Statistics for Sdo2.Oma.Be (2020) - Main

Total Page:16

File Type:pdf, Size:1020Kb

Statistics for Sdo2.Oma.Be (2020) - Main Statistics for sdo2.oma.be (2020) - main Statistics for: sdo2.oma.be Last Update: 01 Jan 2021 - 00:00 Reported period: Year 2020 When: Monthly history Days of month Days of week Hours Who: Countries Full list Hosts Full list Last visit Unresolved IP Address Robots/Spiders visitors Full list Last visit Navigation: Visits duration File type Downloads Full list Viewed Full list Entry Exit Operating Systems Versions Unknown Browsers Versions Unknown Referrers: Origin Referring search engines Referring sites Search Search Keyphrases Search Keywords Others: Miscellaneous HTTP Status codes Pages not found Summary Reported period Year 2020 First visit 01 Jan 2020 - 00:46 Last visit 31 Dec 2020 - 23:48 Unique visitors Number of visits Pages Hits Bandwidth <= 7,930 11,893 263,683 749,762 5568.50 GB Viewed traffic * Exact value not available in (1.49 visits/visitor) (22.17 Pages/Visit) (63.04 Hits/Visit) (490960.94 KB/Visit) 'Year' view Not viewed traffic * 412,304 571,894 1681.96 GB * Not viewed traffic includes traffic generated by robots, worms, or replies with special HTTP status codes. Monthly history Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 2020 Month Unique visitors Number of visits Pages Hits Bandwidth Jan 2020 792 1,300 119,456 168,080 1121.86 GB Feb 2020 631 807 7,068 65,546 80.94 GB Mar 2020 679 972 13,936 206,344 2781.04 GB Apr 2020 656 976 12,423 102,984 288.49 GB May 2020 643 940 14,919 20,992 346.36 GB Jun 2020 656 950 21,666 26,144 196.77 GB Jul 2020 575 943 1,800 7,315 15.70 GB Aug 2020 604 966 13,029 21,768 138.64 GB Sep 2020 631 1,003 31,595 40,666 285.42 GB Oct 2020 615 904 8,773 22,459 86.58 GB Nov 2020 715 1,017 9,292 50,109 110.12 GB Dec 2020 733 1,115 9,726 17,355 116.59 GB Total 7,930 11,893 263,683 749,762 5568.50 GB Days of month 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Average Dec Dec Dec Dec Dec Dec Dec Dec Dec Dec Dec Dec Dec Dec Dec Dec Dec Dec Dec Dec Dec Dec Dec Dec Dec Dec Dec Dec Dec Dec Dec Day Number of visits Pages Hits Bandwidth 01 Dec 2020 46 88 657 1.67 GB 02 Dec 2020 36 67 299 762.17 MB 03 Dec 2020 31 42 220 383.09 MB 04 Dec 2020 31 60 206 529.54 MB 05 Dec 2020 28 36 167 282.03 MB 01/01/2021 1/179 Statistics for sdo2.oma.be (2020) - main 06 Dec 2020 33 45 216 486.60 MB 07 Dec 2020 50 73 408 1004.95 MB 08 Dec 2020 46 141 484 1.57 GB 09 Dec 2020 42 94 232 762.37 MB 10 Dec 2020 43 63 195 190.24 MB 11 Dec 2020 41 88 295 788.36 MB 12 Dec 2020 35 59 204 577.70 MB 13 Dec 2020 31 42 131 382.36 MB 14 Dec 2020 39 60 282 793.30 MB 15 Dec 2020 31 391 962 4.04 GB 16 Dec 2020 63 1,391 1,468 437.01 MB 17 Dec 2020 40 55 297 1.02 GB 18 Dec 2020 32 36 128 184.84 MB 19 Dec 2020 28 37 164 210.91 MB 20 Dec 2020 28 43 125 243.45 MB 21 Dec 2020 28 320 771 4.41 GB 22 Dec 2020 33 48 489 682.99 MB 23 Dec 2020 22 67 354 856.57 MB 24 Dec 2020 36 44 346 736.35 MB 25 Dec 2020 32 44 254 290.79 MB 26 Dec 2020 35 43 438 865.32 MB 27 Dec 2020 20 46 263 528.20 MB 28 Dec 2020 36 50 171 487.90 MB 29 Dec 2020 27 32 93 138.00 MB 30 Dec 2020 45 6,059 6,168 90.14 GB 31 Dec 2020 47 62 868 1.43 GB Average 32 720 2,048 15.21 GB Total 1,115 9,726 17,355 116.59 GB Days of week Mon Tue Wed Thu Fri Sat Sun Day Pages Hits Bandwidth Mon 373 1,666 10.43 GB Tue 1,130 2,634 20.66 GB Wed 1,408 2,766 18.13 GB Thu 832 2,119 13.93 GB Fri 714 2,141 17.05 GB Sat 399 1,670 17.35 GB Sun 167 1,325 8.91 GB Hours 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 01/01/2021 2/179 Statistics for sdo2.oma.be (2020) - main Hours Pages Hits Bandwidth Hours Pages Hits Bandwidth 00 6,410 23,469 99.78 GB 12 12,669 36,879 263.65 GB 01 8,072 24,588 79.40 GB 13 11,366 37,011 260.65 GB 02 7,170 22,868 68.12 GB 14 14,518 40,291 322.19 GB 03 7,044 23,509 68.08 GB 15 17,485 42,970 453.17 GB 04 7,589 23,773 72.04 GB 16 17,439 43,078 492.12 GB 05 7,681 23,514 70.13 GB 17 17,925 41,907 479.84 GB 06 7,703 21,457 71.97 GB 18 18,272 41,850 503.77 GB 07 6,655 21,417 62.87 GB 19 14,241 37,418 468.93 GB 08 7,098 23,967 66.17 GB 20 12,404 34,554 397.10 GB 09 8,476 26,103 80.95 GB 21 9,776 32,071 360.55 GB 10 12,583 34,253 165.60 GB 22 6,983 28,289 306.87 GB 11 14,411 36,709 186.45 GB 23 9,713 27,817 168.11 GB Visitors domains/countries (Top 10) - Full list Domains/Countries Pages Hits Bandwidth Unknown ip 133,794 141,483 1120.80 GB United Kingdom uk 75,595 75,617 805.75 GB Commercial com 21,855 30,301 217.56 GB Belgium be 11,694 406,848 286.85 GB South Korea kr 10,947 10,947 91.59 GB Network net 1,735 61,724 1472.39 GB Germany de 1,560 3,193 1.93 GB Greece gr 1,045 1,292 4.98 GB Non-Profit Organizations org 798 799 32.07 MB France fr 598 1,780 7.94 GB Others 4062 15778 1558.69 GB Hosts (Top 10) - Full list - Last visit - Unresolved IP Address Hosts : 7094 Pages Hits Bandwidth Last visit 131.176.243.10 106,021 106,021 918.08 GB 04 Nov 2020 - 10:43 msslana.mssl.ucl.ac.uk 47,914 47,914 461.89 GB 03 Nov 2020 - 23:57 swat-server.shef.ac.uk 14,760 14,760 215.44 GB 30 Dec 2020 - 20:03 hae.snu.ac.kr 10,947 10,947 91.59 GB 28 Sep 2020 - 09:24 yama.oma.be 10,603 10,603 99.97 GB 15 Dec 2020 - 15:55 msslae.mssl.ucl.ac.uk 8,535 8,535 82.79 GB 08 Dec 2020 - 13:10 163.180.171.94 7,531 7,531 66.85 GB 11 Feb 2020 - 15:30 133.40.5.17 7,095 7,095 75.76 GB 05 May 2020 - 13:40 054467b1.skybroadband.com 5,406 5,406 53.23 GB 27 Aug 2020 - 21:35 host86-137-207-146.range86-137.btcentralplus.com 4,295 4,295 41.92 GB 08 Jun 2020 - 18:55 Others 40,576 526,655 3460.98 GB Robots/Spiders visitors (Top 10) - Full list - Last visit 01/01/2021 3/179 Statistics for sdo2.oma.be (2020) - main 45 different robots* Hits Bandwidth Last visit Python-urllib 253,786+1 630.65 GB 31 Dec 2020 - 23:48 WGet tools 39,531+3 1049.90 GB 31 Dec 2020 - 23:51 Googlebot 5,613+637 50.52 MB 31 Dec 2020 - 23:52 Unknown robot (identified by 'bot*') 1,389+1658 277.79 MB 31 Dec 2020 - 12:08 Unknown robot (identified by empty user agent string) 1,515+554 444.65 MB 31 Dec 2020 - 15:44 bingbot 1,313+518 10.16 MB 31 Dec 2020 - 19:40 Unknown robot (identified by 'robot') 663+597 858.53 KB 31 Dec 2020 - 14:25 Java (Often spam bot) 1,044 438.00 MB 28 Dec 2020 - 17:09 Unknown robot (identified by 'crawl') 535+215 800.73 KB 27 Dec 2020 - 08:07 Yandex bot 292+282 409.80 KB 30 Dec 2020 - 16:22 Others 1,664+908 67.61 MB * Robots shown here gave hits or traffic "not viewed" by visitors, so they are not included in other charts. Numbers after + are successful hits on "robots.txt" files. Visits duration Number of Number of visits: 11,893 - Average: 117 s Percent visits 0s-30s 10,442 87.7 % 30s-2mn 574 4.8 % 2mn-5mn 236 1.9 % 5mn-15mn 241 2 % 15mn-30mn 139 1.1 % 30mn-1h 124 1 % 1h+ 135 1.1 % Unknown 2 0 % File type File type Hits Percent Bandwidth Percent png Image 427,633 57 % 125.24 GB 3.1 % cgi Dynamic Html page or Script file 243,669 32.4 % 2310.99 GB 57.2 % mp4 Video file 55,288 7.3 % 1594.50 GB 39.5 % php Dynamic PHP Script file 15,560 2 % 34.33 MB 0 % html HTML or XML static page 2,767 0.3 % 3.62 MB 0 % css Cascading Style Sheet file 2,264 0.3 % 2.39 MB 0 % Unknown 1,634 0.2 % 3.73 GB 0 % gif Image 411 0 % 386.25 KB 0 % js JavaScript file 389 0 % 3.27 MB 0 % pdf Adobe Acrobat file 94 0 % 52.75 MB 0 % fits 53 0 % 138.69 MB 0 % Downloads (Top 10) - Full list Downloads: 382 Hits 206 Hits Bandwidth Average size /latest/videos/latest/AIA.latest.0335.quicklook.mp4 11,783 17,791 1000.44 GB 34.64 MB /latest/videos/latest/AIA.latest.0094.quicklook.mp4 11,472 21,500 587.59 GB 18.25 MB /latest/videos/latest/AIA.latest.0193.quicklook.mp4 11,164 20,412 104.73 GB 3.40 MB /latest/videos/latest/AIA.latest.1700.quicklook.mp4 10,945 18,243 255.01 GB 8.95 MB /latest/videos/latest/AIA.latest.0304.quicklook.mp4 10,762 22,055 282.13 GB 8.80 MB /latest/videos/latest/AIA.latest.0211.quicklook.mp4 10,542 18,546 131.79 GB 4.64 MB /latest/videos/latest/AIA.latest.0171.quicklook.mp4 4,672 2,844 38.55 GB 5.25 MB /latest/videos/latest/AIA.latest.0131.quicklook.mp4 4,510 1,830 169.99 GB 27.46 MB /latest/videos/latest/AIA.latest.1600.quicklook.mp4 4,417 470 64.63 GB 13.54 MB /awstats/2020/all/awstats.sdo.oma.be.pdf 65 0 41.71 MB 657.09 KB Pages-URL (Top 10) - Full list - Entry - Exit 01/01/2021 4/179 Statistics for sdo2.oma.be (2020) - main 2,224 different pages-url Viewed Average size Entry Exit /vsoprovider/drms_export.cgi 243,669 9.71 MB 501 510 / 9,648 2.44 KB 8,593 8,521 /latest/ 989 1.08 KB 833 430 /latest/aia_0193.html 565 1.12 KB 250 380 /latest/aia_0304.html 455 1.01 KB 237 201 /latest/aia_0171.html 403 1.01 KB 116 177 /wizard/search_result_table/aia_lev1 395 1.11 KB 13 22 /latest/videos/ 393 1006 Bytes 255 71 /latest/videos/latest/ 305 1.07 KB 67 227 /latest/aia_0131.html 255 1.04 KB 72 112 Others 6,606 615.73 KB 956 1,240 Operating Systems (Top 10) - Full list/Versions - Unknown Operating Systems Pages Percent Hits Percent Linux 224,077 84.9 % 629,603 71.9 % Unknown 26,373 10 % 45,812 5.2 % Windows 9,788 3.7 % 184,613 21 % Macintosh 3,368 1.2 % 14,946 1.7 % Java 46 0 % 48 0 % Sony PlayStation 29 0 % 198 0 % Unknown Unix system 2 0 % 15 0 % Browsers (Top 10) - Full list/Versions - Unknown Browsers Grabber Pages Percent Hits Percent Unknown ? 245,808 93.2 % 264,080 30.1 % Google Chrome No 11,662 4.4 % 99,781 11.4 % Firefox No 3,166 1.2 % 498,392 56.9 % Safari No 1,360 0.5 % 8,828 1 % Netscape No 892 0.3 % 929 0.1 % Mozilla No 392 0.1 % 1,111 0.1 % MS Internet Explorer No 380 0.1 % 1,216 0.1 % Android browser (PDA/Phone browser) No 7 0 % 9 0 % IPhone (PDA/Phone browser) No 6 0 % 74 0 % Opera No 3 0 % 5 0 % Others 7 0 % 810 0 % Connect to site from 01/01/2021 5/179 Statistics for sdo2.oma.be (2020) - main Origin Pages Percent Hits Percent Direct address / Bookmark / Link in email..
Recommended publications
  • Study of Web Crawler and Its Different Types
    IOSR Journal of Computer Engineering (IOSR-JCE) e-ISSN: 2278-0661, p- ISSN: 2278-8727Volume 16, Issue 1, Ver. VI (Feb. 2014), PP 01-05 www.iosrjournals.org Study of Web Crawler and its Different Types Trupti V. Udapure1, Ravindra D. Kale2, Rajesh C. Dharmik3 1M.E. (Wireless Communication and Computing) student, CSE Department, G.H. Raisoni Institute of Engineering and Technology for Women, Nagpur, India 2Asst Prof., CSE Department, G.H. Raisoni Institute of Engineering and Technology for Women, Nagpur, India, 3Asso.Prof. & Head, IT Department, Yeshwantrao Chavan College of Engineering, Nagpur, India, Abstract : Due to the current size of the Web and its dynamic nature, building an efficient search mechanism is very important. A vast number of web pages are continually being added every day, and information is constantly changing. Search engines are used to extract valuable Information from the internet. Web crawlers are the principal part of search engine, is a computer program or software that browses the World Wide Web in a methodical, automated manner or in an orderly fashion. It is an essential method for collecting data on, and keeping in touch with the rapidly increasing Internet. This Paper briefly reviews the concepts of web crawler, its architecture and its various types. Keyword: Crawling techniques, Web Crawler, Search engine, WWW I. Introduction In modern life use of internet is growing in rapid way. The World Wide Web provides a vast source of information of almost all type. Now a day’s people use search engines every now and then, large volumes of data can be explored easily through search engines, to extract valuable information from web.
    [Show full text]
  • Report for Portal Specific
    Report for Portal specific Time range: 2013/01/01 00:00:07 - 2013/03/31 23:59:59 Generated on Fri Apr 12, 2013 - 18:27:59 General Statistics Summary Summary Hits Total Hits 1,416,097 Average Hits per Day 15,734 Average Hits per Visitor 6.05 Cached Requests 8,154 Failed Requests 70,823 Page Views Total Page Views 1,217,537 Average Page Views per Day 13,528 Average Page Views per Visitor 5.21 Visitors Total Visitors 233,895 Average Visitors per Day 2,598 Total Unique IPs 49,753 Bandwidth Total Bandwidth 77.49 GB Average Bandwidth per Day 881.68 MB Average Bandwidth per Hit 57.38 KB Average Bandwidth per Visitor 347.40 KB 1 Activity Statistics Daily Daily Visitors 4,000 3,500 3,000 2,500 2,000 Visitors 1,500 1,000 500 0 2013/01/01 2013/01/15 2013/02/01 2013/02/15 2013/03/01 2013/03/15 Date Daily Hits 40,000 35,000 30,000 25,000 Hits 20,000 15,000 10,000 5,000 0 2013/01/01 2013/01/15 2013/02/01 2013/02/15 2013/03/01 2013/03/15 Date 2 Daily Bandwidth 1,300,000 1,200,000 1,100,000 1,000,000 900,000 800,000 700,000 600,000 500,000 Bandwidth (KB) 400,000 300,000 200,000 100,000 0 2013/01/01 2013/01/15 2013/02/01 2013/02/15 2013/03/01 2013/03/15 Date Daily Activity Date Hits Page Views Visitors Average Visit Length Bandwidth (KB) Sun 2013/02/10 11,783 10,245 2,280 13:01 648,207 Mon 2013/02/11 16,454 14,146 2,484 10:05 906,702 Tue 2013/02/12 19,572 17,089 3,062 07:47 926,190 Wed 2013/02/13 14,554 12,402 2,824 06:09 958,951 Thu 2013/02/14 12,577 10,666 2,690 05:03 821,129 Fri 2013/02/15 15,806 12,697 2,868 07:02 1,208,095 Sat 2013/02/16 16,811 14,939
    [Show full text]
  • Scalability and Efficiency Challenges in Large-Scale Web Search
    5/1/14 Scalability and Efficiency Challenges in Large-Scale Web Search Engines " Ricardo Baeza-Yates" B. Barla Cambazoglu! Yahoo Labs" Barcelona, Spain" Disclaimer Dis •# This talk presents the opinions of the authors. It does not necessarily reflect the views of Yahoo Inc. or any other entity." •# Algorithms, techniques, features, etc. mentioned here might or might not be in use by Yahoo or any other company." •# Some non-technical material (e.g., images) provided in this presentation were taken from the Web." 1 5/1/14 Yahoo Labs Barcelona •# Research topics" •# Web retrieval" –# web data mining" –# distributed web retrieval" –# semantic search" –# scalability and efficiency" –# social media" –# opinion/sentiment retrieval" –# web retrieval" –# personalization" Outline of the Tutorial •# Background (35 minutes)" •# Main sections" –# web crawling (75 minutes + 5 minutes Q/A)" –# indexing (75 minutes + 5 minutes Q/A)" –# query processing (90 minutes + 5 minutes Q/A)" –# caching (40 minutes + 5 minutes Q/A)" •# Concluding remarks (10 minutes)" •# Questions and open discussion (15 minutes)" 2 5/1/14 Structure of Main Sections •# Definitions" •# Metrics" •# Issues and techniques" –# single computer" –# cluster of computers" –# multiple search sites" •# Research problems" Background 3 5/1/14 Brief History of Search Engines •# Past" -# Before browsers" -# Gopher" -# Before the bubble" -# Altavista" -# Lycos" -# Infoseek" -# Excite" -# HotBot" •# Current" •# Future" -# After the bubble" •# Global" •# Facebook ?" -# Yahoo" •# Google, Bing" •# …"
    [Show full text]
  • A Focused Web Crawler Driven by Self-Optimizing Classifiers
    A Focused Web Crawler Driven by Self-Optimizing Classifiers Master’s Thesis Dominik Sobania Original title: A Focused Web Crawler Driven by Self-Optimizing Classifiers German title: Fokussiertes Webcrawling mit selbstorganisierenden Klassifizierern Master’s Thesis Submitted by Dominik Sobania Submission date: 09/25/2015 Supervisor: Prof. Dr. Chris Biemann Coordinator: Steffen Remus TU Darmstadt Department of Computer Science, Language Technology Group Erklärung Hiermit versichere ich, die vorliegende Master’s Thesis ohne Hilfe Dritter und nur mit den angegebe- nen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die aus den Quellen entnommen wur- den, sind als solche kenntlich gemacht worden. Diese Arbeit hat in dieser oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen. Die schriftliche Fassung stimmt mit der elektronischen Fassung überein. Darmstadt, den 25. September 2015 Dominik Sobania i Zusammenfassung Üblicherweise laden Web-Crawler alle Dokumente herunter, die von einer begrenzten Menge Seed- URLs aus erreichbar sind. Für die Generierung von Corpora ist eine Breitensuche allerdings nicht effizient, da uns hier nur ein bestimmtes Thema interessiert. Ein fokussierter Crawler besucht verlinkte Dokumente, die von einer Entscheidungsfunktion ausgewählt wurden, mit höherer Priorität. Dieser Ansatz fokussiert sich selbst auf das gesuchte Thema. In dieser Masterarbeit beschreiben wir einen Ansatz für fokussiertes Crawling, der als erster Schritt für die Generierung von Corpora genutzt werden kann. Basierend auf einem kleinen Satz an Textdoku- menten, die das gesuchte Thema definieren, erstellt eine Pipeline, bestehend aus mehreren Klassifizier- ern, die Trainingsdaten für einen Hyperlink-Klassifizierer – die Entscheidungsfunktion des fokussierten Crawlers. Für die Optimierung der Klassifizierer benutzen wir einen evolutionären Algorithmus für die Feature Subset Selection. Die Chromosomen des evolutionären Algorithmus basieren auf einer serial- isierbaren Baumstruktur.
    [Show full text]
  • Application of ARIMA(1,1,0) Model for Predicting Time Delay of Search Engine Crawlers
    26 Informatica Economică vol. 17, no. 4/2013 Application of ARIMA(1,1,0) Model for Predicting Time Delay of Search Engine Crawlers Jeeva JOSE1, P. Sojan LAL2 1 Department of Computer Applications, BPC College, Piravom, Kerala, India 2 School of Computer Sciences, Mahatma Gandhi University, Kottayam, Kerala, India [email protected], [email protected] World Wide Web is growing at a tremendous rate in terms of the number of visitors and num- ber of web pages. Search engine crawlers are highly automated programs that periodically visit the web and index web pages. The behavior of search engines could be used in analyzing server load, quality of search engines, dynamics of search engine crawlers, ethics of search engines etc. The more the number of visits of a crawler to a web site, the more it contributes to the workload. The time delay between two consecutive visits of a crawler determines the dynamicity of the crawlers. The ARIMA(1,1,0) Model in time series analysis works well with the forecasting of the time delay between the visits of search crawlers at web sites. We con- sidered 5 search engine crawlers, all of which could be modeled using ARIMA(1,1,0).The re- sults of this study is useful in analyzing the server load. Keywords: ARIMA, Search Engine Crawler, Web logs, Time delay, Prediction Introduction before it crawls the web pages. The crawlers 1 Crawlers also known as ‘bots’, ‘robots’ or which access this file first and proceeds to ‘spiders’ are highly automated programs crawling are known as ethical crawlers and which are seldom regulated manually[1][2].
    [Show full text]
  • Scalability and Efficiency Challenges in Large-Scale Web Search
    7/9/14 Scalability and Efficiency Challenges in Large-Scale Web Search Engines " Ricardo Baeza-Yates" B. Barla Cambazoglu! Yahoo Labs" Barcelona, Spain" Tutorial at SIGIR 2014, Gold Coast, Australia Disclaimer Dis •# This talk presents the opinions of the authors. It does not necessarily reflect the views of Yahoo Inc. or any other entity." •# Algorithms, techniques, features, etc. mentioned here might or might not be in use by Yahoo or any other company." •# Some non-technical material (e.g., images) provided in this presentation were taken from the Web." Ricardo Baeza-Yates & B. Barla Cambazoglu, Yahoo Labs - 2 - Tutorial at SIGIR 2014, Gold Coast, Australia 1 7/9/14 Yahoo Labs Barcelona •# Research topics" •# Web retrieval" –# web data mining" –# distributed web retrieval" –# semantic web" –# scalability and efficiency" –# social media" –# opinion/sentiment retrieval" –# web retrieval" –# personalization" Ricardo Baeza-Yates & B. Barla Cambazoglu, Yahoo Labs - 3 - Tutorial at SIGIR 2014, Gold Coast, Australia Outline of the Tutorial •# Background (35 minutes)" •# Main sections" –# web crawling (75 minutes + 5 minutes Q/A)" –# indexing (75 minutes + 5 minutes Q/A)" –# query processing (90 minutes + 5 minutes Q/A)" –# caching (40 minutes + 5 minutes Q/A)" •# Concluding remarks (10 minutes)" •# Questions and open discussion (15 minutes)" Ricardo Baeza-Yates & B. Barla Cambazoglu, Yahoo Labs - 4 - Tutorial at SIGIR 2014, Gold Coast, Australia 2 7/9/14 Structure of Main Sections •# Definitions" •# Metrics" •# Issues and techniques" –# single computer" –# cluster of computers" –# multiple search sites" •# Research problems" Ricardo Baeza-Yates & B. Barla Cambazoglu, Yahoo Labs - 5 - Tutorial at SIGIR 2014, Gold Coast, Australia Background Ricardo Baeza-Yates & B.
    [Show full text]
  • Digital Marketing Handbook
    Digital Marketing Handbook PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Sat, 17 Mar 2012 10:33:23 UTC Contents Articles Search Engine Reputation Management 1 Semantic Web 7 Microformat 17 Web 2.0 23 Web 1.0 36 Search engine optimization 37 Search engine 45 Search engine results page 52 Search engine marketing 53 Image search 57 Video search 59 Local search 65 Web presence 67 Internet marketing 70 Web crawler 74 Backlinks 83 Keyword stuffing 85 Article spinning 86 Link farm 87 Spamdexing 88 Index 93 Black hat 102 Danny Sullivan 103 Meta element 105 Meta tags 110 Inktomi 115 Larry Page 118 Sergey Brin 123 PageRank 131 Inbound link 143 Matt Cutts 145 nofollow 146 Open Directory Project 151 Sitemap 160 Robots Exclusion Standard 162 Robots.txt 165 301 redirect 169 Google Instant 179 Google Search 190 Cloaking 201 Web search engine 203 Bing 210 Ask.com 224 Yahoo! Search 228 Tim Berners-Lee 232 Web search query 239 Web crawling 241 Social search 250 Vertical search 252 Web analytics 253 Pay per click 262 Social media marketing 265 Affiliate marketing 269 Article marketing 280 Digital marketing 281 Hilltop algorithm 282 TrustRank 283 Latent semantic indexing 284 Semantic targeting 290 Canonical meta tag 292 Keyword research 293 Latent Dirichlet allocation 293 Vanessa Fox 300 Search engines 302 Site map 309 Sitemaps 311 Methods of website linking 315 Deep linking 317 Backlink 319 URL redirection 321 References Article Sources and Contributors 331 Image Sources, Licenses and Contributors 345 Article Licenses License 346 Search Engine Reputation Management 1 Search Engine Reputation Management Reputation management, is the process of tracking an entity's actions and other entities' opinions about those actions; reporting on those actions and opinions; and reacting to that report creating a feedback loop.
    [Show full text]
  • A Smart Web Crawler for a Concept Based Semantic Search Engine
    San Jose State University SJSU ScholarWorks Master's Projects Master's Theses and Graduate Research Fall 12-2014 A Smart Web Crawler for a Concept Based Semantic Search Engine Vinay Kancherla San Jose State University Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects Part of the Databases and Information Systems Commons Recommended Citation Kancherla, Vinay, "A Smart Web Crawler for a Concept Based Semantic Search Engine" (2014). Master's Projects. 380. DOI: https://doi.org/10.31979/etd.ubfy-s3es https://scholarworks.sjsu.edu/etd_projects/380 This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact [email protected]. A Smart Web Crawler for a Concept Based Semantic Search Engine Presented to The Faculty of Department of computer Science San Jose State University In Partial Fulfillment of the Requirements for the Degree Master of Computer Science By Vinay Kancherla Fall 2014 Copyright © 2014 Vinay Kancherla ALL RIGHTS RESERVED SAN JOSE STATE UNIVERSITY The Designated Thesis Committee Approves the Thesis Titled A Smart Web Crawler for a Concept Based Semantic Search Engine by Vinay Kancherla APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE SAN JOSÉ STATE UNIVERSITY December 2014 ________________________________________________________ Dr. T. Y. Lin, Department of Computer Science Date ________________________________________________________ Dr. Suneuy Kim, Department of Computer Science Date ________________________________________________________ Mr. Eric Louie, DBA at IBM Corporation Date ABSTRACT A Smart Web Crawler for a Concept Based Semantic Search Engine By Vinay Kancherla The internet is a vast collection of billions of web pages containing terabytes of information arranged in thousands of servers using HTML.
    [Show full text]
  • Crawlers and Crawling
    Crawlers and Crawling There are Many Crawlers • A web crawler is a computer program that visits web pages in an organized way – Sometimes called a spider or robot • A list of web crawlers can be found at http://en.wikipedia.org/wiki/Web_crawler Google’s crawler is called googlebot, see http://support.google.com/webmasters/bin/answer.py?hl=en&answer=182072 • Yahoo’s web crawler is/was called Yahoo! Slurp, see http://en.wikipedia.org/wiki/Yahoo!_Search • Bing uses five crawlers – Bingbot, standard crawler – Adidxbot, used by Bing Ads – MSNbot, remnant from MSN, but still in use – MSNBotMedia, crawls images and video – BingPreview, generates page snapshots • For details see: http://www.bing.com/webmaster/help/which-crawlers-does-bing-use-8c184ec0 Copyright Ellis Horowitz, 2011-2020 2 Web Crawling Issues • How to crawl? – Quality: how to find the “Best” pages first – Efficiency: how to avoid duplication (or near duplication) – Etiquette: behave politely by not disturbing a website’s performance • How much to crawl? How much to index? – Coverage: What percentage of the web should be covered? – Relative Coverage: How much do competitors have? • How often to crawl? – Freshness: How much has changed? – How much has really changed? Copyright Ellis Horowitz, 2011-2020 3 Simplest Crawler Operation • Begin with known “seed” pages • Fetch and parse a page – Place the page in a database – Extract the URLs within the page – Place the extracted URLs on a queue • Fetch each URL on the queue and repeat Copyright Ellis Horowitz, 2011-2020 4 Crawling Picture
    [Show full text]
  • Usage-Based Testing for Event-Driven Software Systems
    Usage-based Testing for Event-driven Software Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultäten der Georg-August-Universität zu Göttingen vorgelegt von Steffen Herbold aus Bad Karlshafen Göttingen im Juni 2012 Referent: Prof. Dr. Jens Grabowski, Georg-August-Universität Göttingen. Korreferent: Prof. Dr. Stephan Waack, Georg-August-Universität Göttingen. Korreferent: Prof. Atif Memon, Ph.D. University of Maryland, MD, USA Tag der mündlichen Prüfung: 27. Juni 2012 Abstract Most modern-day end-user software is Event-driven Software (EDS), i.e., accessible through Graphical User Interfaces (GUIs), smartphone apps, or in form of Web applica- tions. Examples for events are mouse clicks in GUI applications, touching the screen of a smartphone, and clicking on links in Web applications. Due to the high pervasion of EDS, the quality assurance of EDS is vital to ensure high-quality software products for end-users. In this thesis, we explore a usage-based approach for the testing of EDS. The advantage of a usage-based testing strategy is that the testing is focused on frequently used parts of the software, while seldom used parts are only tested sparsely. This way, the user-experienced quality of the software is optimized and the testing effort is reduced in comparison to traditional software testing. The goal of this thesis is twofold. On the one hand, we advance the state-of-the-art of usage-based testing. We define novel test coverage criteria that evaluate the testing effort with respect to usage. Furthermore, we propose three novel approaches for the usage- based test case generation. Two of the approaches follow the traditional way in usage-based testing and generate test cases randomly based on the probabilities of how the software is used.
    [Show full text]
  • A Methodical Study of Web Crawler
    VandanaShrivastava Journal of Engineering Research and Applicatio www.ijera.com ISSN : 2248-9622 Vol. 8, Issue 11 (Part -I) Nov 2018, pp 01-08 RESEARCH ARTICLE OPEN ACCESS A Methodical Study of Web Crawler Vandana Shrivastava Assistant Professor, S.S. Jain Subodh P.G. (Autonomous) College Jaipur, Research Scholar, Jaipur National University, Jaipur ABSTRACT World Wide Web (or simply web) is a massive, wealthy, preferable, effortlessly available and appropriate source of information and its users are increasing very swiftly now a day. To salvage information from web, search engines are used which access web pages as per the requirement of the users. The size of the web is very wide and contains structured, semi structured and unstructured data. Most of the data present in the web is unmanaged so it is not possible to access the whole web at once in a single attempt, so search engine use web crawler. Web crawler is a vital part of the search engine. It is a program that navigates the web and downloads the references of the web pages. Search engine runs several instances of the crawlers on wide spread servers to get diversified information from them. The web crawler crawls from one page to another in the World Wide Web, fetch the webpage, load the content of the page to search engine’s database and index it. Index is a huge database of words and text that occur on different webpage. This paper presents a systematic study of the web crawler. The study of web crawler is very important because properly designed web crawlers always yield well results most of the time.
    [Show full text]
  • Good Bot, Bad Bot: Characterizing Automated Browsing Activity
    Good Bot, Bad Bot: Characterizing Automated Browsing Activity Xigao Li Babak Amin Azad Amir Rahmati Nick Nikiforakis Stony Brook University Stony Brook University Stony Brook University Stony Brook University Abstract—As the web keeps increasing in size, the number their ability to claim arbitrary identities (e.g., via User-agent of vulnerable and poorly-managed websites increases commensu- header spoofing), and the automated or human-assisted solving rately. Attackers rely on armies of malicious bots to discover these of CAPTCHAs make this a challenging task [9]–[11]. vulnerable websites, compromising their servers, and exfiltrating sensitive user data. It is, therefore, crucial for the security of the In this paper, we present a technique that sidesteps the issue web to understand the population and behavior of malicious bots. of differentiating between users and bots through the concept In this paper, we report on the design, implementation, and of honeysites. Like traditional high-interaction honeypots, our results of Aristaeus, a system for deploying large numbers of honeysites are fully functional websites hosting full-fledged “honeysites”, i.e., websites that exist for the sole purpose of attract- web applications placed on public IP address space (similar ing and recording bot traffic. Through a seven-month-long exper- iment with 100 dedicated honeysites, Aristaeus recorded 26.4 mil- to Canali and Balzarotti’s honeypot websites used to study the lion requests sent by more than 287K unique IP addresses, with exploitation and post-exploitation
    [Show full text]