells via Inhibition of Oxidative Stress-Mediated Apoptosis and MALT1 Protease Joo-Eun Lee 1,† , Fang Bo 2,†, Nguyen Thi Thanh Thuy 2,† , Jaewoo Hong 3 , Ji Shin Lee 4 , Namki Cho 2,* and Hee Min Yoo 5,* 1 Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; [email protected] 2 College of Pharmacy, Chonnam National University, Gwangju 61186, Korea; [email protected] (F.B.); [email protected] (N.T.T.T.) 3 Department of Physiology, Daegu Catholic University School of Medicine, Daegu 42472, Korea; [email protected] 4 Department of Pathology, Chonnam National University Medical School, Gwangju 61469, Korea; [email protected] 5 Biometrology Group, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea * Correspondence: [email protected] (N.C.); [email protected] (H.M.Y.); Tel.: +82-62-530-2925 (N.C.); +82-42-868-5362 (H.M.Y.) † These authors contributed equally to this paper. Abstract: This study explores the potential anticancer effects of lesbicoumestan from Lespedeza bicolor against human leukemia cancer cells. Flow cytometry and fluorescence microscopy were used to investigate antiproliferative effects. The degradation of mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) was evaluated using immunoprecipitation, Western blotting, and confocal microscopy. Apoptosis was investigated using three-dimensional (3D) Jurkat Citation: Lee, J.-E.; Bo, F.; Thuy, cell resistance models. Lesbicoumestan induced potent mitochondrial depolarization on the Jurkat N.T.T.; Hong, J.; Lee, J.S.; Cho, N.; cells via upregulated expression levels of mitochondrial reactive oxygen species.
    [Show full text]
  • Defining the Relevant Combinatorial Space of the PKC/CARD-CC Signal Transduction Nodes
    bioRxiv preprint doi: https://doi.org/10.1101/228767; this version posted May 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Defining the relevant combinatorial space of the PKC/CARD-CC signal transduction nodes Jens Staal1,2,*, Yasmine Driege1,2, Mira Haegman1,2, Styliani Iliaki1,2, Domien Vanneste1,2, Inna Affonina1,2, Harald Braun1,2, Rudi Beyaert1,2 1 Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium, 2 VIB-UGent Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, Ghent, Belgium. * corresponding author: [email protected] Running title: PKC/CARD-CC signaling Abbreviations: Bcl10 = B Cell CLL/Lymphoma 10 CARD = Caspase activation and recruitment domain CC = Coiled-coil domain MALT1 = Mucosa-associated lymphoid tissue lymphoma translocation protein 1 PKC = protein kinase C Keywords: Inflammation, cancer, NF-kappaB, paracaspase Conflict of interests: The authors declare no conflict of interest. bioRxiv preprint doi: https://doi.org/10.1101/228767; this version posted May 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Abstract Biological signal transduction typically display a so-called bow-tie or hour glass topology: Multiple receptors lead to multiple cellular responses but the signals all pass through a narrow waist of central signaling nodes.
    [Show full text]