ABSTRACT MARTIN, KELLY NORRIS. Visual

Total Page:16

File Type:pdf, Size:1020Kb

ABSTRACT MARTIN, KELLY NORRIS. Visual ABSTRACT MARTIN, KELLY NORRIS. Visual Research: Introducing a Schema for Methodologies and Contexts. (Under the direction of Victoria J. Gallagher.) Studying the visual has become tremendously important to many disciplines because images express a range of human experience sometimes ambiguously articulated in verbal discourse, namely, “spatially oriented, nonlinear, multidimensional, and dynamic” human experiences (Foss, 2005, p. 143). In fact, the power of the image to plainly communicate occurs not “in spite of language’s absence but also frequently because of language’s absence” (Ott & Dickinson, 2009, p. 392). Presently, the challenge for visual research is that scholars investigate images from varied disciplines with separate and distinctive methods with little discussion or exchange across fields. Furthermore, more disciplines are requiring students to take courses in visual communication and more professors are being hired to teach those courses. However, these visual communication professors have nowhere to go (in the United States) in order to become prepared to teach and conduct research in visual communication. They enroll in programs in journalism and mass communication, linguistics, sociology, social psychology, anthropology, and so on. Then, they either adapt what they learn from these fields to the field of visual communication or they teach themselves about the methods, theories, and literature of visual communication. This project focused on comparing and contrasting the strengths and limitations of various visual research methods in order to demonstrate the breadth of the methods and how they inform one another. The goals of this project were to introduce 1) four primary methodological approaches to visual research: visual rhetoric, visual studies visual communication and design-making, 2) a visual organizational schema that textually and graphically maps the hierarchical relationships of numerous strategies/perspectives and techniques of visual research methods 3) a presentation of the possibilities afforded by the use of different and combined methods. Without intellectual exchange between these schools of research (or at least an awareness and good understanding of other approaches) it is more difficult for researchers to build off the findings from other fields or approach a research challenge in a novel way. As Burke articulates, researchers should approach methods so that they “encompass a broad range of terms and possess a scope substantial enough to incorporate the maximum number of possible explanations for human action.” This project also suggests that visual researchers should engage in visual making, creating their own visual artifacts and thus strengthening how they interpret and communicate their research findings and professional projects. Visual Research: Introducing a Schema for Methodologies and Contexts by Kelly Norris Martin A dissertation submitted to the Graduate Faculty of North Carolina State University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Communication, Rhetoric, and Digital Media Raleigh, North Carolina 2011 APPROVED BY: ____________________________ ___________________________ Victoria J. Gallagher Carolyn R. Miller Chair of Advisory Committee ____________________________ ___________________________ Melissa A. Johnson Meredith Davis DEDICATION To Mike Though unexpected, I’m so thankful I found my true love and best friend in the middle of the North Carolina wilderness. ii BIOGRAPHY Kelly Norris Martin is a scholar of visual research whose primary interests include visual communication, visual research methods, design and digital media. Her dissertation compares and contrasts the strengths and limitations of various visual research methods in order to demonstrate the breadth of the methods and how they inform one another. Within this research project she is working to develop a visual organizational schema that textually and graphically maps the hierarchical relationships of numerous strategies/perspectives and techniques of visual research methods. Prior to attending North Carolina State University, where she received her Master of Science in Communication and then enrolled in the Communication, Rhetoric and Digital Media program, she attended John Carroll University where she received her Bachelor of Arts in English and Music through the honors and cross registration program. Before attending graduate school, Kelly worked for The Coastland Times, Dare County Public Relations and founded ripCurrent magazine on the Outer Banks of North Carolina. In addition to her work in visual research methods, she has worked with Drs. Gallagher and Ma on developing a theory of visual wellbeing and with Dr. Melissa Johnson on a theory of digital credibility with a focus on public relations blogs. Kelly has also conducted communication across the curriculum research with Dr. Deanna Dannels examining the communication practices of design critiques. iii ACKNOWLEDGEMENTS I would like to thank all those who have directly and indirectly helped me complete this dissertation. Mike and Garrett deserve the most thanks because of their remarkable understanding, love and support. Without Mike it is likely I never would have entered a doctoral program let alone completed the writing of a dissertation. I am a very lucky person to also have had my brother Doug move to North Carolina and be there for me when I needed help or to remind me how to have a good time (especially if this meant a trip to the Waffle House). I also thank Doug’s wife Ashleen because she is always ready to celebrate victories (often with funfetti), provide opinions, find survey participants, help me with bookstore questions and watch Garrett. I thank Mom and Dad for their wonderful support and for letting me come to them with any and all questions and problems. I will always be grateful to my mom for brightening my days with phone calls and creative care packages and my dad’s willingness to offer advice and help with projects (even taking photographs of statues). All my family has been very understanding and supportive of my education and I would like to thank Grandma Hasenflue, the Bacons, the Cottrells, the Martins, the Toneys and the other fellow “out-laws” for their prayers, letters and love. When I think about my experiences at North Carolina State University, I will remember most fondly the faculty who helped me in so many different ways and treated me like a colleague. I thank my committee chair Dr. Victoria Gallagher for being a wonderful teacher and uplifting presence, for guiding me toward the Communication, Rhetoric and Digital Media program, for being such a dedicated advisor and student advocate, for our iv inspiring field trips and for holding Garrett in her office. Other students who have had her as a committee chair agree, Dr. Gallagher has a talent for recognizing the individual needs of each of her students and helps them develop a much stronger research project in a timely manner. I also thank Dr. Deanna Dannels who was the first person at NC State to tell me I should consider earning a Ph.D., who first taught me how to be a researcher and a teacher, who has been so hospitable to my family and who always offers professional and personal support at any time. I would also like to thank Dr. Melissa Johnson for being such a devoted teacher and for allowing me the privilege of working with her on various exciting research projects. Dr. Carolyn Miller and Dr. Meredith Davis, along with Dr. Gallagher and Dr. Johnson (who I have already mentioned), made up a wonderful committee that helped me greatly improve this dissertation and acted as tremendous academic role models. I thank them for all their hard work, energy, suggestions and feedback. Other professors who deserve a special note of thanks include Dr. David Berube, for giving me a variety of research opportunities and for being so caring and generous to Mike and Garrett; Dr. Bill Jordan, for his SPSS expertise, kindness and incredible patience; Dr. Steve Wiley, who has been a helpful program director and was an engaging professor to work for as a teaching assistant; Dr. Susan Miller-Cochran, for her fantastic teaching and advice and Dr. Jeremy Packer and Dr. Ken Zagacki, for their understanding and flexibility regarding maternity-related concerns. I would also like to thank my friends including Kelly Murdoch-Kitt for her creative design-related suggestions and tutorials; Dr. Amy Housley Gaffney (PDA) for answering so many academic-related questions, teaching me her crafty ways and for watching Garrett v (“The Beast”); Nick Temple for his help with the avatar project and friendship throughout all six years of graduate school; all the CRDM students, especially Dr. Anna Turnage, Kathy Oswald (“don’t fight it”), Shayne Pepper (“Donna!”) and Dawn Shepherd for their support and enthusiasm and Michael Dougherty for his friendship and laughter. vi TABLE OF CONTENTS LIST OF TABLES.................................................................................................................xiii LIST OF FIGURES ............................................................................................................... xiv CHAPTER ONE ....................................................................................................................... 1 The State of Visual Research................................................................................................ 1 Approaches to Visual Research ...........................................................................................
Recommended publications
  • 30 Years of Moving Individual Atoms
    FEATURES 30 YEARS OF MOVING INDIVIDUAL ATOMS 1 2 l Christopher Lutz and Leo Gross – DOI: https://doi.org/10.1051/epn/2020205 l 1 IBM Research – Almaden, San Jose, California, USA l 2 IBM Research – Zurich,¨ 8803 Ruschlikon,¨ Switzerland In the thirty years since atoms were first positioned individually, the atom-moving capability of scanning probe microscopes has grown to employ a wide variety of atoms and small molecules, yielding custom nanostructures that show unique electronic, magnetic and chemical properties. his year marks the thirtieth anniversary of the publication by IBM researchers Don Eigler and Erhard Schweizer showing that individ- Tual atoms can be positioned precisely into chosen patterns [1]. Tapping the keyboard of a personal computer for 22 continuous hours, they controlled the movement of a sharp tungsten needle to pull 35 individ- ual xenon atoms into place on a surface to spell the letters “IBM” (Figure 1). Eigler and Schweitzer’s demonstration set in motion the use of a newly invented tool, called the scanning tunneling microscope (STM), as the workhorse for nanoscience research. But this achievement did even more than that: it changed the way we think of atoms. m FIG. 2: The STM that Don Eigler and coworkers used to position atoms. The It led us to view them as building blocks that can be tip is seen touching its reflection in the sample’s surface. (Credit: IBM) arranged the way we choose, no longer being limited by the feeling that atoms are inaccessibly small. with just one electron or atom or (small) molecule. FIG.
    [Show full text]
  • Small Wonders, Endless Frontiers
    Small Wonders, Endless Frontiers A Review of the National Nanotechnology Initiative Committee for the Review of the National Nanotechnology Initiative Division on Engineering and Physical Sciences National Research Council NATIONAL ACADEMY PRESS Washington, D.C. NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine. The members of the committee responsible for the report were chosen for their special competences and with regard for appropriate balance. This material is based on work supported by the National Science Foundation under Grant No. CTS- 0096624. Any opinions, findings, and conclusions or recommendations expressed in it are those of the authors and do not necessarily reflect the views of the National Science Foundation. International Standard Book Number 0-309-08454-7 Additional copies of this report are available from: National Research Council 2101 Constitution Avenue, N.W. Washington, DC 20418 Internet, <http://www.nap.edu> Copyright 2002 by the National Academy of Sciences. All rights reserved. Printed in the United States of America Front cover: Three-dimensional scanning tunneling microscope image of a man-made lattice of cobalt atoms on a copper (111) surface. Courtesy of Don Eigler, IBM Almaden Research Center. Back cover: A nanoscale motor created by attaching a synthetic rotor to an ATP synthase. Reprinted with permission of the American Association for the Advancement of Science from Soong et al., Science 290, 1555 (2000). © 2000 by AAAS.
    [Show full text]
  • Dr Don Eigler Hon Dsc
    Dr Don Eigler Hon DSc Oration by Professor Chris McConville Department of Physics Dr Don Eigler Hon DSc I am personally delighted that today’s honorary graduate is being given to study non-interacting inert gas atoms such as xenon on a metal surface. this award. Dr Don Eigler is quite literally a giant in the “Small World” of However, he observed that even at these low temperatures the Xe atoms Nanoscience and Nanotechnology, and he is universally acknowledged as would still change positions on the surface due to the forces exerted on the first person ever to move and control a single atom. them by the tip of the microscope. He concluded that if these forces could be controlled, he should be able to move the atoms deliberately. Nanotechnology impacts on all our lives, from the ever-present smartphone to medical and environmental applications, but its origins On 10th November 1989 he arranged 35 xenon atoms on a nickel surface can be said to have begun in December 1959 with a lecture by the to spell out ‘I.B.M.’ As he said in his log book this was “the first ever visionary – and often controversial – physicist, Richard Feynman, entitled construction of a patterned array of atoms”. That now famous image not There’s Plenty of Room at the Bottom. In it Feynman speculated that, “The only appeared on the front cover of Nature, but when the news broke in an principles of physics, as far as I can see, do not speak against the possibility IBM press release, on the front page of most broadsheet newspapers in of maneuvering things atom by atom, arranging them the way we want the western world.
    [Show full text]
  • Electronic Transport in Single-Walled Carbon Nanotubes, and Their Application As Scanning Probe Microscopy Tips
    Electronic Transport in Single-Walled Carbon Nanotubes, and their Application as Scanning Probe Microscopy tips by Neil Richard Wilson Thesis Submitted to the University of Warwick for the degree of Doctor of Philosophy Physics April 2004 ii Contents List of Tables vii List of Figures viii Acknowledgments xiv Declarations xvi Abstract xviii Abbreviations xix Chapter 1 Introduction 1 1.1 Introduction to Single-Walled Carbon Nanotubes ........... 3 History .............................. 4 Structure and mechanical properties .............. 6 Electronic properties of SWNT ................. 9 Why study SWNT devices: the Physics and the Funding . 17 1.2 Introduction to Atomic Force Microscopy . 20 Dynamic or 'Tapping' mode AFM . 24 Dynamic lateral force mode or 'Torsional Resonance' mode . 30 Electric Force Microscopy .................... 33 iii Tips and Cantilevers ....................... 36 Multimode and Dimension AFM's . 39 1.3 Outline of thesis ............................. 41 Chapter 2 SWNT growth and devices 42 2.1 SWNT growth .............................. 42 2.1.1 Experimental setup and results . 44 2.1.2 Characterisation ......................... 53 AFM and SCM .......................... 53 Electron Microscopy ....................... 55 micro-Raman spectroscopy ................... 59 2.2 SWNT devices .............................. 62 Lithography ............................ 63 Device Fabrication ........................ 66 2.2.1 Room Temperature Electronic Transport Characteristics . 68 2.3 Conclusions and future work ...................... 75 Chapter 3 EFM and SGM of carbon nanotube devices 77 3.1 Experimental setup for EFM and SGM . 79 3.2 Manipulation of SWNT devices, and characterisation by SGM . 82 3.3 SSPM of SWNT devices ......................... 89 3.3.1 Current saturation in mSWNT devices . 90 3.3.2 Hysteresis in the transconductance of SWNT devices . 97 3.4 Conclusions and future work . 101 Chapter 4 SWNT as AFM probes 103 4.1 Fabrication of SWNT-AFM tips .
    [Show full text]
  • Sustainable Development for The
    “When I look at astronauts … buzzing around SPECIAL “[Space debris] models don’t scaffolding … I want to know who provided 2018 GALA INSERT predict the future, they ... predict the the worker’s comp.” p7 Celebrate the Extraordinary! most likely future.” p14 THE NEW YORK ACADEMY OF CIENCES SMAGAZINE • FALL 2018 BEYOND 2030: SUSTAINABLE DEVELOPMENT FOR THE A look at the sustainability challenges of future human space exploration WWW.NYAS.ORG BOARD OF GOVERNORS CHAIR SECRETARY Beth Jacobs, Managing Lowell Robinson,a highly INTERNATIONAL Paul Stoffels, Vice Chair of Paul Horn, Former Senior Larry Smith, The New York Partner of Excellentia regarded executive with BOARD OF GOVERNORS the Executive Committee Vice Provost for Research, Academy of Sciences Global Partners thirty years of senior global Seth F. Berkley, Chief and Chief Scientific Officer, New York University strategic, financial, M&A, Executive Officer, The Johnson & Johnson GOVERNORS John E. Kelly III, SVP, Senior Vice Dean for operational, turnaround and Global Alliance for Vaccines Ellen de Brabander, Senior Solutions Portfolio and CHAIRS EMERITI Strategic Initiatives and governance experience at and Immunization Vice President Research Research, IBM John E. Sexton, Former Entrepreneurship, NYU both Fortune 100 consumer and Development Global Seema Kumar, Vice Stefan Catsicas, Chief Tech- President, New York Polytechnic School of products retail and diversi- Functions, Governance & President of Innovation, nology Officer Nestlé S.A. University Engineering fied financial services Compliance, PepsiCo Global Health and Science Gerald Chan, Co-Founder, Torsten N. Wiesel, Kathe Sackler, Founder VICE-CHAIR Jacqueline Corbelli, Policy Communication for Morningside Group Nobel Laureate & former and President, The Acorn Thomas Pompidou, Chairman, CEO and Johnson & Johnson Alice P.
    [Show full text]
  • An Overview of the State of Chinese Nanoscience and Technology
    SMALL SCIENCE IN BIG CHINA An overview of the state of Chinese nanoscience and technology. Conducted in collaboration between Springer Nature, the National Center for Nanoscience and Technology, China, and the National Science Library of the Chinese Academy of Sciences. Ed Gerstner The National Center for Nanoscience and Springer Nature, China Minghua Liu Technology, China National Center for The National Center for Nanoscience and Technology, China (NCNST) was established in December 2003 by the Nanoscience and Chinese Academy of Science (CAS) and the Ministry of Education as an institution dedicated to fundamental and Technology, China applied research in the field of nanoscience and technology, especially those with important potential applications. Xiangyang Huang NCNST is operated under the supervision of the Governing Board and aims to become a world-class research National Science Library, centre, as well as public technological platform and young talents training centre in the field, and to act as an Chinese Academy of important bridge for international academic exchange and collaboration. Sciences The NCNST currently has three CAS Key Laboratories: the CAS Key Laboratory for Biological Effects of Yingying Zhou Nanomaterials & Nanosafety, the CAS Key Laboratory for Standardization & Measurement for Nanotechnology, Nature Research, Springer and the CAS Key Laboratory for Nanosystem and Hierarchical Fabrication. Besides, there is a division of Nature, China nanotechnology development, which is responsible for managing the opening and sharing of up-to-date instruments and equipment on the platform. The NCNST has also co-founded 19 collaborative laboratories with Zhiyong Tang Tsinghua University, Peking University, and CAS. National Center for The NCNST has doctoral and postdoctoral education programs in condensed matter physics, physical Nanoscience and chemistry, materials science, and nanoscience and technology.
    [Show full text]
  • Photonic Crystals
    Velkommen I Nanoskolen blir du kjent med nanomaterialer i form av partikler, tråder, filmer og faste materialer. Du lærer også om biologiske nanomaterialer og bruk i medisin, samt hvordan du kan få energi fra nanostrukturer. Timeplan MANDAG TIRSDAG ONSDAG TORSDAG FREDAG Start 8:30: Mottak, Gruppe 1: Gruppe 2: Gruppe 1: Gruppe 2: Gruppe 1: Gruppe 2: ALLE: registrering, beskjeder (Berzelius) Lab 1: Forelesning: Lab 2: Forelesning: Lab 3: Forelesning: Programmerings 9.00 – 9.30 Velkommen, info Nanopartikler Nano med Overflater Solceller med Spesielle Bionano med -teori med 09:00- 9.30 – 10:30 Bli-kjent leker Ola Torunn & egenskaper Elina (Curie) Haakon 11:30 10:30 – 10:45 Pause + Solcelle (Berzelius) Lasse (Berzelius) 10:45 – 11:30 Labboka og + Solcelle + Solcelle Forelesning: intro til Nano Forelesning: Nano med Programmering Nano med Ola med Arduino Ola 11:30- Lunsj / Utelek Lunsj / Utelek Lunsj / Utelek Lunsj / Utelek Lunsj / Utelek 12:30 12:30-12:45 Felles gange til Gruppe 1: Gruppe 2: Gruppe 1: Gruppe 2: Gruppe 1: Gruppe 2: ALLE: Forskningsparken/MiNa 12:45-13:45 MiNa/FP (De Forelesning: Lab 1: Forelesning: Lab 2: Forelesning: Lab 3: Programmering deles inn i grupper på hvert Nano med Nanopartikler Solceller med Overflater Bionano med Spesielle med Arduino sted som får hver sin Ola Torunn & Elina (Curie) egenskaper 12:30- omvisning) (Berzelius) + Solcelle Lasse + Solcelle 15:00 13:45-14:00 Bytte sted: + Solcelle Avslutning og MiNa/FP Forelesning: evaluering. 14:00-15:00 FP/MiNa (De Nano med deles inn i grupper på hvert Ola sted som
    [Show full text]
  • Representation in Scientific Practice Revisited Inside Technology Edited by Wiebe E
    Representation in Scientific Practice Revisited Inside Technology edited by Wiebe E. Bijker, W. Bernard Carlson, and Trevor Pinch A list of books in the series appears at the back of the book. Representation in Scientific Practice Revisited edited by Catelijne Coopmans, Janet Vertesi, Michael Lynch, and Steve Woolgar The MIT Press Cambridge, Massachusetts London, England © 2014 Massachusetts Institute of Technology All rights reserved. No part of this book may be reproduced in any form by any electronic or me- chanical means (including photocopying, recording, or information storage and retrieval) with- out permission in writing from the publisher. MIT Press books may be purchased at special quantity discounts for business or sales promotional use. For information, please email [email protected]. This book was set in Stone Sans and Stone Serif by Toppan Best-set Premedia Limited, Hong Kong. Printed and bound in the United States of America. Library of Congress Cataloging-in-Publication Data Representation in scientifi c practice revisited / edited by Catelijne Coopmans, Janet Vertesi, Michael Lynch, and Steve Woolgar. pages cm. — (Inside technology) Includes bibliographical references and index. ISBN 978-0-262-52538-1 (pbk. : alk. paper) 1. Research — Methodology. 2. Science — Methodology. 3. Technology — Methodology. I. Coopmans, Catelijne, 1976 – editor of compilation. Q180.55.M4R455 2014 502.2 ′ 2 — dc23 2013014968 10 9 8 7 6 5 4 3 2 1 Contents Preface vii Michael Lynch and Steve Woolgar 1 Introduction: Representation in Scientific Practice Revisited 1 Catelijne Coopmans, Janet Vertesi, Michael Lynch, and Steve Woolgar Chapters 2 Drawing as : Distinctions and Disambiguation in Digital Images of Mars 15 Janet Vertesi 3 Visual Analytics as Artful Revelation 37 Catelijne Coopmans 4 Digital Scientific Visuals as Fields for Interaction 61 Morana Alač 5 Swimming in the Joint 89 Rachel Prentice 6 Chalk: Materials and Concepts in Mathematics Research 107 Michael J.
    [Show full text]
  • Richard Feynman's Famous Talk on Atom-By-Atom Assembly Is Often
    Nanotechnology Feynman’s fancy Richard Feynman’s famous talk on atom-by-atom assembly is often credited with kick-starting nanotechnology. Fifty years on, Philip Ball investigates how influential it really was KEVIN FLEMING / CORBIS / FLEMING KEVIN 58 | Chemistry World | January 2009 www.chemistryworld.org Fifty years ago, the near-legendary might be wise to stop pretending microscope (STM) to manipulate In short physicist Richard Feynman of the that his address to the APS was individual xenon atoms. These were California Institute of Technology the ‘birth of nanotechnology,’ that Nobel prize winner adsorbed on the surface of nickel, (Caltech) gave a talk called There’s needn’t prevent us from relishing the Richard Feynman is often creating letters five atoms high and plenty of room at the bottom to spectacle of a genius giving free rein linked to the ‘birth of achieving a data storage density over the American Physical Society’s to his imagination. It was, according nanotechnology’ 100 times greater than Feynman’s West Coast section. He outlined a to George Whitesides of Harvard Fifty years ago, conservative estimate for what might vision of what would later be called University, US, ‘yet more validation, Feynman gave an be needed to write with atoms. nanotechnology, imagining ‘that we if any were needed, of Feynman’s imaginative talk outlining Indeed, one could say that could arrange atoms one by one, just perceptiveness and openness to new a nano vision, where Feynman didn’t think small enough. as we want them’. The rest is history.
    [Show full text]
  • Part 3 Proceedings of the Roadmap Working Group
    Part 3 Proceedings of the Roadmap Working Group The Roadmap development process included four intensive workshops held from October 2005 through December 2006. Following an inaugural workshop San Francisco, the meetings were sponsored by the Battelle Memorial Foundation and hosted by the Oak Ridge, Brookhaven, and Pacific Northwest National Laboratories. The Working Group Proceedings presents a collection of papers, extended abstracts, and personal perspectives contributed by participants in the Roadmap workshops and subsequent online exchanges. These contributions are included with the Roadmap document to make available, to the extent possible, the full range of ideas and information brought to the Roadmap process by its participants. The papers are arranged in the order given below. Atomically Precise Fabrication 01 Atomically Precise Manufacturing Processes 02 Mechanosynthesis 03 Patterned ALE Path Phases 04 Numerically Controlled Molecular Epitaxy 05 Scanning Probe Diamondoid Mechanosynthesis 06 Limitations of Bottom-Up Assembly 07 Nucleic Acid Engineering 08 DNA as an Aid to Self-Assembly 09 Self-Assembly 10 Protein Bioengineering Overview 11 Synthetic Chemistry 12 A Path to a Second Generation Nanotechnology 13 Atomically Precise Ceramic Structures 14 Enabling Nanoscience for Atomically-Precise Manufacturing of Functional Nanomaterials Nanoscale Structures and Fabrication 15 Lithography and Applications of New Nanotechnology 16 Scaling Up to Large Production of Nanostructured Materials Nanotechnology Roadmap Working Group Proceedings
    [Show full text]
  • Nanotechnology and Innovation Policy
    Harvard Journal of Law & Technology Volume 29, Number 1 Fall 2015 NANOTECHNOLOGY AND INNOVATION POLICY Lisa Larrimore Ouellette* TABLE OF CONTENTS I. INTRODUCTION ................................................................................ 34 II. NANOTECHNOLOGY’S DEVELOPMENT AND ECONOMIC CONTRIBUTION ............................................................................... 37 A. Selected Developments in Nanotechnology ................................ 38 1. Research Tools: Seeing at the Nanoscale ................................ 39 2. Promising Nanomaterials: Fullerenes, Nanotubes, and Graphene ........................................................................... 42 3. Commercial Nanoelectronics .................................................. 46 B. Nanotechnology’s Economic Contribution ................................ 47 1. Qualitative Analysis of Nanotechnology’s Transformative Potential ................................................... 47 2. Quantitative Estimates of the Nanotechnology Market ........... 48 III. IP AND NANOTECHNOLOGY .......................................................... 51 A. Patents ........................................................................................ 52 1. Potential Limitations on the Patentability of Nanotechnology ................................................................ 52 2. Knowledge Diffusion Through Patent Disclosure................... 54 3. Patent Thickets and Patent Litigation ...................................... 56 B. Trade Secrets .............................................................................
    [Show full text]
  • Lectures 19: Scanning Tunneling Microscopy
    Lectures 19: Scanning Tunneling Microscopy 1 STM Scanning Tunneling Microscope e2 I = GV G = w h 12 Scanning Tunneling Microscope Heinrich Rohrer Tunneling current starts to flow Gerd Binnig when a sharp tip approaches Nobel Prize 1986 a conducting surface at a distance of approximately 1nm (10Angstrom). The tip is mounted on a piezoelectric tube, which allows tiny movements by applying a voltage at its electrodes. The electronics control the tip position to keep tunneling current and, hence, the tip-surface distance constant, while at the same time scanning a small area of the sample surface. This movement is recorded and can be displayed as an image of the surface topography. Under ideal circumstances, the individual atoms of a surface can be resolved and displayed. 2 Example: fcc and bcc Iron in Films Xe atom on (100)Ni Surface Reconstruction Rearrangement of Atoms at a Surface NiPt The (100)-oriented surface of Ni is a simple square lattice of atoms, Pt atoms form layer on top of the square lattice of the unreconstructed second layer. And this is what the (100) surface of a PtNi alloy looks like at approx. 68% Pt concentration in the first monolayer. What you see in the image is a single bright row of atoms shifted by half an interatomic distance in the direction of the rows (red arrow). These atoms have a hexagonal environment (6 nearest neighbours) in the first monolayer, which is already the same local structure as in the 'hex' reconstruction of pure Pt. 3 Electron Waves and Interference Phenomena of de Broglie waves of electrons Corrals for surface state electrons DoS in the surface band iron atoms on a copper surface.
    [Show full text]