<<

Vegetation secondary succession and restoration in the Lafarge quarry (Yepes, Toledo, )

Dr. Santiago Sardinero Dr. Federico Fernández María Lorente Pulgar

Area of Botany, Dep. of Environmental Sciences University of Castilla-La Mancha Study of the vegetation secondary succession

Supervision of the Environmental education restoration tasks program 1. Studing the process of natural recolonization in the quarry along time.

Lafarge limestone quarry in Yepes: long exploitation period, with areas altered along time .

2. Determining both natural-seminatural vegetation in the surroundings of the quarry.

The existence of natural-seminatural habitats in the surroundings of the quarry, can be used as a reference for the restoration tasks. 3. Evaluating the rate of convergence of the natural successional recolonization and the natural-seminatural vegetation.

4. Determining which plant belonging to the natural-seminatural vegetation demand restoration tasks in the areas altered by the extractive activities. The restoration tasks must be focused principally to facilitate the access of the plant species existing in the natural-seminatural area of the quarry.

Nature is to be imitated for restoring the well functioning of the ecosystem, instead of making up a “green” landscape. Visitor Center and environmental education activities at the quarry.

4 POINTS

THE QUARRY: history of the quarry, productive proccess, measures for environmental correction, etc. PLANT SUCCESSION ALONG TIME: Vegetation types. THE SIGN OF THE LANDSCAPE: from which honney is obtained, biological crust, orchids, plant of the month, endemic plants, etc. THE RESTORATION: To make known the restoration activities. Geographical situation, climate and lithology Yepes (Toledo, Spain), 700 m • Climate: mesomediterranean(T=13.9 ºC), semicontinental (Ic = 19.1), semiarid (P = 320 mm) YEPES

The Ocaña mesa (tableland, plateau) Stratigraphic lay-out (IGME 1982) Sandsotones and Sandy Clays and Pliocene Conglomerates Loamy Clays Limestones and Loamy Limestones Pontian Sandstones Loamy Limestones Neógene Vindobonian

Miocene Loams and Gypsum

Red clays with Gypsum Red Sandy Clays Methods Sampling inside the quarry

25 24 • Delimitation of the exploitation front on aerial 23 22 21 photos at different ages. • Selection of five sampling points in each area determined by the alteration age and 18 16 17 19 20 abandonment:

 2003  1998 12 11 13 14  1989 15  1978  <1978 10 9 7 8 6 • Exclusion of the humid depressions, areas with evidences of posterior alteration, or areas which 1 4

2 5 where not submitted to extraction. 3 • Field sampling: july-september of 2003 and may-july of 2007 Methods Sampling in the surrounding of the quarry:

• Three types of natural-seminatural vegetation:

T5 E5 C5 - Thyme fields (T) ( sp. pl.)

T4 E4 - Alfa-grass fields (E) C4 (Stipa tenacissima)

C3 E3 T3 - - fields (C) (Quercus coccifera) T2 C2 E2

E1

T1 C2 • 5 samples for every vegetation type

• Groups of three samples (focused replicas) separated approximately 500 m and scattered along the exterior edge of the quarry.

• Sampling field: July-September of 2003 Vegetation types

1. Asparago acutifolii-Quercetum rotundifoliae: encinares manchegos 2. Daphno gnidii-Quercetum cocciferae: coscojares manchegos 3. Genisto scorpii-Retametum sphaerocarpae: retamares manchegos 4. Arrhenathero erianthi-Stipetum tenacissimae: espartales 5. Lino differentis-Salvietum lavandulifoliae: matorrales (tomillares, salviares, esplegueras) 6. Trachynion distachyae: pastizales anuales Methods

Kermes-oak field

Quercus coccifera

Thyme field

Thymus vulgaris, Th. zygis Methods

Alfa grass field

Stipa tenacissima Methods: data analysis

Data Classification • Sequential, Agglomerative, Hierarchical and Non-overlapping (SAHN methods)

Data Ordination • DCA (Detrended Correspondence Analysis) (CANOCO; ter Braak 1995)

Analysis on the overall species richness and the species richness according to their biological attributes: • Plant form • Biogeographical distribution Results: classification

• Identification of 8 successive vegetation types along time after exploitation

• Predominance of herbaceous plants during the first 15 years after the alteration, with predominance of annual arvenses (WEEDS) in the most recently altered.

• Predominance of short since 20-25 years after the exploitation.

• Convergence between the older communities in the quarry and the most degraded of the exterior.

Plant community: Cruciferae Carduus Centaurea Helichrysum Interior Exterior Alfa Kermes Ruderal & Thistle Thistle Mediterranean Thyme Thyme grass field weeds fields fields scrub field field field Year of perturbation 2003 1998 1989 1978 <1978 ? ? ? Age 0 5 14 25 >25 ? ? ? Results: classification Euclidean Distance + Minimum Variance

6,000 Shrubby Herbaceous 5,500 com. + Alfa communities 5,000 grass

4,500 Fuera de la cantera 4,000 Alfa grass 3,500 comm. Annual Perennial Shrubby short Seminatural 3,000 herb. com. herb. com. com. Thyme com.

Dissimilarity Kermes com. 2,500

2,000

1,500 2003 1998 1989 1978 <1978 1,000

500

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 ld a or or rass fie erae uus ure um Interi xteri aa g mes rucif ard nta hrys me E me Alf Ker C C Ce elic Thy Thy field H field field Results: Ordination

 The temporal tendency in the change of flora (axis 1 of DCA) follows a pattern of convergence towards the natural - seminatural vegetation of the natural environment.

 The successionalsuccessional change of flora is very slow, and only the communities which have been abandoned for longest period of time (internal thyme communities), start to look like the external thyme communities (the most simple of the external communities), after at least 25 years. Results: Ordination Axes 1 y 2 of the DCA for samples

2,5 1998 2003 5 Carduus DCA 2,0 7 Internal 2 6 thymes Alfa grass 1989 Helichrysum 9 22 28 29 32 38 1,5 10 27 3 15 19 16 31 35 40 1 13 23 21 26 37 8 34 14 17 33 36 1220 18 25 39 11 24 1,0 Kermes

Axis 2 Axis 1978 <1978 Cruciferae Centaurea 30

0,5 External thymes

4 0,0

-0,5 -10123456789 Axis 1 Results: sorting Axes 1 y 2 of the DCA for species

6 GypsPilo DCA

5 oly igP Tr tr a ra mM h o lT Br s rut e n tF N ia 4 at D M r m a i o c ri r g r u o i B A c c iR n A S p vi l ic c o e o is ro p b m A L P a i B o e r u ly S D 3 C L a R r X e b o er d lg J aIn r T i b a v a P ap u m a a o n r b p p c a e o x v s H V c e i c i u i h r A c e m i N y r S i t m i e l r m r t G l v n r i p p e i B a D D e s P a C T N a u s i n o n i O v r l n s E L t i e s h F n S d l i r n H a i y l e S h y o i r t a a e H a o P e p r d s s C L e P i i H B t u c iP a n y p v r s h S l t a l C e e i E Si a B EchiVulg g n m T R r t n c C I u i S r i p m c a l T A m l u a e p e

2 CarlHisp o i M E L i V a n e o V t e A PlanSemp CoriMons Ib r n v er r F Ci o O S T S ne

P VeroArve D i H g GypsStru S L a A A ithF s o Tr a i IberCren rut Axis 2 Axis Hi r p rs r l S Inca r y HeliStoe S SalvLa Ole e a T va c i G K t G n l a i e B C o C i P S p A areH R S i C n o T e all PapaRhoe i l u u Q e g a A pCap C P t c h re l e h F r p n C p a L e E V n T s u a l l y a a C i r o t L l e m r n r V u S R G a e F p 1 e e S m H p tS ute r u y C e r a r L t T m h c ila te c A r q a v u c h C A is a F S r n e r p r L n V p V u u R a e R t a o l o l H v r C u u c o a A R T t n i l a m i m c u C r t a o a S u P r c t c o t a T a B a m h a O Heli m c L i l d a C u i r s g s V m h y a t S m y r H b L o c C p t m T n e e a y i e c C e u v C p h a H i r s riL o o M n li m u irt e r c o r e y S s A i C r l V T d L a m c r s q 0 li u g u o C a n s u is A a u r H B c t t L T a T t B m h M a A s B E r i h e p K s ro o o P c P l s B e y u b a l p B m n o a h A l m c l i a a D r J i l o c ip o S y G u S C lV u M S L t ir m q n y n y g o u c l a c G T v C a n p h a e -1 S n liT s is ic r c D y B ic t i Irio e pl n Er e uc -2 -1 0 1 2 3 4 5 6 7 8 910 Axis 1 Results: Species Richness/ Biogeographical distribution

 The species most widely distributed ( SCosm ,, PaleoT , MedEurMedEur , Tet )) areare predominating in the those areas which have been more recently exploited (1 -1515 years).years).  The plants of western Mediterranean distribution ( WMed , WMedWEurWMedWEur ) increaseincrease theirtheir frequencyfrequency alongalong thethe secondarysecondary successuccession.  The endemic plants ofof thethe IberianIberian peninsulapeninsula (( Iber ) are most frequent at the middle of the succession ages. They are herbs and woody plan ts insideinside ofof thethe quarry.quarry.  Two protected endemic plants ( toletanum and Gypsophila bermejoi ) are most frequent at intermediate ages (15 --25 years) after exploitation.  Gypsum flora ( prioritary inin HabitatHabitat UEUE Directive)Directive) isis mostmost frequentfrequent alsoalso at intermediate agesages (15(15 -2525 years)years) . Results: Species richness / biogeographic distribution

Frequency of species according to the biogeographical distribution

300 ea Scosm Fig 00 ur ta PaleoT en 250 C MedWEur s s MedEur u e u Tet d m r y a m h TetEur C u T e s Iber 200 a y l r r a fe h n Med i c r c li e t IbNAfr ru e In C H W Med 150 W MedWEur External Thymes External Alfa grass grass Alfa

Frequency es rm 100 Ke

50

0 1 2 3 4 5 6 7 8 Vegetation types Results: especies not recolonizing the perturbed areas  Important speciesspecies in thethe natural --seminatural vegetation of the external border which do not colonizecolonize the oldestoldest altered areas are:are:  The talltall shrubs of kermes fields : Quercus coccifera , lycioides , R.R. alaternus , Jasminum fruticans , Daphne gnidium , nebrodensisnebrodensis , E. fragilis ,, acutifolius . They are dispersed byby animals , andand they havehave the most demandingdemanding germination requirementsrequirements ..  Some speciesspecies of externalexternal thyme fields : Salvia lavandulifolia ,, Genista scorpiusscorpius , Lithodora fruticosafruticosa , BupleurumBupleurum fruticescens , etc., speciespecies somewhat bigger than those predominating in the internalinternal thymethyme fields ..  The colonizationcolonization of the alfa grassgrass (Stipa tenacissimatenacissima ) startsstarts but seems toto progress very slowlyslowly .