Photonic Crystals
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
From DNA Nanotechnology to Material Systems Engineering
PROGRESS REPORT DNA Nanotechnology www.advmat.de From DNA Nanotechnology to Material Systems Engineering Yong Hu and Christof M. Niemeyer* supramolecular networks. These devel- In the past 35 years, DNA nanotechnology has grown to a highly innovative opments have given rise to numerous and vibrant field of research at the interface of chemistry, materials science, so-called “DNA tiles” that can be used as biotechnology, and nanotechnology. Herein, a short summary of the state building blocks for the assembly through of research in various subdisciplines of DNA nanotechnology, ranging from sticky-end cohesion into discrete “finite” objects or periodic “infinite” 2D and 3D pure “structural DNA nanotechnology” over protein–DNA assemblies, periodic lattices.[4] However, since the nanoparticle-based DNA materials, and DNA polymers to DNA surface production of finite DNA nanostructures technology is given. The survey shows that these subdisciplines are growing from DNA tiles remained complicated,[5] ever closer together and suggests that this integration is essential in order to the development of the “scaffolded DNA initiate the next phase of development. With the increasing implementation origami” technique by Rothemund[6] is of machine-based approaches in microfluidics, robotics, and data-driven to be seen as an important milestone. Indeed, this method enabled the break- science, DNA-material systems will emerge that could be suitable for through of DNA nanotechology for the applications in sensor technology, photonics, as interfaces between technical fabrication of finite, programmable, and systems and living organisms, or for biomimetic fabrication processes. addressable nanostructures, thereby initi- ating a second wave of innovation in the field.[7] As discussed in Section 2, this set 1. -
Small Wonders the US National Nanotechnology Initiative Has Spent Billions of Dollars on Submicroscopic Science in Its First 10 Years
NEWS FEATURE NATURE|Vol 467|2 September 2010 Simulation of the flow pattern for electrons travelling over a random nanoscale landscape. Small wonders The US National Nanotechnology Initiative has spent billions of dollars on submicroscopic science in its first 10 years. Corie Lok finds out where the money went and what the initiative plans to do next. ichard Smalley’s cheeks were gaunt and promised to conduct electricity better than It was a message that Washington was ready his hair was nearly gone when he testi- copper, but also had the potential to produce to hear. US President Bill Clinton formally fied before the US House of Representa- fibres 100 times stronger than steel at one- announced the initiative in 2000, with bipar- tives in June 1999. The Nobel laureate sixth of the weight. Smalley also predicted tisan support from Congress. The initiative R, HARVARD UNIV. HARVARD R, R E chemist had been diagnosed with non-Hodg- that the “very blunt tool” of chemotherapy that has faced some criticism in the decade since LL kin’s lymphoma a few months earlier, chemo- had ravaged his own body would be obsolete — most notably for its slowness to address E therapy was taking its toll, and the journey within 20 years, because scientists would engi- environmental, health and safety concerns H J. E. from Rice University in Houston, Texas, had neer nanoscale drugs that were “essentially about nanomaterials. But it has also created been exhausting. But none of that dimmed his cancer-seeking missiles” able more than 70 nano-related obvious passion for a subject that his listen- to target mutant cells with “As chemists, we academic or government ers found both mystifying and enthralling: minimal side effects. -
30 Years of Moving Individual Atoms
FEATURES 30 YEARS OF MOVING INDIVIDUAL ATOMS 1 2 l Christopher Lutz and Leo Gross – DOI: https://doi.org/10.1051/epn/2020205 l 1 IBM Research – Almaden, San Jose, California, USA l 2 IBM Research – Zurich,¨ 8803 Ruschlikon,¨ Switzerland In the thirty years since atoms were first positioned individually, the atom-moving capability of scanning probe microscopes has grown to employ a wide variety of atoms and small molecules, yielding custom nanostructures that show unique electronic, magnetic and chemical properties. his year marks the thirtieth anniversary of the publication by IBM researchers Don Eigler and Erhard Schweizer showing that individ- Tual atoms can be positioned precisely into chosen patterns [1]. Tapping the keyboard of a personal computer for 22 continuous hours, they controlled the movement of a sharp tungsten needle to pull 35 individ- ual xenon atoms into place on a surface to spell the letters “IBM” (Figure 1). Eigler and Schweitzer’s demonstration set in motion the use of a newly invented tool, called the scanning tunneling microscope (STM), as the workhorse for nanoscience research. But this achievement did even more than that: it changed the way we think of atoms. m FIG. 2: The STM that Don Eigler and coworkers used to position atoms. The It led us to view them as building blocks that can be tip is seen touching its reflection in the sample’s surface. (Credit: IBM) arranged the way we choose, no longer being limited by the feeling that atoms are inaccessibly small. with just one electron or atom or (small) molecule. FIG. -
DNA Nanotechnology Meets Nanophotonics
DNA nanotechnology meets nanophotonics Na Liu 2nd Physics Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany Email: [email protected] Key words: DNA nanotechnology, nanophotonics, DNA origami, light matter interactions Call-out sentence: It will be very constructive, if more research funds become available to support young researchers with bold ideas and meanwhile allow for failures and contingent outcomes. The first time I heard the two terms ‘DNA nanotechnology’ and ‘nanophotonics’ mentioned together was from Paul Alivisatos, who delivered the Max Planck Lecture in Stuttgart, Germany, on a hot summer day in 2008. In his lecture, Paul showed how a plasmon ruler containing two metallic nanoparticles linked by a DNA strand could be used to monitor nanoscale distance changes and even the kinetics of single DNA hybridization events in real time, readily correlating nanoscale motion with optical feedback.1 Until this day, I still vividly remember my astonishment by the power and beauty of these two nanosciences, when rigorously combined together. In the past decades, DNA has been intensely studied and exploited in different research areas of nanoscience and nanotechnology. At first glance, DNA-based nanophotonics seems to deviate quite far from the original goal of Nadrian Seeman, the founder of DNA nanotechnology, who hoped to organize biological entities using DNA in high-resolution crystals. As a matter of fact, DNA-based nanophotonics does closely follow his central spirit. That is, apart from being a genetic material for inheritance, DNA is also an ideal material for building molecular devices. -
Small Wonders, Endless Frontiers
Small Wonders, Endless Frontiers A Review of the National Nanotechnology Initiative Committee for the Review of the National Nanotechnology Initiative Division on Engineering and Physical Sciences National Research Council NATIONAL ACADEMY PRESS Washington, D.C. NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine. The members of the committee responsible for the report were chosen for their special competences and with regard for appropriate balance. This material is based on work supported by the National Science Foundation under Grant No. CTS- 0096624. Any opinions, findings, and conclusions or recommendations expressed in it are those of the authors and do not necessarily reflect the views of the National Science Foundation. International Standard Book Number 0-309-08454-7 Additional copies of this report are available from: National Research Council 2101 Constitution Avenue, N.W. Washington, DC 20418 Internet, <http://www.nap.edu> Copyright 2002 by the National Academy of Sciences. All rights reserved. Printed in the United States of America Front cover: Three-dimensional scanning tunneling microscope image of a man-made lattice of cobalt atoms on a copper (111) surface. Courtesy of Don Eigler, IBM Almaden Research Center. Back cover: A nanoscale motor created by attaching a synthetic rotor to an ATP synthase. Reprinted with permission of the American Association for the Advancement of Science from Soong et al., Science 290, 1555 (2000). © 2000 by AAAS. -
ABSTRACT MARTIN, KELLY NORRIS. Visual
ABSTRACT MARTIN, KELLY NORRIS. Visual Research: Introducing a Schema for Methodologies and Contexts. (Under the direction of Victoria J. Gallagher.) Studying the visual has become tremendously important to many disciplines because images express a range of human experience sometimes ambiguously articulated in verbal discourse, namely, “spatially oriented, nonlinear, multidimensional, and dynamic” human experiences (Foss, 2005, p. 143). In fact, the power of the image to plainly communicate occurs not “in spite of language’s absence but also frequently because of language’s absence” (Ott & Dickinson, 2009, p. 392). Presently, the challenge for visual research is that scholars investigate images from varied disciplines with separate and distinctive methods with little discussion or exchange across fields. Furthermore, more disciplines are requiring students to take courses in visual communication and more professors are being hired to teach those courses. However, these visual communication professors have nowhere to go (in the United States) in order to become prepared to teach and conduct research in visual communication. They enroll in programs in journalism and mass communication, linguistics, sociology, social psychology, anthropology, and so on. Then, they either adapt what they learn from these fields to the field of visual communication or they teach themselves about the methods, theories, and literature of visual communication. This project focused on comparing and contrasting the strengths and limitations of various visual research -
Dr Don Eigler Hon Dsc
Dr Don Eigler Hon DSc Oration by Professor Chris McConville Department of Physics Dr Don Eigler Hon DSc I am personally delighted that today’s honorary graduate is being given to study non-interacting inert gas atoms such as xenon on a metal surface. this award. Dr Don Eigler is quite literally a giant in the “Small World” of However, he observed that even at these low temperatures the Xe atoms Nanoscience and Nanotechnology, and he is universally acknowledged as would still change positions on the surface due to the forces exerted on the first person ever to move and control a single atom. them by the tip of the microscope. He concluded that if these forces could be controlled, he should be able to move the atoms deliberately. Nanotechnology impacts on all our lives, from the ever-present smartphone to medical and environmental applications, but its origins On 10th November 1989 he arranged 35 xenon atoms on a nickel surface can be said to have begun in December 1959 with a lecture by the to spell out ‘I.B.M.’ As he said in his log book this was “the first ever visionary – and often controversial – physicist, Richard Feynman, entitled construction of a patterned array of atoms”. That now famous image not There’s Plenty of Room at the Bottom. In it Feynman speculated that, “The only appeared on the front cover of Nature, but when the news broke in an principles of physics, as far as I can see, do not speak against the possibility IBM press release, on the front page of most broadsheet newspapers in of maneuvering things atom by atom, arranging them the way we want the western world. -
Suzanne Pfeffer
July 2010 ASBMB PreSidentiAl PriMer: Suzanne Pfeffer American Society for Biochemistry and Molecular Biology AAdjuvdjuvAAntnt IImmunothermmunotherAApypy ususIIngng KKrnrn70007000 KRN7000 (α-Galactosyl Ceramide) Avanti Number 867000 Supplier: Funakoshi Co. Ltd. Hepatic metastasis is a major clinical problem in cancer treatment. We examined antitumor ac- tivity of alpha-galactosylceramide (KRN7000) on mice with spontaneous liver metastases of re- ticulum cell sarcoma M5076 tumor cells (spontaneous metastasis model). In this model, all mice that were s.c. challenged with one million tumor cells developed a solid s.c. mass by day 7 and died of hepatic metastases. In the current study, we administered 100 microg/kg of KRN7000 to the model mice on days 7, 11, and 15. This treatment suppressed the growth of established liver metastases and resulted in the prolongation of survival time. Fluorescence-activated cell sorter analysis of phenotypes of spleen cells, hepatic lymphocytes, and regional lymph node cells around the s.c. tumor revealed that CD3+NK1.1+ (NKT) cells increased in hepatic lym- phocytes of the KRN7000-treated mice. Cytotoxic activity and IFN-gamma production of hepatic lymphocytes were augmented in comparison with those of spleen cells and regional LN cells. At the same time, interleukin (IL)-12 production of hepatic lymphocytes was markedly enhanced. Neutralization of IL-12 using a blocking monoclonal antibody diminished the prolonged survival time. These results showed that the in vivo antitumor effects of KRN7000 on spontaneous liver metastases were dependent on the endogenous IL-12 production, where NKT cells in the liver are suggested to be involved. Adjuvant immunotherapy using KRN7000 could be a promising modality for the prevention of postoperative liver metastases. -
Electronic Transport in Single-Walled Carbon Nanotubes, and Their Application As Scanning Probe Microscopy Tips
Electronic Transport in Single-Walled Carbon Nanotubes, and their Application as Scanning Probe Microscopy tips by Neil Richard Wilson Thesis Submitted to the University of Warwick for the degree of Doctor of Philosophy Physics April 2004 ii Contents List of Tables vii List of Figures viii Acknowledgments xiv Declarations xvi Abstract xviii Abbreviations xix Chapter 1 Introduction 1 1.1 Introduction to Single-Walled Carbon Nanotubes ........... 3 History .............................. 4 Structure and mechanical properties .............. 6 Electronic properties of SWNT ................. 9 Why study SWNT devices: the Physics and the Funding . 17 1.2 Introduction to Atomic Force Microscopy . 20 Dynamic or 'Tapping' mode AFM . 24 Dynamic lateral force mode or 'Torsional Resonance' mode . 30 Electric Force Microscopy .................... 33 iii Tips and Cantilevers ....................... 36 Multimode and Dimension AFM's . 39 1.3 Outline of thesis ............................. 41 Chapter 2 SWNT growth and devices 42 2.1 SWNT growth .............................. 42 2.1.1 Experimental setup and results . 44 2.1.2 Characterisation ......................... 53 AFM and SCM .......................... 53 Electron Microscopy ....................... 55 micro-Raman spectroscopy ................... 59 2.2 SWNT devices .............................. 62 Lithography ............................ 63 Device Fabrication ........................ 66 2.2.1 Room Temperature Electronic Transport Characteristics . 68 2.3 Conclusions and future work ...................... 75 Chapter 3 EFM and SGM of carbon nanotube devices 77 3.1 Experimental setup for EFM and SGM . 79 3.2 Manipulation of SWNT devices, and characterisation by SGM . 82 3.3 SSPM of SWNT devices ......................... 89 3.3.1 Current saturation in mSWNT devices . 90 3.3.2 Hysteresis in the transconductance of SWNT devices . 97 3.4 Conclusions and future work . 101 Chapter 4 SWNT as AFM probes 103 4.1 Fabrication of SWNT-AFM tips . -
DNA 7 - Seveth International Meeting on DNA Based Computers - Instruction for Authors
DNA 7 - Seveth International Meeting on DNA Based Computers - Instruction for Authors DNA7 Seventh International Meeting on DNA Based Computers June 10-13, 2001 Download this Document as .pdf | .doc | .rtf Introduction Biomolecular computing has emerged as a an interdisciplinary field that draws together molecular biology, chemistry, computer science and mathematics. Our knowledge of DNA nanotechnology and biomolecular computing increases exponentially with every passing year. The annual international meeting has been a forum where scientists with different backgrounds, yet sharing a common interest in biomolecular computing, meet and present their latest results. Continuing with this tradition, the 7th International Meeting on DNA Based Computers will focus on the current theoretical and experimental results with the greatest impact. Papers and poster presentations are sought in all areas that relate to computing with biomolecules including (but not limited to): algorithms and applications, models of biomolecular computation (using DNA and/or other molecules), analysis of laboratory techniques and theoretical models, error correction, sequence design, simulation software, DNA chemistry, DNA motifs, DNA devices, and computational processes in vivo. We particularly encourage papers and posters reporting experimental results. Instruction for Authors ● Each paper should include one address and e-mail address for all correspondence related to the submission. ● Each paper should contain an abstract stating the main results and their importance. ● We encourage document preparation in LaTex, but PostScript, pdf and MSWord files will also be accepted. For the final version of the document please follow the guidelines for the Springer-Verlag LNCS series at: http://www.springer.de/comp/lncs/authors.html ● The preferred format for submission is a .PDF, .PS or .RTF file or e-mailed to the chair of the program committee at: [email protected]. -
Canada August 2007
Self-Assembled Monolayers: Characterization and Application to Microcantilever Sensors Brian Seivewright Department of Chemistry McGill University, Montreal, Quebec, Canada August 2007 A thesis submitted to McGill University in partial fulfillment of the requirements for the degree of Doctor of Philosophy ©Copyright 2007 All rights reserved. Brian Seivewright, August 2007 Library and Bibliotheque et 1*1 Archives Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A0N4 Ottawa ON K1A0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-50993-7 Our file Notre reference ISBN: 978-0-494-50993-7 NOTICE: AVIS: The author has granted a non L'auteur a accorde une licence non exclusive exclusive license allowing Library permettant a la Bibliotheque et Archives and Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par Plntemet, prefer, telecommunication or on the Internet, distribuer et vendre des theses partout dans loan, distribute and sell theses le monde, a des fins commerciales ou autres, worldwide, for commercial or non sur support microforme, papier, electronique commercial purposes, in microform, et/ou autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in et des droits moraux qui protege cette these. this thesis. Neither the thesis Ni la these ni des extraits substantiels de nor substantial extracts from it celle-ci ne doivent etre imprimes ou autrement may be printed or otherwise reproduits sans son autorisation. -
Single Molecule Based Nanoelectronics
Deanship of Graduate Studies AL-Quds University Single Molecule Based Nanoelectronics Ali Mohammed Kayed Atawneh M. Sc. Thesis Jerusalem-Palestine 1426 / 2006 Chapter one _______________________________________________________________ Introduction 1.1. Introduction Nanoscience is the study of phenomena and manipulating of materials at atomic, molecular and macromolecular scales, where nano-sciences are lead to a better understanding of properties of materials at the atomic level, or resulting from the reduction of dimensions down to the nanometer range. And many technologies are concerned with producing new industrial materials on nano-meter scale – one of these technologies is nanotechnology- but one of the problems facing nanotechnology actually physics, so physics is different on the nanometer scale, the properties of materials can behave differently and have new characteristics. Nanotechnologies are anew expression of a fundamental concept concerned with the development of tools for molecular electronics, that can be used first for measuring properties, then for assembling atoms and molecules to create new materials having superior properties useful in the fabrication of nano-electronic devices. So, nanotechnology includes both molecular electronics and nanoscale devices, where it is research's are aimed at building very small machines and electronics and constructing materials molecule-by-molecule and aggregates that can perform the basic functions of larger electronic components and assemble them into atomically precise molecular electronic devices (Joachim, Gimzewski, Aviram, 2000). Raw materials of nanotechnology include inorganic matter like metals and semiconductors, molecules like polymers and carbon nanotubes, and biological molecules like DNA and proteins. Devices that have dimension on a nanometer scale are called nanoelectronic devices; the use of nanoelectronic devices is interested for several reasons.