bioRxiv preprint doi: https://doi.org/10.1101/457648; this version posted October 31, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. N6-methyladenosine mRNA marking promotes selective translation of regulons required for human erythropoiesis Daniel A. Kuppers1, Sonali Arora1, Yiting Lim1, Andrea Lim1,2, Lucas Carter1, Philip Corrin1, Christopher L. Plaisier3, Ryan Basom4, Jeffrey J. Delrow4, Shiyan Wang5, Housheng Hansen He5, Beverly Torok-Storb6, Andrew C. Hsieh1,6,7* and Patrick J. Paddison1* Affiliations: 1Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA 2Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA 3School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85281, USA 4Genomics Shared Resource, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA 5Princess Margaret Cancer Centre/University Health Network, Toronto, Ontario, Canada 6Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA 7School of Medicine, University of Washington, Seattle, WA 98195, USA *Correspondence to:
[email protected] or
[email protected] bioRxiv preprint doi: https://doi.org/10.1101/457648; this version posted October 31, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Abstract Many of the regulatory features governing erythrocyte specification, maturation, and associated disorders remain enigmatic.