Biorestoration Management Plan Appendix 10 – Description of Trees

Total Page:16

File Type:pdf, Size:1020Kb

Biorestoration Management Plan Appendix 10 – Description of Trees Biorestoration Management Plan Appendix 10 – Description of Trees for Biorestoration TAP AG CAL00-PMT-601-Y-TTM-0002 Rev. No.: 3 Doc. no.: Biorestoration Management Plan Doc. Title: Appendix 10 – Description of Trees for Page: 1 of 7 Biorestoration Appendix 10 – Description of Trees for Biorestoration Contents 1. Description of tree species used for Reforestation ....................................................................... 2 1.2 Black alder (Alnus glutlnosa) ........................................................................................................ 2 1.3 Austrian oak (Quercus cerris) ....................................................................................................... 2 1.4 Black Poplar (Populus nigra) ........................................................................................................ 2 1.5 Bladder-senna (Colutea arborescens) .......................................................................................... 2 1.6 Bladder-senna (Colutea arborescens) .......................................................................................... 2 1.7 Corneilian cherry (Comus mas) .................................................................................................... 2 1.8 Hawthorn (Crataegus monogyna) ................................................................................................. 3 1.9 Italina cypress (Cupressus sempervirens).................................................................................... 3 1.10 Downy oak (Quercus pubescens) ................................................................................................. 3 1.11 European smoketree (Cotinus coggygria) .................................................................................... 3 1.12 Beech (Fagus sylvatica)................................................................................................................ 3 1.13 Narrow-leafed ash (Fraxinous angustfolla) ................................................................................... 3 1.14 Hungarian oak (Quercus conferta or Q. frainetto) ........................................................................ 4 1.15 Judas tree (Cercis Siliquastrum) ................................................................................................... 4 1.16 Cade juniper (Juniperus oxycedrus) ............................................................................................. 4 1.17 Kermes oak (Quercus coccifera) .................................................................................................. 4 1.18 Narrow-leafed Elm (Ulmus campestris) ........................................................................................ 4 1.19 Norway maple (Acer platanoides) ................................................................................................. 4 1.20 Pedunculate Oak (Quercus Pendunculata) .................................................................................. 5 1.21 Black pine (Pinus nigra) ................................................................................................................ 5 1.22 Oriental plane (Platanus Orientalis) .............................................................................................. 5 1.23 Almond-leafed pear (Pyrus amygdaliformis)................................................................................. 5 1.24 Evergreen oak (Quercus Ilex) ....................................................................................................... 5 1.25 White willow (Salix alba) ............................................................................................................... 5 1.26 Scarlet firethorn (Pyracantha coccinea) ........................................................................................ 5 1.27 Whitebeam (Sorbus spp) .............................................................................................................. 6 1.28 Spanish broom (Spartium junceum) ............................................................................................. 6 1.29 Spiny broom (Calycotome villosa) ................................................................................................ 6 1.30 Strawberry tree (Arbutus unedo) .................................................................................................. 6 1.31 Terebinth (Pistacia terebinthus) .................................................................................................... 6 1.32 Turkish pine (Pinus brutia) ............................................................................................................ 6 1.33 Elm Tree (Ulmus sp) ..................................................................................................................... 6 1.34 Valonia oak (Quercus macrolepis) ................................................................................................ 6 1.35 White poplar (Populus alba) ......................................................................................................... 7 1.36 Yellow Kidney Vetch (Anthyllis hermaniae) .................................................................................. 7 TAP AG CAL00-PMT-601-Y-TTM-0002 Rev. No.: 3 Doc. no.: Biorestoration Management Plan Doc. Title: Appendix 10 – Description of Trees for Page: 2 of 7 Biorestoration 1. DESCRIPTION OF TREE SPECIES USED FOR REFORESTATION The following tree species have been selected for reforestation of the TAP RoW. Locations of species planting are identified in subsequent site specific sections. 1.2 Black alder (Alnus glutlnosa) Characteristic deciduous, humid tree with a height of 20-30 m. The bloom takes place February-March and the maturing of the seeds in October. It grows in deep and liquid, clay-sandy soils, often almost in the water, in streams or rivers, usually in the Mediterranean vegetation zone, at altitudes of 0-1500 m. It is a photophilic species, grows quickly at an early age, fixes the banks very effectively and is very resistant to pruning and flooding. It mainly occurs in North and Central Greece but extends to the Northwest Peloponnese, and to some of the larger islands. It spreads in most parts of Europe, North Africa, Anatolia and the Caucasus. Species resistant to atmospheric pollution, capable of capturing atmospheric nitrogen with rootstocks. 1.3 Austrian oak (Quercus cerris) Tree of 25-30 m height, with broad, conical crown. The trunk diameter reaches 2 meters. The bark is dark colored at the beginning, but later is ash-colored. The dry bark is characterized by elongated slits, deep and red inside, and very narrow horizontal. The plant is monoecious, and the flowering period is between April and May. The fruit consists of a cup-shaped nut (acorn) stalked up to 2.5cm. It matures in October - November of the 2nd year from flowering. The species is moderately photophilous and resistant to cold. It needs deep, fertile, wet, loose soil for optimum growth but can also tolerate moderate soils. It is a species with distribution in the zone of deciduous broadleaved in pure or mixed stands with broadleaves (mainly beech), fir and black pine forest, almost throughout the country. 1.4 Black Poplar (Populus nigra) Deciduous tree, dioecious, rapid growth, reaching 20-30 meters high with pyramidal crown. Leaves light green. Resistant to atmospheric pollution. It thrives in almost all soils, with the liquid and deep preference. It is in bloom in April, and the seeds mature in June. The species is biphobic, and prefers the wet soil. 1.5 Bladder-senna (Colutea arborescens) Dense shrub up to 6m high, with downy young twigs. It is a shrub of the zone of evergreen broadleaved and the warmest area of deciduous broadleaved. It is a hermetic species and occurs in roadsides, river banks and forest clearances. The flowers are usually yellow with brownish spots grouped 3-8 in trusses and bloom between May and August. 1.6 Bladder-senna (Colutea arborescens) It is a bush that reaches up to 3 m. It has a rounded shape with many branches and is deciduous. The leaves are light green and consist of many pairs of slightly hairy oval leaves, each about 3 cm long. The flower is a yellowish inflorescence and looks like a pea of about 3 cm in length. The fruit is an inflated bladder that dries on paper texture. It is 2 to 3 cm long and contains many seeds. It spreads in the Mediterranean areas, in shingles all over the Territory. 1.7 Corneilian cherry (Comus mas) It is a deciduous shrub or a small tree of 3 - 8 m height that is found in forests and shrubs all over Greece, preferably in light limestone soils. It has a spherical bark with ash-yellow and twigs of hard, heavy gray-green and rosary on the sunny sides. Leaf buds are opposed to pseudo-vertebrae, divergent, hairy with two scales, while flowering are larger pedicles with more scales. It blooms in winter (January - February) while its flowers remain for about 2 months. The fruits mature at the end of August early September whenever they get a bright red glossy color. Shrub with yellow leaves that turn red in autumn. It has white flowers in May and white fruit in the autumn. Cultivated in neutral, humus soils with moderate water requirements. It spreads everywhere in forests. TAP AG CAL00-PMT-601-Y-TTM-0002 Rev. No.: 3 Doc. no.: Biorestoration Management Plan Doc. Title: Appendix 10 – Description of Trees for Page: 3 of 7 Biorestoration 1.8 Hawthorn (Crataegus monogyna) It is a shrub-tree with a height of 5 to 15 meters, common mainly in the northern hemisphere.
Recommended publications
  • Review Article Five Pistacia Species (P. Vera, P. Atlantica, P. Terebinthus, P
    Hindawi Publishing Corporation The Scientific World Journal Volume 2013, Article ID 219815, 33 pages http://dx.doi.org/10.1155/2013/219815 Review Article Five Pistacia species (P. vera, P. atlantica, P. terebinthus, P. khinjuk,andP. lentiscus): A Review of Their Traditional Uses, Phytochemistry, and Pharmacology Mahbubeh Bozorgi,1 Zahra Memariani,1 Masumeh Mobli,1 Mohammad Hossein Salehi Surmaghi,1,2 Mohammad Reza Shams-Ardekani,1,2 and Roja Rahimi1 1 Department of Traditional Pharmacy, Faculty of Traditional Medicine, Tehran University of Medical Sciences, Tehran 1417653761, Iran 2 Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran Correspondence should be addressed to Roja Rahimi; [email protected] Received 1 August 2013; Accepted 21 August 2013 Academic Editors: U. Feller and T. Hatano Copyright © 2013 Mahbubeh Bozorgi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Pistacia, a genus of flowering plants from the family Anacardiaceae, contains about twenty species, among them five are more popular including P. vera, P. atlantica, P. terebinthus, P. khinjuk, and P. l e nti s c u s . Different parts of these species have been used in traditional medicine for various purposes like tonic, aphrodisiac, antiseptic, antihypertensive and management of dental, gastrointestinal, liver, urinary tract, and respiratory tract disorders. Scientific findings also revealed the wide pharmacological activities from various parts of these species, such as antioxidant, antimicrobial, antiviral, anticholinesterase, anti-inflammatory, antinociceptive, antidiabetic, antitumor, antihyperlipidemic, antiatherosclerotic, and hepatoprotective activities and also their beneficial effects in gastrointestinal disorders.
    [Show full text]
  • Notes Oak News
    THE NEWSLETTER OF THE INTERNATIONAL OAK SOCIETY&, VOLUME 16, NO. 1, WINTER 2012 Greek OakOak Open Days: News September 26 - October Notes 2, 2011 From the 21st century CE to the 2nd century—BCE! The next morning early we met our large tour bus and its charming and skillful driver, Grigoris, who hails from the mountain village of Gardiki not far from here. We did a bit of leisurely botanizing before we reached Perdika, our first destination of the day. There are two reasons to visit Perdika: one is the Karavostasi beach, a curving strand with golden sand, and the archaeological site of Dymokastron, a Hellenis- tic mountain-top town reached by a steep hike. The view of the beach far below was beautiful, as it must have been when the town was still inhabited. The town was destroyed in 167 BCE by a Roman army, along with most of the other towns in the vicinity, all allied with Rome’s enemy, Macedonia. The site is under active excavation, and we were able to admire the remnants of protective walls (how in the world did they get those big stones up there?), building foundations, and cisterns, which were certainly needed in case of a prolonged siege, Some members of the IOS Greek tour relaxing under the plane tree in the which Dymocastron must have experienced more than once. village square. Vitsa, Epirus, Greece. (Photo: Gert Dessoy) The site also has many living trees, including wild pears (Py- rus spinosa Vill., also known as P. amygdaliformis Vill.) and uring this early autumn week of incomparable weather, figs (Ficus carica L.) which appear to be descendants of wild Dtwelve members of the IOS, and three others who were native trees selected by the original inhabitants, as well as guests, enjoyed a truly memorable time in northern Greece.
    [Show full text]
  • Eco-Pastoral Diagnosis in the Karaburun Peninsula 15 to 22 May 2016 Conclusions and Strategic Issues for Natural Protected Areas
    ECO-PASTORAL DIAGNOSIS IN THE KARABURUN PENINSULA 15 TO 22 MAY 2016 CONCLUSIONS AND STRATEGIC ISSUES FOR NATURAL PROTECTED AREAS Claire Bernard*, Alice Garnier*, Chloé Lerin**, François Lerin*, Julien Marie*** (*Ciheam Montpellier, **Benevolent intern, ***Parc National des Cévennes) Ciheam Montpellier, July 2016 BiodivBalkans Project (2012-2016): In partnership for the Ecological and Pastoral Funded by : Implemented by : Diagnosis Method with: Pastoralism & Biodiversity Management in Protected Areas Strategic proposals from an Eco-Pastoral Diagnosis in the Karaburun Peninsula, Vlorë County May 2016 Executive summary Claire Bernard, Alice Garnier, Chloé Lerin, François Lerin, Julien Marie This short report is produced within the frame of the BiodivBalkans project (2012-2016). This project is dedicated to foster rural development in mountainous regions through the construction of Signs of quality and origin (SIQO). One of its main outputs was to shed the light on the pastoral and localized livestock systems in Albania and in Balkans’ surrounding countries, as a central issue for biodiversity conservation through the maintenance of High Nature Value farming systems. They are an important component of European agriculture not only for the conservation of biodiversity, but also for cultural heritage, quality products, and rural employment. The core experience of this project was (and still is) the creation of a Protected Geographical Indication on the “Hasi goat kid meat” based on stakeholders collective action and knowledge brokering. During that learning process and to effectively enforce the relation between rural development and biodiversity conservation, we used an original Ecological and Pastoral diagnosis method, imported from an EU Life+ program (Mil’Ouv, 2013-2017). This method seeks to improve pastoral resources management in a way that is both environmentally sustainable and efficient from an economic perspective.
    [Show full text]
  • Oak Open Days in Czech Republic Celebrate IOS 25Th Anniversary by Shaun Haddock
    Oak News & Notes The Newsletter of the International Oak Society, Volume 21, No. 2, 2017 Twenty-six participants from ten countries plus local hosts at Plaček Quercetum © Guy Sternberg Oak Open Days in Czech Republic Celebrate IOS 25th Anniversary by Shaun Haddock wenty-six participants from ten countries arrived our first “official” visit of the event in the Park itself. T to take part in the European celebration of the From the entrance, a modest garden leads into Průho- IOS’s 25th birthday at Dušan Plaček’s Quercetum nice Castle. After passing through an arch, we found near Podĕbrady in the Czech Republic. The main ourselves on a terrace overlooking a steep-sided val- event ran from early afternoon on July 21st to the af- ley with a lake, beside which was a tree of enormous ternoon of the 23rd, but some members arrived as ear- significance for Dušan and thus for oak collecting in ly as the 19th, and by the evening of the 20th there the Czech Republic. Our mentor for the entire event, was a quorum sufficient to dine together in the event Ondřej Fous, described how this Quercus imbricaria hotel, Hotel Golfi, where we lodged. After our night’s showed Dušan that oaks have great diversity of leaf stay we departed by bus the next morning to view the shape, and that a collection of oaks would be much gardens within the grounds of Prague Castle, which more rewarding in terms of interest and variety than offer superb and enticing views over the city. The Fagus, Dušan’s original preference.
    [Show full text]
  • The Scale Insects (Hemiptera: Coccoidea) of Oak Trees (Fagaceae: Quercus Spp.) in Israel
    ISRAEL JOURNAL OF ENTOMOLOGY, Vol. 43, 2013, pp. 95-124 The scale insects (Hemiptera: Coccoidea) of oak trees (Fagaceae: Quercus spp.) in Israel MALKIE SPODEK1,2, YAIR BEN-DOV1 AND ZVI MENDEL1 1Department of Entomology, Volcani Center, Agricultural Research Organization, POB 6, Bet Dagan 50250, Israel 2Department of Entomology, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, POB 12, Rehovot 76100, Israel Email: [email protected] ABSTRACT Scale insects (Hemiptera: Coccoidea) of four species of oaks (Fagaceae: Quercus) in Israel namely, Q. boissieri, Q. calliprinos, Q. ithaburensis, and Q. look were collected and identified from natural forest stands during the period 2010-2013. A total of twenty-seven species were determined from nine scale insect families: Asterolecaniidae (3 species), Coccidae (3), Di- aspididae (7), Eriococcidae (3), Kermesidae (6), Kuwaniidae (1), Mono- phlebidae (1), Pseudococcidae (2), and Putoidae (1). Six of these species represent new records for Israel and five are identified to the genus level. Kuwaniidae is a new family record for Israel. Species that were previously collected or recorded on oaks in Israel are listed and discussed. Information is given about host trees and global distribution. The majority of the spe- cies reported here are monophagous or stenophagous and they appear to be non-pestiferous to the oak trees in Israel. General traits that describe each scale insect family in the field are provided, together with an identification key to aid in the determination of slide-mounted specimens into families represented in this study. KEY WORDS: Scale insect, Coccoidea, oak trees, Quercus, forest, survey, monophagous, univoltine, Mediterranean, Israel INTRODUCTION The genus Quercus (Fagaceae) has a rich and diverse arthropod fauna associated with it (Southwood, 1961; Southwood et al., 2005).
    [Show full text]
  • The Ancient Near East Today
    Five Articles about Drugs, Medicine, & Alcohol from The Ancient Near East Today A PUBLICATION OF FRIENDS OF ASOR TABLE OF CONTENTS “An Affair of Herbal Medicine? The ‘Special’ Kitchen in the Royal Palace of 1 Ebla” By Agnese Vacca, Luca Peyronel, and Claudia Wachter-Sarkady “Potent Potables of the Past: Beer and Brewing in Mesopotamia” By Tate 2 Paulette and Michael Fisher “Joy Plants and the Earliest Toasts in the Ancient Near East” By Elisa Guerra 3 Doce “Psychedelics and the Ancient Near East” By Diana L. Stein 4 “A Toast to Our Fermented Past: Case Studies in the Experimental 5 Archaeology of Alcoholic Beverages” By Kevin M. Cullen Chapter One An Affair of Herbal Medicine? The ‘Special’ Kitchen in the Royal Palace of Ebla An Affair of Herbal Medicine? The ‘Special’ Kitchen in the Royal Palace of Ebla By Agnese Vacca, Luca Peyronel, and Claudia Wachter-Sarkady In antiquity, like today, humans needed a wide range of medicines, but until recently there has been little direct archaeological evidence for producing medicines. That evidence, however, also suggests that Near Eastern palaces may have been in the pharmaceutical business. Most of the medical treatments documented in Ancient Near Eastern cuneiform texts dating to the 3rd-1st millennium BCE consisted of herbal remedies, but correlating ancient names with plant species remains very difficult. Medical texts describe ingredients and recipes to treat specific symptoms and to produce desired effects, such as emetics, purgatives, and expectorants. Plants were cooked, dried or crushed and mixed with carriers such as water, wine, beer, honey or milk —also to make them tastier.
    [Show full text]
  • Eficiência De Extrato Tânico E/Ou Ácido Bórico Na
    EFICIÊNCIA DE EXTRATO TÂNICO COMBINADO OU NÃO COM ÁCIDO BÓRICO NA PROTEÇÃO DA MADEIRA DE Ceiba pentandra CONTRA CUPIM XILÓFAGO Leandro Calegari1, Pedro Jorge Goes Lopes2, Gregório Mateus Santana3, Diego Martins Stangerlin4, Elisabeth de Oliveira5, Darci Alberto Gatto6 1Eng. Florestal, Dr., CSTR, UFCG, Patos, PB, Brasil - [email protected] 2Acadêmico de Eng. Florestal, CSTR, UFCG, Patos, PB, Brasil - [email protected] 3Eng. Florestal, Mestrando em Ciência e Tecnologia da Madeira, UFLA, Lavras, MG, Brasil - [email protected] 4Eng. Florestal, Dr., ICAA, UFMT, Sinop, MT, Brasil - [email protected] 5Enga. Florestal, Dra., CSTR, UFCG, Patos, PB, Brasil - [email protected] 6Eng. Florestal, Dr., Centro das Engenharias, UFPel, Pelotas, RS, Brasil - [email protected] Recebido para publicação: 04/09/2012 – Aceito para publicação: 08/11/2013 Resumo Dentre os métodos que vêm sendo testados para minimizar a lixiviação de compostos de boro na madeira, destaca-se sua combinação com taninos vegetais. Aos taninos vegetais é atribuída a durabilidade natural da madeira de algumas espécies, indicando sua potencialidade como preservativo natural. Neste estudo, avaliou-se o rendimento de taninos condensados provenientes da casca de Mimosa tenuiflora em extração realizada com água destilada, comparando-o ao da extração envolvendo a inclusão de sulfito de sódio, assim como a eficiência de extratos tânicos sulfitados, combinados ou não com ácido bórico, na melhoria da resistência da madeira de Ceiba pentandra ao térmita xilófago Nasutitermes corniger, por meio de ensaio de preferência alimentar. Extrato tânico obtido com a inclusão de sulfito de sódio à água teve melhor rendimento em taninos condensados. De maneira geral, a impregnação da madeira com o extrato tânico sulfitado proporcionou o mesmo comportamento quando comparada à aplicação do ácido bórico, sendo os melhores resultados verificados quando ambos foram utilizados conjuntamente.
    [Show full text]
  • Oak Woodlands Disease Management Within the Nature Reserve of Orange County and Adjacent Wildlands
    RESOURCE MANUAL Oak Woodlands Disease Management within the Nature Reserve of Orange County and Adjacent Wildlands First Edition 2014 Shannon C. Lynch and Akif Eskalen Introduction Purpose . .2 Monitoring for Disease and Overall Health of Oak Woodlands Comprehensive Monitoring Studies . 3 Early Detection and Rapid Response . 3 General Recommendations on Monitoring (at the level of the land steward) . Overview on Fungal Diseases What is Oak Decline? . 4 What is a Pest? . 4 What is a Disease Cycle? . .5 Identification, Assessment and Sampling of Diseased Trees Identifying Diseased Trees . 6 Assessing Diseased Trees . 6. How Decisions are Made Concerning Diseased Trees . 7 Who to Contact . 7 Best Management Practices Sanitation Practices . .10 Equipment Disinfecting . 10 Pruning and Remedial Surgery of Infected Material . 12 Tree Removal . 16. Pruned and Cut Plant Debris . .17 Use of Seedlings for Restoration Projects . 17 Education and Outreach . 18. Diseases Canker Pathogens Biscogniauxia mediterranea . 19 Botryosphaeria canker . 21 Diplodia agrifolia . .25 Diplodia corticola . 27 Dothiorella iberica . .29 Neoscytalidium dimidiatum . 30. Cryptosporiopsis querciphila . 31. Diatrypella verrucaeformis . .32 Discula quercina . 34. Fusarium solani . .36 Geosmithia pallida (foamy bark canker) . 38 Phaeoacremonium mortoniae . 39 Rots White Rots . .40 Other White Rot Saprotrophs . 42 Brown Rots (Laetiporus gilbertsonii) . 44 Other Diseases Phytophthroa Root Rot . 45 Powdery Mildews . 47 Important Diseases in California Fusarium Dieback/Polyphagous Shot Hole Borer (Fusarium euwallaceae) . 49. Sudden Oak Death (Phytophthora ramorum) . .54 Insect References . 57 Acknowledgements . 58 Produced in-part by Kelley Blue Book . KBB .com Edited by Gail Miller Cover Photo: Akif Eskalen Nature Reserve of Orange County and Adjacent Wildlands 1 ©2014 Stephanie Pui-Mun Law.
    [Show full text]
  • Assessment Report on Pistacia Lentiscus L., Resina (Mastic) Final
    2 February 2016 EMA/HMPC/46756/2015 Committee on Herbal Medicinal Products (HMPC) Assessment report on Pistacia lentiscus L., resina (mastic) Final Based on Article 16d(1), Article 16f and Article 16h of Directive 2001/83/EC (traditional use) Herbal substance(s) (binomial scientific name of Pistacia lentiscus L., resina (mastic) the plant, including plant part) Herbal preparation(s) Powdered herbal substance Pharmaceutical form(s) Powdered herbal substance in solid dosage form for oral use Powdered herbal substance in semi-solid dosage form for cutaneous use Rapporteur(s) I Chinou Peer-reviewer M Delbò Official address Domenico Scarlattilaan 6 ● 1083 HS Amsterdam ● The Netherlands Address for visits and deliveries Refer to www.ema.europa.eu/how-to-find-us Send us a question Go to www.ema.europa.eu/contact Telephone +31 (0)88 781 6000 An agency of the European Union © European Medicines Agency, 2020. Reproduction is authorised provided the source is acknowledged. Table of contents Table of contents ................................................................................................................... 2 ABBREVIATIONS .................................................................................................................... 4 1. Introduction ....................................................................................................................... 6 1.1. Description of the herbal substance(s), herbal preparation(s) or combinations thereof . 6 1.2. Search and assessment methodology .................................................................
    [Show full text]
  • Zonat E Mbrojtura Detare E Bregdetare Në Shqipëri Marine and Coastal 1 Protected Areas in Albania
    Zonat e mbrojtura detare e bregdetare në Shqipëri 3 Marine and Coastal UNDP ALBANIA Protected Areas Rruga “Skënderbej”, Ndërtesa Gurten, Kati II, Tiranë in Albania www.al.undp.org UNDP Albania @UNDPAlbania ZONAT E MBROJTURA DETARE E BREGDETARE NË SHQIPËRI MARINE AND COASTAL 1 PROTECTED AREAS IN ALBANIA Tiranë, 2015 Empowered lives. Resilient nations. This publication is produced by UNDP in the framework of the project ‘Improving coverage and mangement effectiveness of marine protected ar- eas in Albania’ implemented in partnership with the Ministry of Environment © 2015 AKZM/UNDP Të gjitha të drejtat të rezervuara / All rights reserved Grupi i punës / Working group: Zamir Dedej Genti Kromidha Nihat Dragoti 2 Fotot / Photos: Genti Kromidha, Ilirjan Qirjazi, Claudia Amico Hartat / Maps: Genti Kromidha, Nihat Dragoti Shtypur në / Printed by: Tipografia DOLLONJA Përmbajtja / Content 1. Peizazhi i Mbrojtur Lumi Buna - Velipojë Buna River Velipoje Protected Landscape 2. Rezerva Natyrore e Menaxhuar Kune-Vain Tale Kune Vain Tale Managed Nature Reserve 3. Rezerva Natyrore e Menaxhuar Patok Fushëkuqe Patok Fushekuqe Managed Nature Reserve 4. Rezerva Natyrore e Menaxhuar Rrushkull Rrushkull Managed Nature Reserve 5. Parku Kombetar Divjakë - Karavasta Divjaka Karavasta National Park 6. Rezerva Natyrore e Menaxhuar Pishë Poro Pishe Poro Managed Nature Reserve 7. Peizazhi i Mbrojtur Vjosë - Nartë Vjosa Narta Protected Landscape 8. Rezerva Natyrore e Menaxhuar Karaburun Karaburun Managed Nature Reserve 3 9. Parku Kombëtar Detar Karaburun Sazan Karaburun
    [Show full text]
  • Nutritional, Chemical and Cooking Properties of Noodles Enriched With
    a ISSN 0101-2061 (Print) Food Science and Technology ISSN 1678-457X (Online) DOI: https://doi.org/10.1590/fst.47120 Nutritional, chemical and cooking properties of noodles enriched with terebinth (Pistacia Terebinthus) fruits roasted at different temperatures Mehmet KÖTEN1* , Ahmet Sabri ÜNSAL2 Abstract This study aims to investigate the possible usages of terebinth as a functional additive in noodle formulation. For this purpose, raw terebinth and roasted terebinth in different temperatures (100 °C, 125 °C, 150 °C, 175 °C and 200 °C) were added to the formulation at rates of 0%, 10%, 20% and 30% to produce noodles. According to the results of this study, the use of terebinth in the noodle formulation decreased the amount of phytic acid in the noodles while it significantly increased the amount of ash, protein, fat, total dietary fiber, total phenolic content and antioxidant (p < 0.05). In the sensory analysis, the highest score in the context of general acceptances was obtained from the sample B1 which 10% terebinth roasted at 100 °C while the lowest score belonged to the sample F3 which 30% terebinth roasted at 200 °C was added. Keywords: noodles; noodle quality; terebinth (Pistacia terebinthus); functional food. Practical Application: Terebinth is recently reported to be a plant rich in antioxidant, phenolic, and tocopherol content. In this study, unroasted terebinth and roasted terebinth in different temperatures were added to the formulation at different rates to produce noodles, and terebinth’s effects on nutritional, chemical and cooking properties of noodle were evaluated. It has been concluded that the use of terebinth in noodle formulation increases especially nutritional properties (total dietary fiber, total phenolic content and antioxidant activity) and that terebinth can be a suitable component in noodle enrichment.
    [Show full text]
  • (Plumbaginaceae), a New Agamospecies from Southern Spain
    Ann. Bot. Fennici 42: 371–377 ISSN 0003-3847 Helsinki 28 October 2005 © Finnish Zoological and Botanical Publishing Board 2005 Limonium silvestrei (Plumbaginaceae), a new agamospecies from southern Spain Abelardo Aparicio Departamento de Biología Vegetal y Ecología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain (e-mail: [email protected]) Received 2 Dec. 2004, revised version received 7 Mar. 2005, accepted 29 Mar. 2005 Aparicio, A. 2005: Limonium silvestrei (Plumbaginaceae), a new agamospecies from southern Spain. — Ann. Bot. Fennici 42: 371–377. Limonium silvestrei Aparicio (Plumbaginaceae) is described and illustrated from the only known population located within an agricultural landscape in southern Spain. Based in the single A pollen/Cob stigma combination, male sterility, jumbled 3x karyotype and high seed set and germination, L. silvestrei should be regarded as a new agamospecies in Limonium. The number of long metacentric chromosomes observed in the karyotype of this species is in conflict with Erben’s theory about the evolution in the genus. The discovery and characterisation of this species stresses the relevance of forest fragments of natural vegetation in agricultural landscapes as biodiversity reservoirs. Key words: agamospermy, forest fragmentation, hybridization, polyploidy Introduction are geographically distributed in the western Mediterranean (3x), eastern Mediterranean (5x, The genus Limonium has a world-wide distri- 6x) and on the Atlantic coasts (4x) (Erben 1979, bution on coasts and inland, occupying salt or Artelari & Kamari 1986, Cowan et al. 1998). gypseous steppes and other arid environments. A huge taxonomic complexity is also inherent It comprises 400 species, out of which 107 spe- in the genus, which Erben (1979) explained by cies (87 endemic) and 137 hybrids are located in means of an evolutionary model based upon the Iberian Peninsula (Erben 1993).
    [Show full text]