Dr. Richard Feynman Nobel Laureatel

Total Page:16

File Type:pdf, Size:1020Kb

Dr. Richard Feynman Nobel Laureatel EXTRA! California Tech EXTRA! Associated Students of the Califorl'lia Institute of Technology Volume LXVII Pasadena, California, Friday, October 22, 1965 Number 5V2 Dr. Richard Feynman Nobel Laureatel October 21, 1965 (9 a.m.) Professor Richard Feynman: Royal Academs of Sciences today awarded you and Tomonaga and Schwinger jointly the 1965 Nobel Prize for physics for your fundamental work in quantum electrody· namics with deep ploughing consequences for the physics of elementary particles.' Prize money each one·third. Our warm congratulations. Letter will follow. Erik Rundberg The Permanent Secretary Erik Rundberg: Your cablegram has made me very happy! Richard P. Feynman Earlier, at 3:45 a.m.: "'Hello, Dr. Richard Feynman? May I congratulate you on your Nobel Prize.' "Look. This is a heck of an hour­ "'But aren't you pleased to hear that you've won the Prize?' "I could have found out later this morn­ ing. "'Well, how do you feel, now that you've "And so he se:z:, 'Can you explain in a few words just what you did to win the Pri:z:e?' So 1 say, 'I won it?' made marks on a piece of paper:" "Look, some other time . " And so Richard P. Feynman, PhD, FRS, through second-order approximations led to going to be a mess. and Richard Chace Tolman Professor of infinite solutions. What the three Nobel '" Well, I'm going to ask you also to Theoretical Physics at Caltech, first sleepily Prize winners did, in the words of Feyn­ comment on the statement that your work learned that he was an awardee of the 1965 man, was "to get rid of the infinities in the was to convert experi.mental data on Nobel Prize in physics. calculations. The infinities are still there, strange particles into hard mathematical Later yesterday morning, as growing but now they can be skirted around . fact.' realization brought greater excitement, We have designed a method for sweeping "No, I'm not gOing to comment on that." Feynman learned that Schwinger and To­ them under the rug." "Finally, 'All right. What time did you managa shared the award with him, and Later in the morning Feynman went hear about the Award?' will also be making the December 10 trip through another press conference. In his "Ok, now turn on the cameras!" to Stockholm. All three received the Prize words: In the afternoon spirited undergraduates as the result of simultaneous, independent "A group came who couldn't get to the raised a "'Vin big, RF" banner on the dome theoretical work conducted during 1947- press conference because they were late. of Throop. And naturally, Feynman was 1949 in quantum electrodynamics. the center of attention at a packed Physics Though the results of the three were la­ Department seminar tea held in Bridge at ter shown to be equivalent, Feynman intro­ 4:15, where he was formally inducted into duced the pioneering "Feynman diagram," the Nobel elite by Dr. Carl D. Anderson. a powerful tool greatly simplifying quant­ "I feel," confided Feynman, "that the Nobel um-dynamical calculations. As Feynman Committee was very wise in its Prize se­ himself explained: lection." Three hip-hip-hoorays followed. "It was the purpose of making these sim­ Lee Feynman told how a telephone caller plified methods of calculating more avail­ from New York had asked him to comment able that I published my paper in 1949, for This guy comes into my office, and says to on the New York school system. "It was I still didn't think I had solved any real me: 'I'll tell you what I'm going to ask you, all right when I was going to it 30 years problems, except to make more efficient cal­ so you're ready when the cameras start. ago," he answered. And Feynman has al­ culations. But it does turn out that if the One of the questions is: What applications ready decided how to spend his one-third efficiency is increased enough, it itself is dGes this paper have in the computer in­ of the $55,0000 Prize money: "I'll use it to practically a discovery. It was a lot faster dustry?' pay my income tax for the next years, so way of doing the old thing." "I said, 'The answer to that will be that my income is taX-free." This "old thing," as Feynman described it "none." , The California Tecb visited Feynman at during a press conference held at 10:30 a.m. "'Well, then, does it have application?' his home in the evening for a speCial inter­ in the Atheneaum, was the solution of Di­ "It hasn't got any- view. In describing some of his more re­ rac's equations, formulated in 1929. Previ­ " 'Oh, you're kidding, sir.' cent work, Feynman told how his quantum ous attempts to get more a c cur a c y "No." I knew that this interview was (Continued on back page) Back Page EXTRA CALIFORNIA TEC.H Friday, October 22, 1965 The Work That /Won The Prize By using tricks and devices-like construct­ procedure; instead he offered to work out ing the difference of two "infinite" quan­ a physical example to demonstrate the cor­ tites to be finite-the theory could be per­ rect results it produced. But the audience suaded to give nondivergcnt answers. objected to the time this would require The actual elaboration of this beginning and the hair involved, even though these work was done more or less independently had been drastically reduced by his meth­ by the three men who share the ~obel ods. The CUlmination of the audience's Prize: Feynman (then at CJrnell), Schwing­ feeling that Feynman was running a:nok er at H::lrvard, and Tomonaga in Tokyo. withcut being rigorous came when Niels The latter two went along traditional Enes, Bohr stood up, objected to Feynman's use of using the electric and mangetic fields that trajectories for small particles, and started everyone accepted implicitly at that time. r2mind~ng him about Heisenberg's uncer­ Feynman took a radical approach with a tainty principle. Here F'eynman gave up theory that treated all events in terms of in despair, realizing that he COUldn't CJill­ particles. Xost physicists thou:sht this a municate the fact that his analysis was wild idea at the time. Fcynman was able jusLified by its correct results. to eliminate most of the divergGw2 difficul­ :;'<:1:(1 110t .in sight ties, but not quite all of them. Gradual­ ly, through considerable intuition and trial Feynman then dedded to publish what and error, he learned rules for making sim­ he had so far, without waiting to remove Caltech Nobel Laureates Anderson and Feynman. plified calculations which produced correct completely the divergence difficulties, as It's been a long. happy day. results. he had originally planned. It turned out to be a good idea, because the difficulties The 1965 Nobel Prize in physics was "It \VORI{S!" have yet to be removed, even after 17 awarded for accomplishments of years ago. From time to time he would meet Sch­ years. Schwinger and Tomonaga published winger at a conference somewhere and In order to understand what advance the l:~Pcrs at about the same time. It was for trio actually made in its historical context, compare results, but not methods. Their this work that they were all awarded the it is necessary to go back almost four approaches remained largely independent Nobel Prize 16 years later. because of their practice of not learning decades. In the interim, opinion gradually shifted each other's approaches, but instead com­ away from the field theory view used by Quantum electrodynamics (qed) was paring final results and discussing trouble Sch winger and Tomonaga and more toward born around 1928·30 of a marriage of the areas in general terms. new quantum mechanics with the old equa­ Feynman's particle approach. Perhaps the Eventually Feynman believed he had most important result of his work was the tions of Maxwell's classical electrodynamics. produced something valuable, even thou::-;h The midwives for the tremendous theoreti­ development of Feynman diagrams (pic­ it was not yet perfect because some of the tures of interaction trajectories) which cal development of this time were the same infinities refused to be resolved away. The giants of physics whose names have be- vastly simplify the formerly lengthy and test of his theory was not only in that it gave tedious calculations of qed interactions. :~_ / come so familiar: Heisenberg, Pauli, }:<~ermi, answers that vvere correct; but it gave cor­ and Dirac. The new qed theory did a beau­ Feynman himself believes that the'dis­ rect answers in everT instance he tried it. tiful job of explaining all sorts of electro­ crepancies of the few remaining infinities Feynman tells the story of his coming in his theory will never be resolved. In­ dynamical events on an atomic scale by upon an informal discussion at a physics quantizing everything. stead, he feels personally that when a sat­ conference about the correctness of some isfactory explanation is finally achieved, it Infinite problems physicist's answer to a problem. The man, will require physicists to discard most of In the later thirties, certain "divergence who had spent a year and a half arriving the old ideas and to formulate an entirely difficulties"-getting infinite answers for at his answer, described the problem to new approach. quantities that should be finite and physi­ Feynman, who proceeded that evening to cal-reared their ugly heads. In particular apply his own methods to it.
Recommended publications
  • Wolfgang Pauli Niels Bohr Paul Dirac Max Planck Richard Feynman
    Wolfgang Pauli Niels Bohr Paul Dirac Max Planck Richard Feynman Louis de Broglie Norman Ramsey Willis Lamb Otto Stern Werner Heisenberg Walther Gerlach Ernest Rutherford Satyendranath Bose Max Born Erwin Schrödinger Eugene Wigner Arnold Sommerfeld Julian Schwinger David Bohm Enrico Fermi Albert Einstein Where discovery meets practice Center for Integrated Quantum Science and Technology IQ ST in Baden-Württemberg . Introduction “But I do not wish to be forced into abandoning strict These two quotes by Albert Einstein not only express his well­ more securely, develop new types of computer or construct highly causality without having defended it quite differently known aversion to quantum theory, they also come from two quite accurate measuring equipment. than I have so far. The idea that an electron exposed to a different periods of his life. The first is from a letter dated 19 April Thus quantum theory extends beyond the field of physics into other 1924 to Max Born regarding the latter’s statistical interpretation of areas, e.g. mathematics, engineering, chemistry, and even biology. beam freely chooses the moment and direction in which quantum mechanics. The second is from Einstein’s last lecture as Let us look at a few examples which illustrate this. The field of crypt­ it wants to move is unbearable to me. If that is the case, part of a series of classes by the American physicist John Archibald ography uses number theory, which constitutes a subdiscipline of then I would rather be a cobbler or a casino employee Wheeler in 1954 at Princeton. pure mathematics. Producing a quantum computer with new types than a physicist.” The realization that, in the quantum world, objects only exist when of gates on the basis of the superposition principle from quantum they are measured – and this is what is behind the moon/mouse mechanics requires the involvement of engineering.
    [Show full text]
  • Biographical References for Nobel Laureates
    Dr. John Andraos, http://www.careerchem.com/NAMED/Nobel-Biographies.pdf 1 BIOGRAPHICAL AND OBITUARY REFERENCES FOR NOBEL LAUREATES IN SCIENCE © Dr. John Andraos, 2004 - 2021 Department of Chemistry, York University 4700 Keele Street, Toronto, ONTARIO M3J 1P3, CANADA For suggestions, corrections, additional information, and comments please send e-mails to [email protected] http://www.chem.yorku.ca/NAMED/ CHEMISTRY NOBEL CHEMISTS Agre, Peter C. Alder, Kurt Günzl, M.; Günzl, W. Angew. Chem. 1960, 72, 219 Ihde, A.J. in Gillispie, Charles Coulston (ed.) Dictionary of Scientific Biography, Charles Scribner & Sons: New York 1981, Vol. 1, p. 105 Walters, L.R. in James, Laylin K. (ed.), Nobel Laureates in Chemistry 1901 - 1992, American Chemical Society: Washington, DC, 1993, p. 328 Sauer, J. Chem. Ber. 1970, 103, XI Altman, Sidney Lerman, L.S. in James, Laylin K. (ed.), Nobel Laureates in Chemistry 1901 - 1992, American Chemical Society: Washington, DC, 1993, p. 737 Anfinsen, Christian B. Husic, H.D. in James, Laylin K. (ed.), Nobel Laureates in Chemistry 1901 - 1992, American Chemical Society: Washington, DC, 1993, p. 532 Anfinsen, C.B. The Molecular Basis of Evolution, Wiley: New York, 1959 Arrhenius, Svante J.W. Proc. Roy. Soc. London 1928, 119A, ix-xix Farber, Eduard (ed.), Great Chemists, Interscience Publishers: New York, 1961 Riesenfeld, E.H., Chem. Ber. 1930, 63A, 1 Daintith, J.; Mitchell, S.; Tootill, E.; Gjersten, D., Biographical Encyclopedia of Scientists, Institute of Physics Publishing: Bristol, UK, 1994 Fleck, G. in James, Laylin K. (ed.), Nobel Laureates in Chemistry 1901 - 1992, American Chemical Society: Washington, DC, 1993, p. 15 Lorenz, R., Angew.
    [Show full text]
  • Richard P. Feynman Author
    Title: The Making of a Genius: Richard P. Feynman Author: Christian Forstner Ernst-Haeckel-Haus Friedrich-Schiller-Universität Jena Berggasse 7 D-07743 Jena Germany Fax: +49 3641 949 502 Email: [email protected] Abstract: In 1965 the Nobel Foundation honored Sin-Itiro Tomonaga, Julian Schwinger, and Richard Feynman for their fundamental work in quantum electrodynamics and the consequences for the physics of elementary particles. In contrast to both of his colleagues only Richard Feynman appeared as a genius before the public. In his autobiographies he managed to connect his behavior, which contradicted several social and scientific norms, with the American myth of the “practical man”. This connection led to the image of a common American with extraordinary scientific abilities and contributed extensively to enhance the image of Feynman as genius in the public opinion. Is this image resulting from Feynman’s autobiographies in accordance with historical facts? This question is the starting point for a deeper historical analysis that tries to put Feynman and his actions back into historical context. The image of a “genius” appears then as a construct resulting from the public reception of brilliant scientific research. Introduction Richard Feynman is “half genius and half buffoon”, his colleague Freeman Dyson wrote in a letter to his parents in 1947 shortly after having met Feynman for the first time.1 It was precisely this combination of outstanding scientist of great talent and seeming clown that was conducive to allowing Feynman to appear as a genius amongst the American public. Between Feynman’s image as a genius, which was created significantly through the representation of Feynman in his autobiographical writings, and the historical perspective on his earlier career as a young aspiring physicist, a discrepancy exists that has not been observed in prior biographical literature.
    [Show full text]
  • More Eugene Wigner Stories; Response to a Feynman Claim (As Published in the Oak Ridger’S Historically Speaking Column on August 29, 2016)
    More Eugene Wigner stories; Response to a Feynman claim (As published in The Oak Ridger’s Historically Speaking column on August 29, 2016) Carolyn Krause has collected a couple more stories about Eugene Wigner, plus a response by Y- 12 to allegations by Richard Feynman in a book that included a story on his experience at Y-12 during World War II. … Mary Ann Davidson, widow of Jack Davidson, a longtime member of the Oak Ridge National Laboratory’s Instrumentation and Controls Division, told me about Jack’s encounter with Wigner one day. Once Eugene Wigner had trouble opening his briefcase while visiting ORNL. He was referred to Jack Davidson in the old Instrumentation and Controls Division. Jack managed to open it for him. As was his custom, Wigner asked Jack about his research. Jack, who later won an R&D-100 award, said he was building a camera that will imitate a fly’s eye; in other words, it will capture light coming from a variety of directions. The topic of television and TV cameras came up. Wigner said he wondered how TV works. So Davidson explained the concept to him. Charles Jones told me this story about Eugene Wigner when he visited ORNL in the 1980s. Jones, who was technical director of the Holifield Heavy Ion Research Facility, said he invited Wigner to accompany him to the top of the HHIRF tower, and Wigner happily accepted the offer. At the top Wigner looked down at all the ORNL buildings, most of which had been constructed after he was the lab’s research director in 1946-47.
    [Show full text]
  • Works of Love
    reader.ad section 9/21/05 12:38 PM Page 2 AMAZING LIGHT: Visions for Discovery AN INTERNATIONAL SYMPOSIUM IN HONOR OF THE 90TH BIRTHDAY YEAR OF CHARLES TOWNES October 6-8, 2005 — University of California, Berkeley Amazing Light Symposium and Gala Celebration c/o Metanexus Institute 3624 Market Street, Suite 301, Philadelphia, PA 19104 215.789.2200, [email protected] www.foundationalquestions.net/townes Saturday, October 8, 2005 We explore. What path to explore is important, as well as what we notice along the path. And there are always unturned stones along even well-trod paths. Discovery awaits those who spot and take the trouble to turn the stones. -- Charles H. Townes Table of Contents Table of Contents.............................................................................................................. 3 Welcome Letter................................................................................................................. 5 Conference Supporters and Organizers ............................................................................ 7 Sponsors.......................................................................................................................... 13 Program Agenda ............................................................................................................. 29 Amazing Light Young Scholars Competition................................................................. 37 Amazing Light Laser Challenge Website Competition.................................................. 41 Foundational
    [Show full text]
  • Applications in Solid-State Nuclear Magnetic Resonance and Physics
    On Fer and Floquet-Magnus Expansions: Applications in Solid-State Nuclear Magnetic Resonance and Physics Eugene Stephane Mananga The City University of New York New York University International Conference on Physics June 27-29, 2016 New Orleans, LA, USA OUTLINE A. Background of NMR: Solid-State NMR • Principal References B. Commonly Used Methods in Solid-State NMR • Floquet Theory • Average Hamiltonian Theory C. Alternative Expansion Approaches Used Methods in SS-NMR • Fer Expansion • Floquet-Magnus Expansion D. Applications of Fer and Floquet-Magnus expansion in SS-SNMR E. Applications of Fer and Floquet-Magnus expansion in Physics A. Background of NMR: Solid-State NMR • NMR is an extraordinary versatile technique which started in Physics In 1945 and has spread with great success to Chemistry, Biochemistry, Biology, and Medicine, finding applications also in Geophysics, Archeology, Pharmacy, etc... • Hardly any discipline has remained untouched by NMR. • It is practiced in scientific labs everywhere, and no doubt before long will be found on the moon. • NMR has proved useful in elucidating problems in all forms of matter. In this talk we consider applications of NMR to solid state: Solid-State NMR BRIEF HISTORY OF NMR • 1920's Physicists Have Great Success With Quantum Theory • 1921 Stern and Gerlach Carry out Atomic and Molecular Beam Experiments • 1925/27 Schrödinger/ Heisenberg/ Dirac Formulate The New Quantum Mechanics • 1936 Gorter Attempts Experiments Using The Resonance Property of Nuclear Spin • 1937 Rabi Predicts and Observes
    [Show full text]
  • Communications-Mathematics and Applied Mathematics/Download/8110
    A Mathematician's Journey to the Edge of the Universe "The only true wisdom is in knowing you know nothing." ― Socrates Manjunath.R #16/1, 8th Main Road, Shivanagar, Rajajinagar, Bangalore560010, Karnataka, India *Corresponding Author Email: [email protected] *Website: http://www.myw3schools.com/ A Mathematician's Journey to the Edge of the Universe What’s the Ultimate Question? Since the dawn of the history of science from Copernicus (who took the details of Ptolemy, and found a way to look at the same construction from a slightly different perspective and discover that the Earth is not the center of the universe) and Galileo to the present, we (a hoard of talking monkeys who's consciousness is from a collection of connected neurons − hammering away on typewriters and by pure chance eventually ranging the values for the (fundamental) numbers that would allow the development of any form of intelligent life) have gazed at the stars and attempted to chart the heavens and still discovering the fundamental laws of nature often get asked: What is Dark Matter? ... What is Dark Energy? ... What Came Before the Big Bang? ... What's Inside a Black Hole? ... Will the universe continue expanding? Will it just stop or even begin to contract? Are We Alone? Beginning at Stonehenge and ending with the current crisis in String Theory, the story of this eternal question to uncover the mysteries of the universe describes a narrative that includes some of the greatest discoveries of all time and leading personalities, including Aristotle, Johannes Kepler, and Isaac Newton, and the rise to the modern era of Einstein, Eddington, and Hawking.
    [Show full text]
  • LUIS ALVAREZ and the PYRAMID BURIAL CHAMBERS, the JFK ASSASSINATION, and the END of the DINOSAURS Charles G
    SCIENTIST AS DETECTIVE: LUIS ALVAREZ AND THE PYRAMID BURIAL CHAMBERS, THE JFK ASSASSINATION, AND THE END OF THE DINOSAURS Charles G. Wohl Lawrence Berkeley National Laboratory, Berkeley, CA 94720 Luis Alvarez (1911{1988) was one of the most brilliant and productive experimental physicists of the twentieth century. His investigations of three mysteries, all of them outside his normal areas of research, show the wonders that a far-ranging imagination working with an immense store of knowledge can accomplish. The 1968 Nobel Prize in Physics, awarded to Luis W. Alvarez: • \For his decisive contributions to elementary particle physics, in particular the discovery of a large number of resonant states, made possible through his devel- opment of the technique of using hydrogen bubble chambers and data analysis." Richard Feynman, considering whether or not to do the O-ring-in-ice-water demonstration• in the Challenger disaster hearings: \I think, `I could do this tomorrow while we're all sitting around, listening to this [Richard] Cook crap we heard today. We always get ice water in those meetings; that's something I could do to save time.' \Then I think, `No, that would be gauche.' \But then I think of Luis Alvarez, the physicist. He's a guy I admire for his gutsiness and sense of humor, and I think, `If Alvarez was on this commission, he would do it, and that's good enough for me.' "1 1. THE PYRAMID BURIAL CHAMBERS 2 Father and son|Figure 1 shows, near Cairo, the two largest pyramids ever built. They are 4,500 years old.
    [Show full text]
  • Report and Opinion 2016;8(6) 1
    Report and Opinion 2016;8(6) http://www.sciencepub.net/report Beyond Einstein and Newton: A Scientific Odyssey Through Creation, Higher Dimensions, And The Cosmos Manjunath R Independent Researcher #16/1, 8 Th Main Road, Shivanagar, Rajajinagar, Bangalore: 560010, Karnataka, India [email protected], [email protected] “There is nothing new to be discovered in physics now. All that remains is more and more precise measurement.” : Lord Kelvin Abstract: General public regards science as a beautiful truth. But it is absolutely-absolutely false. Science has fatal limitations. The whole the scientific community is ignorant about it. It is strange that scientists are not raising the issues. Science means truth, and scientists are proponents of the truth. But they are teaching incorrect ideas to children (upcoming scientists) in schools /colleges etc. One who will raise the issue will face unprecedented initial criticism. Anyone can read the book and find out the truth. It is open to everyone. [Manjunath R. Beyond Einstein and Newton: A Scientific Odyssey Through Creation, Higher Dimensions, And The Cosmos. Rep Opinion 2016;8(6):1-81]. ISSN 1553-9873 (print); ISSN 2375-7205 (online). http://www.sciencepub.net/report. 1. doi:10.7537/marsroj08061601. Keywords: Science; Cosmos; Equations; Dimensions; Creation; Big Bang. “But the creative principle resides in Subaltern notable – built on the work of the great mathematics. In a certain sense, therefore, I hold it astronomers Galileo Galilei, Nicolaus Copernicus true that pure thought can
    [Show full text]
  • When Physics Meets Biology: a Less Known Feynman
    When physics meets biology: a less known Feynman Marco Di Mauro, Salvatore Esposito, and Adele Naddeo INFN Sezione di Napoli, Naples - 80126, Italy We discuss a less known aspect of Feynman’s multifaceted scientific work, centered about his interest in molecular biology, which came out around 1959 and lasted for several years. After a quick historical reconstruction about the birth of molecular biology, we focus on Feynman’s work on genetics with Robert S. Edgar in the laboratory of Max Delbruck, which was later quoted by Francis Crick and others in relevant papers, as well as in Feynman’s lectures given at the Hughes Aircraft Company on biology, organic chemistry and microbiology, whose notes taken by the attendee John Neer are available. An intriguing perspective comes out about one of the most interesting scientists of the XX century. 1. INTRODUCTION Richard P. Feynman has been – no doubt – one of the most intriguing characters of XX century physics (Mehra 1994). As well known to any interested people, this applies not only to his work as a theoretical physicist – ranging from the path integral formulation of quantum mechanics to quantum electrodynamics (granting him the Nobel prize in Physics in 1965), and from helium superfluidity to the parton model in particle physics –, but also to his own life, a number of anecdotes being present in the literature (Mehra 1994; Gleick 1992; Brown and Rigden 1993; Sykes 1994; Gribbin and Gribbin 1997; Leighton 2000; Mlodinov 2003; Feynman 2005; Henderson 2011; Krauss 2001), including his own popular
    [Show full text]
  • Physics Genius Showed Oak Ridge How to Be Safe (As Published in the Oak Ridger’S Historically Speaking Column on November 3, 2014)
    Physics genius showed Oak Ridge how to be safe (As published in The Oak Ridger’s Historically Speaking column on November 3, 2014) One of my favorite characters of the Manhattan Project era is Richard Feynman. When asked by Sam Shaw and Lily Byock, producer and writer as well as husband and wife team, who created the Manhattan television series now showing on cable WGN and set for a second season, which of the Manhattan Project scientists they should consider including in the series, I immediately suggested Richard Feynman. If you have followed the TV series, you know that they did indeed use the history of Feynman’s visit to Oak Ridge in the earliest months of the Manhattan Project in their series. I was most pleased when Carolyn Krause offered to write a Historically Speaking column on him. Enjoy what Carolyn has dug up in her research. … At the age of 26 he may have saved Oak Ridge from a nuclear disaster. As a junior physicist but experienced safecracker (for fun) at Los Alamos, N.M., he demonstrated that two safes in Oak Ridge weren’t safe. It was in Oak Ridge that he first wept over his young wife’s death in Albuquerque in July 1945. He won the Nobel Prize in Physics in 1965 for developing quantum electrodynamics, which describes how light interacts with matter. This New York City native and son of Jewish parents with Russian and Polish ancestries was ranked as one of the 10 greatest physicists of all time. When Richard Feynman (1918-88) first came to Oak Ridge in April 1944, he had taken his first airplane flight.
    [Show full text]
  • The Miracle of Applied Mathematics
    MARK COLYVAN THE MIRACLE OF APPLIED MATHEMATICS ABSTRACT. Mathematics has a great variety of applications in the physical sciences. This simple, undeniable fact, however, gives rise to an interesting philosophical problem: why should physical scientists find that they are unable to even state their theories without the resources of abstract mathematical theories? Moreover, the formulation of physical theories in the language of mathematics often leads to new physical predictions which were quite unexpected on purely physical grounds. It is thought by some that the puzzles the applications of mathematics present are artefacts of out-dated philosophical theories about the nature of mathematics. In this paper I argue that this is not so. I outline two contemporary philosophical accounts of mathematics that pay a great deal of attention to the applicability of mathematics and show that even these leave a large part of the puzzles in question unexplained. 1. THE UNREASONABLE EFFECTIVENESS OF MATHEMATICS The physicist Eugene Wigner once remarked that [t]he miracle of the appropriateness of the language of mathematics for the formulation of the laws of physics is a wonderful gift which we neither understand nor deserve. (Wigner 1960, 14) Steven Weinberg is another physicist who finds the applicability of mathematics puzzling: It is very strange that mathematicians are led by their sense of mathematical beauty to de- velop formal structures that physicists only later find useful, even where the mathematician had no such goal in mind. [ . ] Physicists generally find the ability of mathematicians to anticipate the mathematics needed in the theories of physics quite uncanny. It is as if Neil Armstrong in 1969 when he first set foot on the surface of the moon had found in the lunar dust the footsteps of Jules Verne.
    [Show full text]