Richard Feynman's Famous Talk on Atom-By-Atom Assembly Is Often

Total Page:16

File Type:pdf, Size:1020Kb

Richard Feynman's Famous Talk on Atom-By-Atom Assembly Is Often Nanotechnology Feynman’s fancy Richard Feynman’s famous talk on atom-by-atom assembly is often credited with kick-starting nanotechnology. Fifty years on, Philip Ball investigates how influential it really was KEVIN FLEMING / CORBIS / FLEMING KEVIN 58 | Chemistry World | January 2009 www.chemistryworld.org Fifty years ago, the near-legendary might be wise to stop pretending microscope (STM) to manipulate In short physicist Richard Feynman of the that his address to the APS was individual xenon atoms. These were California Institute of Technology the ‘birth of nanotechnology,’ that Nobel prize winner adsorbed on the surface of nickel, (Caltech) gave a talk called There’s needn’t prevent us from relishing the Richard Feynman is often creating letters five atoms high and plenty of room at the bottom to spectacle of a genius giving free rein linked to the ‘birth of achieving a data storage density over the American Physical Society’s to his imagination. It was, according nanotechnology’ 100 times greater than Feynman’s West Coast section. He outlined a to George Whitesides of Harvard Fifty years ago, conservative estimate for what might vision of what would later be called University, US, ‘yet more validation, Feynman gave an be needed to write with atoms. nanotechnology, imagining ‘that we if any were needed, of Feynman’s imaginative talk outlining Indeed, one could say that could arrange atoms one by one, just perceptiveness and openness to new a nano vision, where Feynman didn’t think small enough. as we want them’. The rest is history. ideas’. atoms can be arranged He ended by offering two $1000 But what sort of history? Did one by one prizes (big money in 1959): one to ‘the Feynman’s talk, published the Sacred text Feynman offered first guy who can take the information following year in Caltech’s house It is hard not to be impressed at the cash prizes for those on the page of a book and put it on an magazine Engineering and science, prescience of much of what Feynman who could solve his nano area 1/25 000 smaller in linear scale,’ really kick-start nanotechnology, or had to say. ‘People tell me about challenges the other to ‘the first guy who makes is that just a convenient fiction to miniaturisation, and how far it has Feynman was a an operating electric motor which can link this emerging field to a colourful progressed today,’ he said. ‘There is a visionary and yet he be controlled from the outside and visionary? device on the market, they tell me, failed to appreciate the … is only 1/64 inch cube’. The latter There are three ways of by which you can write the Lord’s role that chemistry would challenge was far too easy, or rather, approaching this question. One is to Prayer on the head of a pin. But play in nanotechnology it underestimated the dexterity of look at what Feynman said and ask that’s nothing … Why can we not engineers: just months later, William how it relates to what nanotech is now write the entire 24 volumes of the McLellan of Caltech claimed the prize about. Another is to see what effect Encyclopaedia Britannica on the head with a device made by hand, which his talk actually had on the science of a pin?’ now sits in a niche in the corridors of and engineering of his time. And He estimated that this might Caltech (its coils burnt out long ago). the third is to ask researchers now involve making dots 32 atoms across In fact, McLellan made 10 of them, actively engaged in nanotechnology to create the dot matrices for the half- with crude tools including toothpicks whether Feynman’s talk holds any tone photos in the encyclopaedia. and paint brushes. ‘He really didn’t inspiration or insight for them. How do you write that small? believe it could be done,’ McLellan All three lines of inquiry point he asked. He predicted that the says. ‘But he found out.’ to a rather different story from answer might involve rearranging The book challenge took rather the one generally told. Feynman’s individual atoms. ‘Feynman did in a longer – it was met in 1985, three years talk didn’t in any sense start visionary way predict atomic-scale before Feynman’s death from cancer, nanotechnology. It didn’t really nanofabrication,’ says Cees Dekker of by Tom Newman, a graduate student stimulate any new research at the Technical University of Delft in at Stanford University, US, using all, although the miniaturisation the Netherlands, who has conducted electron-beam lithography. (He took challenges he set sparked some neat seminal work on carbon nanotube his text from Dickens.) Now there are feats of engineering. Indeed, some electronics. cheaper ways to write even smaller: of Feynman’s contemporaries even That vision was famously Chad Mirkin of Northwestern wondered if his intent was purely realised in 1990, when Don Eigler In 1960, William University in Evanston, Illinois, US, comic (which would have been and Erhard Schweizer of IBM’s McLellan used his has used dip-pen nanolithography, very much in character). Very little Almaden research centre in San Jose, lunch breaks to build where the tip of an atomic force of the later, foundational work in California, US, wrote their company’s a micromotor (0.5mm microscope is used as a nib to write nanotech drew on Feynman’s vision, name using the scanning tunnelling long), winning $1000 with a molecular ink that might then and most was conducted in complete serve as a mask in chemical etching ignorance of it. His talk can be seen of the surface, to inscribe some of in some respects as equivalent to the the very text quoted above from ‘prophetic’ writings of mediaeval Feynman’s talk, in letters about 60 scholars such as Roger Bacon and nanometres across. Nostradamus: flights of fancy that But one of the most significant later ages have combed for ‘evidence’ aspects of Feynman’s text is its of foresight, with their predictions of focus on information. It was already submarines, telephones and so on. becoming clear in 1959, a year after And yet such a revisionist take the invention of the integrated doesn’t quite do justice to the matter. circuit, that miniaturisation would be There is something in Feynman’s important in computer technology. Plenty of room that rings true, that ‘Work on the transistor had been reveals a fantastically creative mind miniaturising and miniaturising since imagining what might be possible its invention in 1947,’ says chemist and what we might do with it. Most Mark Ratner, also at Northwestern of all, Feynman can lay claim to a and author of Nanotechnology. real intellectual legacy, for he asked, ‘Whether the physics community as nanotechnologists do, what thought in those terms isn’t so clear, might be achieved by manipulating but Feynman was certainly aware matter on a truly tiny scale. Fifty of what the engineers’ thoughts years on, some of Feynman’s words were.’ All the same, this was six sound inevitably dated, but others years before Gordon Moore of Intel SCIENCE AND SOCIETY PICTURE LIBRARY / SCIENCE MUSEUM SCIENCE / LIBRARY PICTURE SOCIETY AND SCIENCE remain deeply pertinent. While it coined his renowned ‘law’ describing www.chemistryworld.org Chemistry World | January 2009 | 59 Nanotechnology of time thinking about computation and computers, but not much time thinking about molecules and the way they organise space and matter,’ says Ratner. ‘My guess is that if you presented him with a five-coordinate carbon atom, it wouldn’t have bothered him any more than a four- coordinate carbon atom would have. The soft-matter world was not his forte.’ Most crucially, he seems not to have appreciated (in fairness, neither did LAWRENCE LIVERMORE LABORATORY / SCIENCE PHOTO LIBRARY PHOTO SCIENCE / LABORATORY LIVERMORE LAWRENCE anyone else at the time) that nature’s prowess in nanotechnology relies heavily on the propensity of chemical systems to self-assemble. ‘I think that is the most important thing missing in the talk,’ says Ratner. ‘He talked about making things, but the making didn’t seem to involve self-assembly, but rather carving.’ ‘To my reading, Feynman gave the impression that chemistry was a distant discipline, whilst conceding that chemists could make anything,’ says Fraser Stoddart, now also at Northwestern University in Illinois, who has pioneered self-assembly of complex molecular structures. ‘This claim on behalf of the synthetic chemists of the late 1950s was simplistic, bordering on naïve.’ ‘He assumed that the science of small things would be dominated by physics,’ says Whitesides. ‘As it turns out, the engineering of small things has been dominated by electrical engineering and materials science, and by chemistry and molecular biology. So I would say that he got the “vector” entirely right, and the details entirely wrong.’ It’s sometimes said that, having aired his wild thoughts on atomic- scale engineering, Feynman never again returned to the subject. But he did. In 1983 he reconsidered his the shrinking of computer circuit something about it’. Today, molecular Nanotechnology came ideas in a talk at the Jet Propulsion elements, and there was none of the and cell biology are frequently cited alive with the advent Laboratory in California, entitled now commonplace presumption that not only as an ‘existence proof’ that of scanning tunnelling ‘Infinitesimal machinery,’ which data storage and processing would nanotechnology is possible but as a microscopy in the 1980s too found its way into print. (A video have to happen at an ever-decreasing rich store of ideas for how it might be of the talk also exists, showing that scale.
Recommended publications
  • 30 Years of Moving Individual Atoms
    FEATURES 30 YEARS OF MOVING INDIVIDUAL ATOMS 1 2 l Christopher Lutz and Leo Gross – DOI: https://doi.org/10.1051/epn/2020205 l 1 IBM Research – Almaden, San Jose, California, USA l 2 IBM Research – Zurich,¨ 8803 Ruschlikon,¨ Switzerland In the thirty years since atoms were first positioned individually, the atom-moving capability of scanning probe microscopes has grown to employ a wide variety of atoms and small molecules, yielding custom nanostructures that show unique electronic, magnetic and chemical properties. his year marks the thirtieth anniversary of the publication by IBM researchers Don Eigler and Erhard Schweizer showing that individ- Tual atoms can be positioned precisely into chosen patterns [1]. Tapping the keyboard of a personal computer for 22 continuous hours, they controlled the movement of a sharp tungsten needle to pull 35 individ- ual xenon atoms into place on a surface to spell the letters “IBM” (Figure 1). Eigler and Schweitzer’s demonstration set in motion the use of a newly invented tool, called the scanning tunneling microscope (STM), as the workhorse for nanoscience research. But this achievement did even more than that: it changed the way we think of atoms. m FIG. 2: The STM that Don Eigler and coworkers used to position atoms. The It led us to view them as building blocks that can be tip is seen touching its reflection in the sample’s surface. (Credit: IBM) arranged the way we choose, no longer being limited by the feeling that atoms are inaccessibly small. with just one electron or atom or (small) molecule. FIG.
    [Show full text]
  • Wolfgang Pauli Niels Bohr Paul Dirac Max Planck Richard Feynman
    Wolfgang Pauli Niels Bohr Paul Dirac Max Planck Richard Feynman Louis de Broglie Norman Ramsey Willis Lamb Otto Stern Werner Heisenberg Walther Gerlach Ernest Rutherford Satyendranath Bose Max Born Erwin Schrödinger Eugene Wigner Arnold Sommerfeld Julian Schwinger David Bohm Enrico Fermi Albert Einstein Where discovery meets practice Center for Integrated Quantum Science and Technology IQ ST in Baden-Württemberg . Introduction “But I do not wish to be forced into abandoning strict These two quotes by Albert Einstein not only express his well­ more securely, develop new types of computer or construct highly causality without having defended it quite differently known aversion to quantum theory, they also come from two quite accurate measuring equipment. than I have so far. The idea that an electron exposed to a different periods of his life. The first is from a letter dated 19 April Thus quantum theory extends beyond the field of physics into other 1924 to Max Born regarding the latter’s statistical interpretation of areas, e.g. mathematics, engineering, chemistry, and even biology. beam freely chooses the moment and direction in which quantum mechanics. The second is from Einstein’s last lecture as Let us look at a few examples which illustrate this. The field of crypt­ it wants to move is unbearable to me. If that is the case, part of a series of classes by the American physicist John Archibald ography uses number theory, which constitutes a subdiscipline of then I would rather be a cobbler or a casino employee Wheeler in 1954 at Princeton. pure mathematics. Producing a quantum computer with new types than a physicist.” The realization that, in the quantum world, objects only exist when of gates on the basis of the superposition principle from quantum they are measured – and this is what is behind the moon/mouse mechanics requires the involvement of engineering.
    [Show full text]
  • Biographical References for Nobel Laureates
    Dr. John Andraos, http://www.careerchem.com/NAMED/Nobel-Biographies.pdf 1 BIOGRAPHICAL AND OBITUARY REFERENCES FOR NOBEL LAUREATES IN SCIENCE © Dr. John Andraos, 2004 - 2021 Department of Chemistry, York University 4700 Keele Street, Toronto, ONTARIO M3J 1P3, CANADA For suggestions, corrections, additional information, and comments please send e-mails to [email protected] http://www.chem.yorku.ca/NAMED/ CHEMISTRY NOBEL CHEMISTS Agre, Peter C. Alder, Kurt Günzl, M.; Günzl, W. Angew. Chem. 1960, 72, 219 Ihde, A.J. in Gillispie, Charles Coulston (ed.) Dictionary of Scientific Biography, Charles Scribner & Sons: New York 1981, Vol. 1, p. 105 Walters, L.R. in James, Laylin K. (ed.), Nobel Laureates in Chemistry 1901 - 1992, American Chemical Society: Washington, DC, 1993, p. 328 Sauer, J. Chem. Ber. 1970, 103, XI Altman, Sidney Lerman, L.S. in James, Laylin K. (ed.), Nobel Laureates in Chemistry 1901 - 1992, American Chemical Society: Washington, DC, 1993, p. 737 Anfinsen, Christian B. Husic, H.D. in James, Laylin K. (ed.), Nobel Laureates in Chemistry 1901 - 1992, American Chemical Society: Washington, DC, 1993, p. 532 Anfinsen, C.B. The Molecular Basis of Evolution, Wiley: New York, 1959 Arrhenius, Svante J.W. Proc. Roy. Soc. London 1928, 119A, ix-xix Farber, Eduard (ed.), Great Chemists, Interscience Publishers: New York, 1961 Riesenfeld, E.H., Chem. Ber. 1930, 63A, 1 Daintith, J.; Mitchell, S.; Tootill, E.; Gjersten, D., Biographical Encyclopedia of Scientists, Institute of Physics Publishing: Bristol, UK, 1994 Fleck, G. in James, Laylin K. (ed.), Nobel Laureates in Chemistry 1901 - 1992, American Chemical Society: Washington, DC, 1993, p. 15 Lorenz, R., Angew.
    [Show full text]
  • Richard P. Feynman Author
    Title: The Making of a Genius: Richard P. Feynman Author: Christian Forstner Ernst-Haeckel-Haus Friedrich-Schiller-Universität Jena Berggasse 7 D-07743 Jena Germany Fax: +49 3641 949 502 Email: [email protected] Abstract: In 1965 the Nobel Foundation honored Sin-Itiro Tomonaga, Julian Schwinger, and Richard Feynman for their fundamental work in quantum electrodynamics and the consequences for the physics of elementary particles. In contrast to both of his colleagues only Richard Feynman appeared as a genius before the public. In his autobiographies he managed to connect his behavior, which contradicted several social and scientific norms, with the American myth of the “practical man”. This connection led to the image of a common American with extraordinary scientific abilities and contributed extensively to enhance the image of Feynman as genius in the public opinion. Is this image resulting from Feynman’s autobiographies in accordance with historical facts? This question is the starting point for a deeper historical analysis that tries to put Feynman and his actions back into historical context. The image of a “genius” appears then as a construct resulting from the public reception of brilliant scientific research. Introduction Richard Feynman is “half genius and half buffoon”, his colleague Freeman Dyson wrote in a letter to his parents in 1947 shortly after having met Feynman for the first time.1 It was precisely this combination of outstanding scientist of great talent and seeming clown that was conducive to allowing Feynman to appear as a genius amongst the American public. Between Feynman’s image as a genius, which was created significantly through the representation of Feynman in his autobiographical writings, and the historical perspective on his earlier career as a young aspiring physicist, a discrepancy exists that has not been observed in prior biographical literature.
    [Show full text]
  • More Eugene Wigner Stories; Response to a Feynman Claim (As Published in the Oak Ridger’S Historically Speaking Column on August 29, 2016)
    More Eugene Wigner stories; Response to a Feynman claim (As published in The Oak Ridger’s Historically Speaking column on August 29, 2016) Carolyn Krause has collected a couple more stories about Eugene Wigner, plus a response by Y- 12 to allegations by Richard Feynman in a book that included a story on his experience at Y-12 during World War II. … Mary Ann Davidson, widow of Jack Davidson, a longtime member of the Oak Ridge National Laboratory’s Instrumentation and Controls Division, told me about Jack’s encounter with Wigner one day. Once Eugene Wigner had trouble opening his briefcase while visiting ORNL. He was referred to Jack Davidson in the old Instrumentation and Controls Division. Jack managed to open it for him. As was his custom, Wigner asked Jack about his research. Jack, who later won an R&D-100 award, said he was building a camera that will imitate a fly’s eye; in other words, it will capture light coming from a variety of directions. The topic of television and TV cameras came up. Wigner said he wondered how TV works. So Davidson explained the concept to him. Charles Jones told me this story about Eugene Wigner when he visited ORNL in the 1980s. Jones, who was technical director of the Holifield Heavy Ion Research Facility, said he invited Wigner to accompany him to the top of the HHIRF tower, and Wigner happily accepted the offer. At the top Wigner looked down at all the ORNL buildings, most of which had been constructed after he was the lab’s research director in 1946-47.
    [Show full text]
  • Small Wonders, Endless Frontiers
    Small Wonders, Endless Frontiers A Review of the National Nanotechnology Initiative Committee for the Review of the National Nanotechnology Initiative Division on Engineering and Physical Sciences National Research Council NATIONAL ACADEMY PRESS Washington, D.C. NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine. The members of the committee responsible for the report were chosen for their special competences and with regard for appropriate balance. This material is based on work supported by the National Science Foundation under Grant No. CTS- 0096624. Any opinions, findings, and conclusions or recommendations expressed in it are those of the authors and do not necessarily reflect the views of the National Science Foundation. International Standard Book Number 0-309-08454-7 Additional copies of this report are available from: National Research Council 2101 Constitution Avenue, N.W. Washington, DC 20418 Internet, <http://www.nap.edu> Copyright 2002 by the National Academy of Sciences. All rights reserved. Printed in the United States of America Front cover: Three-dimensional scanning tunneling microscope image of a man-made lattice of cobalt atoms on a copper (111) surface. Courtesy of Don Eigler, IBM Almaden Research Center. Back cover: A nanoscale motor created by attaching a synthetic rotor to an ATP synthase. Reprinted with permission of the American Association for the Advancement of Science from Soong et al., Science 290, 1555 (2000). © 2000 by AAAS.
    [Show full text]
  • ABSTRACT MARTIN, KELLY NORRIS. Visual
    ABSTRACT MARTIN, KELLY NORRIS. Visual Research: Introducing a Schema for Methodologies and Contexts. (Under the direction of Victoria J. Gallagher.) Studying the visual has become tremendously important to many disciplines because images express a range of human experience sometimes ambiguously articulated in verbal discourse, namely, “spatially oriented, nonlinear, multidimensional, and dynamic” human experiences (Foss, 2005, p. 143). In fact, the power of the image to plainly communicate occurs not “in spite of language’s absence but also frequently because of language’s absence” (Ott & Dickinson, 2009, p. 392). Presently, the challenge for visual research is that scholars investigate images from varied disciplines with separate and distinctive methods with little discussion or exchange across fields. Furthermore, more disciplines are requiring students to take courses in visual communication and more professors are being hired to teach those courses. However, these visual communication professors have nowhere to go (in the United States) in order to become prepared to teach and conduct research in visual communication. They enroll in programs in journalism and mass communication, linguistics, sociology, social psychology, anthropology, and so on. Then, they either adapt what they learn from these fields to the field of visual communication or they teach themselves about the methods, theories, and literature of visual communication. This project focused on comparing and contrasting the strengths and limitations of various visual research
    [Show full text]
  • Dr Don Eigler Hon Dsc
    Dr Don Eigler Hon DSc Oration by Professor Chris McConville Department of Physics Dr Don Eigler Hon DSc I am personally delighted that today’s honorary graduate is being given to study non-interacting inert gas atoms such as xenon on a metal surface. this award. Dr Don Eigler is quite literally a giant in the “Small World” of However, he observed that even at these low temperatures the Xe atoms Nanoscience and Nanotechnology, and he is universally acknowledged as would still change positions on the surface due to the forces exerted on the first person ever to move and control a single atom. them by the tip of the microscope. He concluded that if these forces could be controlled, he should be able to move the atoms deliberately. Nanotechnology impacts on all our lives, from the ever-present smartphone to medical and environmental applications, but its origins On 10th November 1989 he arranged 35 xenon atoms on a nickel surface can be said to have begun in December 1959 with a lecture by the to spell out ‘I.B.M.’ As he said in his log book this was “the first ever visionary – and often controversial – physicist, Richard Feynman, entitled construction of a patterned array of atoms”. That now famous image not There’s Plenty of Room at the Bottom. In it Feynman speculated that, “The only appeared on the front cover of Nature, but when the news broke in an principles of physics, as far as I can see, do not speak against the possibility IBM press release, on the front page of most broadsheet newspapers in of maneuvering things atom by atom, arranging them the way we want the western world.
    [Show full text]
  • Works of Love
    reader.ad section 9/21/05 12:38 PM Page 2 AMAZING LIGHT: Visions for Discovery AN INTERNATIONAL SYMPOSIUM IN HONOR OF THE 90TH BIRTHDAY YEAR OF CHARLES TOWNES October 6-8, 2005 — University of California, Berkeley Amazing Light Symposium and Gala Celebration c/o Metanexus Institute 3624 Market Street, Suite 301, Philadelphia, PA 19104 215.789.2200, [email protected] www.foundationalquestions.net/townes Saturday, October 8, 2005 We explore. What path to explore is important, as well as what we notice along the path. And there are always unturned stones along even well-trod paths. Discovery awaits those who spot and take the trouble to turn the stones. -- Charles H. Townes Table of Contents Table of Contents.............................................................................................................. 3 Welcome Letter................................................................................................................. 5 Conference Supporters and Organizers ............................................................................ 7 Sponsors.......................................................................................................................... 13 Program Agenda ............................................................................................................. 29 Amazing Light Young Scholars Competition................................................................. 37 Amazing Light Laser Challenge Website Competition.................................................. 41 Foundational
    [Show full text]
  • Applications in Solid-State Nuclear Magnetic Resonance and Physics
    On Fer and Floquet-Magnus Expansions: Applications in Solid-State Nuclear Magnetic Resonance and Physics Eugene Stephane Mananga The City University of New York New York University International Conference on Physics June 27-29, 2016 New Orleans, LA, USA OUTLINE A. Background of NMR: Solid-State NMR • Principal References B. Commonly Used Methods in Solid-State NMR • Floquet Theory • Average Hamiltonian Theory C. Alternative Expansion Approaches Used Methods in SS-NMR • Fer Expansion • Floquet-Magnus Expansion D. Applications of Fer and Floquet-Magnus expansion in SS-SNMR E. Applications of Fer and Floquet-Magnus expansion in Physics A. Background of NMR: Solid-State NMR • NMR is an extraordinary versatile technique which started in Physics In 1945 and has spread with great success to Chemistry, Biochemistry, Biology, and Medicine, finding applications also in Geophysics, Archeology, Pharmacy, etc... • Hardly any discipline has remained untouched by NMR. • It is practiced in scientific labs everywhere, and no doubt before long will be found on the moon. • NMR has proved useful in elucidating problems in all forms of matter. In this talk we consider applications of NMR to solid state: Solid-State NMR BRIEF HISTORY OF NMR • 1920's Physicists Have Great Success With Quantum Theory • 1921 Stern and Gerlach Carry out Atomic and Molecular Beam Experiments • 1925/27 Schrödinger/ Heisenberg/ Dirac Formulate The New Quantum Mechanics • 1936 Gorter Attempts Experiments Using The Resonance Property of Nuclear Spin • 1937 Rabi Predicts and Observes
    [Show full text]
  • Communications-Mathematics and Applied Mathematics/Download/8110
    A Mathematician's Journey to the Edge of the Universe "The only true wisdom is in knowing you know nothing." ― Socrates Manjunath.R #16/1, 8th Main Road, Shivanagar, Rajajinagar, Bangalore560010, Karnataka, India *Corresponding Author Email: [email protected] *Website: http://www.myw3schools.com/ A Mathematician's Journey to the Edge of the Universe What’s the Ultimate Question? Since the dawn of the history of science from Copernicus (who took the details of Ptolemy, and found a way to look at the same construction from a slightly different perspective and discover that the Earth is not the center of the universe) and Galileo to the present, we (a hoard of talking monkeys who's consciousness is from a collection of connected neurons − hammering away on typewriters and by pure chance eventually ranging the values for the (fundamental) numbers that would allow the development of any form of intelligent life) have gazed at the stars and attempted to chart the heavens and still discovering the fundamental laws of nature often get asked: What is Dark Matter? ... What is Dark Energy? ... What Came Before the Big Bang? ... What's Inside a Black Hole? ... Will the universe continue expanding? Will it just stop or even begin to contract? Are We Alone? Beginning at Stonehenge and ending with the current crisis in String Theory, the story of this eternal question to uncover the mysteries of the universe describes a narrative that includes some of the greatest discoveries of all time and leading personalities, including Aristotle, Johannes Kepler, and Isaac Newton, and the rise to the modern era of Einstein, Eddington, and Hawking.
    [Show full text]
  • Electronic Transport in Single-Walled Carbon Nanotubes, and Their Application As Scanning Probe Microscopy Tips
    Electronic Transport in Single-Walled Carbon Nanotubes, and their Application as Scanning Probe Microscopy tips by Neil Richard Wilson Thesis Submitted to the University of Warwick for the degree of Doctor of Philosophy Physics April 2004 ii Contents List of Tables vii List of Figures viii Acknowledgments xiv Declarations xvi Abstract xviii Abbreviations xix Chapter 1 Introduction 1 1.1 Introduction to Single-Walled Carbon Nanotubes ........... 3 History .............................. 4 Structure and mechanical properties .............. 6 Electronic properties of SWNT ................. 9 Why study SWNT devices: the Physics and the Funding . 17 1.2 Introduction to Atomic Force Microscopy . 20 Dynamic or 'Tapping' mode AFM . 24 Dynamic lateral force mode or 'Torsional Resonance' mode . 30 Electric Force Microscopy .................... 33 iii Tips and Cantilevers ....................... 36 Multimode and Dimension AFM's . 39 1.3 Outline of thesis ............................. 41 Chapter 2 SWNT growth and devices 42 2.1 SWNT growth .............................. 42 2.1.1 Experimental setup and results . 44 2.1.2 Characterisation ......................... 53 AFM and SCM .......................... 53 Electron Microscopy ....................... 55 micro-Raman spectroscopy ................... 59 2.2 SWNT devices .............................. 62 Lithography ............................ 63 Device Fabrication ........................ 66 2.2.1 Room Temperature Electronic Transport Characteristics . 68 2.3 Conclusions and future work ...................... 75 Chapter 3 EFM and SGM of carbon nanotube devices 77 3.1 Experimental setup for EFM and SGM . 79 3.2 Manipulation of SWNT devices, and characterisation by SGM . 82 3.3 SSPM of SWNT devices ......................... 89 3.3.1 Current saturation in mSWNT devices . 90 3.3.2 Hysteresis in the transconductance of SWNT devices . 97 3.4 Conclusions and future work . 101 Chapter 4 SWNT as AFM probes 103 4.1 Fabrication of SWNT-AFM tips .
    [Show full text]