Enhancing Combat Survivability of Existing Unmanned Aircraft Systems

Total Page:16

File Type:pdf, Size:1020Kb

Enhancing Combat Survivability of Existing Unmanned Aircraft Systems CORE Metadata, citation and similar papers at core.ac.uk Provided by Calhoun, Institutional Archive of the Naval Postgraduate School Calhoun: The NPS Institutional Archive Theses and Dissertations Thesis Collection 2008-12 Enhancing combat survivability of existing unmanned aircraft systems Tham, Kine Seng Monterey, California http://hdl.handle.net/10945/3734 NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS ENHANCING COMBAT SURVIVABILITY OF EXISTING UNMANNED AIRCRAFT SYSTEMS by Kine Seng Tham December 2008 Thesis Co-Advisors: Gary Langford Ravi Vaidyanathan Approved for public release; distribution is unlimited. THIS PAGE INTENTIONALLY LEFT BLANK REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202- 4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED December 2008 Master’s Thesis 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Enhancing Combat Survivability of Existing Unmanned Aircraft Systems 6. AUTHOR(S) Kine Seng Tham 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING Naval Postgraduate School ORGANIZATION REPORT Monterey, CA 93943-5000 NUMBER 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING AGENCY REPORT NUMBER - N/A - 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government. 12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE Approved for public release; distribution is unlimited 13. ABSTRACT (maximum 200 words) The importance of Unmanned Aircraft Systems (UAS) to warfighters has been growing. Each loss (regardless of whether the entire UAS or parts of it) has become more expensive and unaffordable in both an operational and monetary sense. An unmanned aircraft (UA) loss may mean that critical missions cannot be performed and millions of dollars of investments on the UA lost. As most existing UAS were designed to be inexpensive and expendable, there is a need to enhance their combat survivability. Combat survivability is the capability of UAS to avoid or withstand a man-made hostile environment. This thesis explored how to enhance the combat survivability of existing UAS. Potential survivability enhancement options are identified. These options include changes in tactics, improving the situation awareness of the operator, equipping the UA with the capability to counter an incoming threat, improving the payload performance, improving resistance of the data link to jamming. The technology behind these options as well as the favorable and unfavorable factors of the options are studied and discussed. This thesis also proposed a process for selecting the “best” solution from survivability enhancement alternatives. This thesis used systems engineering methodology to enhance the survivability of existing UAS. 14. SUBJECT TERMS 15. NUMBER OF Systems Engineering, Unmanned Aircraft System, UAS, Unmanned Aerial Vehicle, UAV, Combat PAGES Survivability, Survivability, Survivability Enhancement 149 16. PRICE CODE 17. SECURITY 18. SECURITY 19. SECURITY 20. LIMITATION CLASSIFICATION OF CLASSIFICATION OF THIS CLASSIFICATION OF OF ABSTRACT REPORT PAGE ABSTRACT Unclassified Unclassified Unclassified UU NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. 239-18 i THIS PAGE INTENTIONALLY LEFT BLANK ii Approved for public release; distribution is unlimited ENHANCING COMBAT SURVIVABILITY OF EXISTING UNMANNED AIRCRAFT SYSTEMS Kine Seng Tham Civilian, Defence Science & Technology Agency, Singapore B.Eng (Hons), National University of Singapore, 2002 Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN SYSTEMS ENGINEERING from the NAVAL POSTGRADUATE SCHOOL December 2008 Author: Kine Seng Tham Approved by: Gary O. Langford Thesis Co-Advisor Ravi Vaidyanathan Thesis Co-Advisor David H. Olwell Chair, Systems Engineering Department iii THIS PAGE INTENTIONALLY LEFT BLANK iv ABSTRACT The importance of Unmanned Aircraft Systems (UAS) to warfighters has been growing. Each loss (regardless of whether the entire UAS or parts of it) has become more expensive and unaffordable in both an operational and monetary sense. An unmanned aircraft (UA) loss may mean that critical missions cannot be performed and millions of dollars of investments on the UA lost. As most existing UAS were designed to be inexpensive and expendable, there is a need to enhance their combat survivability. Combat survivability is the capability of UAS to avoid or withstand a man-made hostile environment. This thesis explored how to enhance the combat survivability of existing UAS. Potential survivability enhancement options are identified. These options include changes in tactics, improving the situation awareness of the operator, equipping the UA with the capability to counter an incoming threat, improving the payload performance, improving resistance of the data link to jamming. The technology behind these options as well as the favorable and unfavorable factors of the options are studied and discussed. This thesis also proposed a process for selecting the “best” solution from survivability enhancement alternatives. This thesis used systems engineering methodology to enhance the survivability of existing UAS. v THIS PAGE INTENTIONALLY LEFT BLANK vi TABLE OF CONTENTS I. INTRODUCTION........................................................................................................1 A. BACKGROUND ..............................................................................................1 B. PURPOSE.........................................................................................................4 C. RESEARCH QUESTIONS.............................................................................4 D. SCOPE ..............................................................................................................4 E. METHODOLOGY ..........................................................................................5 1. Define Problem.....................................................................................5 2. Functional Analysis of Adversary Wanting to Affect UAS Mission Effectiveness...........................................................................5 3. Develop the Kill Chain.........................................................................5 4. Perform a Functional Analysis on Enhancing Combat Survivability of UAS............................................................................6 5. Define Concepts that Can Be Used to Achieve Combat Survivability .........................................................................................6 6. Perform Physical Decomposition of UAS ..........................................6 7. Perform Functional Analysis of the Top Priority Mission...............6 8. Identify Potential Threats to UAS......................................................7 9. Identify UAS Weakness (With Reference To Combat Survivability)........................................................................................7 10. Determine Survivability Enhancement Options ...............................7 11. Develop Selection Process....................................................................7 F. THESIS FLOW................................................................................................8 G. CHAPTER SUMMARY..................................................................................8 II. COMBAT SURVIVABILITY ....................................................................................9 A. SURVIVABILITY, SYSTEM SAFETY, AND COMBAT SURVIVABILITY ...........................................................................................9 1. Susceptibility ......................................................................................10 2. Vulnerability.......................................................................................11 B. ADVERSARY’S OBJECTIVE.....................................................................11 C. ENHANCING COMBAT SURVIVABILITY ............................................13 1. Reducing Susceptibility .....................................................................17 a. Gather Intelligence about Threat...........................................17 b. Threat Warning.......................................................................17 c. Increase Stand-off Range .......................................................18 d. Improve System Performance.................................................18 e. Threat Suppression .................................................................18 f. Signature Reduction ...............................................................18 g. Jamming and Deceiving .........................................................19 h. Tactics and
Recommended publications
  • Designing Unmanned Aircraft Systems: a Comprehensive Approach
    Designing Unmanned Aircraft Systems: A Comprehensive Approach Jay Gundlach Aurora Flight Sciences Manassas, Virginia AIAA EDUCATION SERIES Joseph A. Schetz, Editor-in-Chief Virginia Polytechnic Institute and State University Blacksburg, Virginia Published by the American Institute of Aeronautics and Astronautics, Inc. 1801 Alexander Bell Drive, Reston, Virginia 20191-4344 NOMENCLATURE Item Definition A area; availability; ground area covered in a mission; radar antenna area, m2; conversion between radians and minutes of arc Aa achieved availability Abound bounded area for a closed section 2 Ad IR detector sensitive area, m 2 Aeff effective antenna area, length Ai inherent availability AO operational availability; UA availability 2 Ap propeller disk area, length ARate area coverage rate Ar effective collection area of optical receiver ASurf surface area AR aspect ratio ARWet wetted aspect ratio AR0 aspect ratio along spanwise path a UA acceleration; maximum fuselage cross-section width; speed of sound; detector characteristic dimension awa radar mainlobe width metric awr radar mainlobe width metric ax acceleration along the x direction (acceleration) B acuity gain due to binoculars; boom area; effective noise bandwidth of receiving process, Hz 21 BDoppler Doppler bandwidth (time ) BN effective noise bandwidth of the receiving process 21 BT radar signal bandwidth (time ) BSFCSL brake specific fuel consumption at sea level b web length; wing span; maximum fuselage cross- section height bw wing span b0 span without dihedral C cost of contractor
    [Show full text]
  • Air University Review: September-October 1973, Volume
    AIR U N I V E R S IT V PROFESSIONAl JOURNAlrcificw Of THE UNITED STATES AIR FORCE T H E T he Threat, F oreicn Policy, and Cost Control: P.ARAMETERS FOR F o RCE P l ANNINC................................................................................................... 2 Col. Edward Stellini, USAF Keyn o t e of the 1970s: Joint Ven t c r es lnto Spa c e ................................................................16 Phillip O. Davis William G. Holder Air Force Review Swords, P lowsh.ares, .and Procress....................................................................................... 3 0 Lt. Gen. Kenneth W. Schultz, USAF D rone Remo t el y Pil o t e d Veh icl es and Aer ospac e Power...............................................44 Lt. Col. E. J. Kellerstrass, USAF SuPERSONIC D e LIVERY OF CoNVENTIONAL W ea PONS—F a CT OR F a NCY?.................................. 55 Charles S. Epstein Ner ve Cen t er for Spa c e Defen se...................................................................................................... 66 Maj. Sainuel C. Beainer, USAF In My Opinion T he Unit Co mma n der and the Bureaucracy............................................................... 63 Lt. Col. Arthur C. Mussman, USAF T he Nixo n Doctrine—a New Era in Foreign Policy? ...............................................89 Maj. H. A. Staley, USAF Books and Ideas W here There’s P.ain Theres Hope: M il it a r y Pr o fessio n a l ism in the Dock .......................................................................................................93
    [Show full text]
  • Aerospace Propulsion
    Unmanned Aerial Vehicle Propulsion by Sean Brown A PROJECT submitted to Oregon State University University Honors College in partial fulfillment of the requirements for the degree of Honors Baccalaureate of Science in Mechanical Engineering (Honors Associate) Presented February 27th, 2015 Commencement June 2015 2 4 ©Copyright by Sean Brown February 27th, 2015 All Rights Reserved 5 Unmanned Aerial Vehicle Propulsion by Sean Brown A PROJECT submitted to Oregon State University University Honors College in partial fulfillment of the requirements for the degree of Honors Baccalaureate of Science in Mechanical Engineering (Honors Associate) Presented February 27th, 2015 Commencement June 2015 6 TABLE OF CONTENTS Table of Contents ............................................................................................................................. 8 1 Introduction ............................................................................................................................ 12 2 Propulsion Systems ................................................................................................................ 12 2.1 Piston-Propeller.............................................................................................................. 12 2.2 Gas turbine ..................................................................................................................... 12 2.2.1 Turbojets ................................................................................................................ 12 2.2.2 Turboprops
    [Show full text]
  • Unmanned Aerial Vehicles and Uninhabited Combat Aerial Vehicles
    Defense Science Board Study on Unmanned Aerial Vehicles and Uninhabited Combat Aerial Vehicles February 2004 Office of the Under Secretary of Defense For Acquisition, Technology, and Logistics Washington, D.C. 20301-3140 This report is a product of the Defense Science Board (DSB). The DSB is a Federal Advisory Committee established to provide independent advice to the Secretary of Defense. Statements, opinions, conclusions and recommendations in this report do not necessarily represent the official position of the Department of Defense. This report is UNCLASSIFIED. OFFICE OF THE SECRETARY OF DEFENSE 3140 DEFENSE PENTAGON WASHINGTON, DC 20301-3140 DEFENSE SCIENCE BOARD MEMORANDUM FOR THE ACTING UNDERSECRETARYOF DEFENSE (ACQillSmON, TECHNOLOGY AND LOGISTICS) SUBJEcr: Reportof the DefenseScience Board Task Force on UnmannedAerial Vehicles and UninhabitedCombat Aerial Vehicles I am pleasedto forward the final report of the DSB Task Force on UnmannedAerial Vehicles (UA V) and UninhabitedCombat Aerial Vehicles (UCA V). This Task Force was tasked to evaluatethe current statusof the UA Vs and UCA Vs and provide recommendationson how to betterintegrate UA Vs and UCA Vs into the force structure. The Task Force concludedit is time for the Departmentof Defenseand the Services move forward and makeUA Vs and UCA Vs an integral part of the force structure,not an "additional asset". To do so requiresappropriate planning, appropriate budgeting, and continuedmanagement attention from the Departmentof Defenseand Serviceleadership. The Task Force's findings and recommendationsfall into eight subjectareas: Introduction of UA Vs into the force structure VA V unit productioncosts UA V mishaprates Communicationsconstraints UA V interoperability and mission management Integrationof UA Vs into national airspace Focustechnology investments Reductionof UA V combatvulnerability I endorseall of the recommendationsof the Task Force and proposethat you review the Task Force Co-Chainnen's letter and the report.
    [Show full text]
  • Drone Flight and Failure: the United States’ Secret Trials, Experiments and Operations in Unmanning, 1936-1973
    Drone Flight and Failure: the United States’ Secret Trials, Experiments and Operations in Unmanning, 1936-1973 By Katherine Fehr Chandler A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Rhetoric and the Designated Emphasis in New Media in the Graduate Division of the University of California, Berkeley Committee in Charge: Professor David Bates, Co-Chair Professor Charis Thompson, Co-Chair Professor Samera Esmeir Professor Jake Kosek Spring 2014 Drone Flight and Failure: the United States’ Secret Trials, Experiments and Operations in Unmanning, 1936-1973 ©2014 by Katherine Fehr Chandler Abstract Drone Flight and Failure: the United States’ Secret Trials, Experiments and Operations in Unmanning, 1936-1973 by Katherine Fehr Chandler Doctor of Philosophy in Rhetoric and the Designated Emphasis in New Media University of California, Berkeley Professor David Bates, Co-Chair Professor Charis Thompson, Co-Chair I examine the precursors to contemporary unmanned combat air vehicles (UCAVs) to ask what is at stake in the designation “unmanned?” The apparent misnomer dissociates technologies and humans, occluding how international interventions, including surveillance, military support, signals intelligence, and targeted killing, are carried out through actions networked between humans and nonhumans. I use a genealogical approach to address how tensions and contradictions articulated by unmanning emerge, using the development, operation and failure of unmanned systems to complicate divisions between human and nonhuman; “us” and the enemy; immersion and distance; military and industry; and above and below. I identify two phases in the development of remote controlled and unmanned aircraft in the United States: targeting and reconnaissance.
    [Show full text]
  • Canada Aviation and Space Museum Aircraft
    CANADA AVIATION AND SPACE MUSEUM AIRCRAFT RYAN KDA-4 FIREBEE DRONE ROYAL CANADIAN AIR FORCE SERIAL KD-4788 INTRODUCTION The Ryan Firebee began as a series of target drones (now more commonly referred to as unmanned aerial vehicles or UAVs) 1 developed by the Ryan Aeronautical Company (later Teledyne Ryan), beginning in 1951. It was one of the first jet-propelled drones, and, eventually, one of the most successful and widely used target drones ever built. Generally referred to as the Firebee I, the initial versions possessed high subsonic speed, and were primarily intended for use in ground-to-air and air-to-air gunnery training. Later versions were developed into reconnaissance vehicles, as well as into attack and multi-mission platforms. More than 7,000 Firebee vehicles were built, with many variants being introduced. A Ryan publicity photo illustrating the first customers for the Ryan Firebee: the United States Air Force, the United States Navy, the United States Army and the Royal Canadian Air Force. - (Ryan Aeronautical Company Photo) The Royal Canadian Air Force (RCAF) became one of the first customers for the Firebee intending the target drone to be used in particular for the planned weapons testing and training on the Avro Canada CF-105 Arrow fighter program. The Firebee has the distinction of being the first UAV in the RCAF. Cover Photo Caption - The Ryan Firebee was launched from a modified Lancaster bomber in RCAF service. - (RCAF Photo) 1 / 22 ______________________________________________________________________ FIREBEE DESIGN HISTORY 2 Q-2 / KDA-1 Firebee The Firebee was the result of a 1946 United States Army Air Force (USAAF) request for a jet-powered gunnery target.
    [Show full text]
  • RPV DRONES Make the Difference by Hank Basham
    RPV's Make the Difference by Hank Basham Air University Review, January-February 1974 Document created: 19 September 03 What will the fighter pilot s chances be when that bird out there is the real thing, a MIG-21 . or a supersonic bomber making a run toward targets within the United States . or some other modern jet making an attack? If he is a pilot of the Aerospace Defense Command, his chances will be good because he has experience resulting from weapons firing training and evaluation against remotely piloted vehicles (RPV) at the Air Defense Weapons Center. RPV's have been around a long time, down along the northwest Florida Gulf Coast area at Tyndall Air Force Base. Here the Teledyne Ryan Firebee jet has been in operation as the prime target for pilots sharpening their air defense skills. Because this remotely piloted vehicle is the nearest thing to a hostile aircraft, pilots who train against the Firebee will have a better chance against an actual attack. Not just a clay pigeon, this bird is a real jet aircraft. It flies like one. It maneuvers like one. Returning combat pilots confirm they must train against a maneuvering jet to be really prepared. Those pilots who train at the Air Defense Weapons Center will know just what to expect when the chips are down. They'll know because they have flown against, fired against, and scored against an RPV that strongly simulated an aircraft being flown by an enemy pilot. It was seventeen years ago when the Firebee entered the air defense picture at Tyndall Air Force Base, home of the Air Defense Weapons Center, and every pilot within the Aerospace Defense Command has at one time or another pitted his skill against the elusive high-speed and high- flying target.
    [Show full text]
  • EW Concepts and Tactics for Single Or Multiple UAS Over the Net-Centric Battlefield
    Calhoun: The NPS Institutional Archive Theses and Dissertations Thesis Collection 2009-09 General use of UAS in EW environment--EW concepts and tactics for single or multiple UAS over the net-centric battlefield Erdemli, Mustafa Gokhan. Monterey, California. Naval Postgraduate School http://hdl.handle.net/10945/4512 NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS GENERAL USE OF UAS IN EW ENVIRONMENT—EW CONCEPTS AND TACTICS FOR SINGLE OR MULTIPLE UAS OVER THE NET-CENTRIC BATTLEFIELD by Mustafa Gokhan Erdemli Thesis Co-Advisors: Edward Fisher Wolfgang Baer Approved for public release; distribution is unlimited THIS PAGE INTENTIONALLY LEFT BLANK REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED September 2009 Master’s Thesis 4. TITLE AND SUBTITLE General Use of UAS in EW Environment—EW 5. FUNDING NUMBERS Concepts and Tactics for Single or Multiple UAS over the Net-Centric Battlefield 6. AUTHOR(S) Mustafa Gokhan Erdemli 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8.
    [Show full text]
  • Expendable Remotely Piloted Vehicles for Strategic Offensive Airpower Roles
    Expendable Remotely Piloted Vehicles for Strategic Offensive Airpower Roles DENNIS LARM, MAJOR, USAF School of Advanced Airpower Studies THESIS PRESENTED TO THE FACULTY OF THE SCHOOL OF ADVANCED AIRPOWER STUDIES, MAXWELL AIR FORCE BASE, ALABAMA, FOR COMPLETION OF GRADUATION REQUIREMENTS, ACADEMIC YEAR 1995–96. Air University Press Maxwell Air Force Base, Alabama June 1996 This School of Advanced Airpower Studies thesis and others are avail- able electronically at the Air University Research Web site http:// research.au.af.mil under “Research Papers” then “Special Collections.” Disclaimer Opinions, conclusions, and recommendations expressed or implied within are solely those of the author and do not necessarily represent the views of Air University, the United States Air Force, the Department of Defense, or any other US government agency. Cleared for public release: dis­ tribution unlimited. ii Contents Chapter Page DISCLAIMER . ii ABSTRACT . v ABOUT THE AUTHOR . vii ACKNOWLEDGMENTS . ix 1 INTRODUCTION . 1 Notes . 6 2 HISTORY AND BACKGROUND . 9 Notes . 21 3 STRATEGIC OFFENSIVE AIRPOWER . 25 Notes . 35 4 MERITS OF EXPENDABILITY . 39 Notes . 59 5 FUTURE NOTIONAL SCENARIO . 63 Notes . 67 6 CONCLUSION . 69 Notes . 71 Illustrations Figure 1 Family Tree of Aerial Vehicles (1988) . 2 2 Relative Decline of US Aircraft Losses Per Sortie over Four Conflicts . 28 3 Advantages and Disadvantages among Strategic Attack Systems . 58 Table 1 Unmanned Aerial Vehicle Types and Control Mechanisms . 4 iii Page 2 Significant Unmanned Aerial Vehicle Events . 11 3 US Army Air Forces/US Air Force Bomb Tonnage Statistics for Four Conflicts . 27 4 US Army Air Forces/US Air Force Combat Sortie Statistics for Four Conflicts .
    [Show full text]
  • Drones and Support for the Use of Force
    Drones and Support for the Use of Force Combat drones are transforming attitudes about the use of military force. Military casualties and the costs of conflict sap public support for war and for political and military leaders. Combat drones offer an un- precedented ability to simultaneously reduce these costs by increasing accuracy, reducing the risks to civilians, and protecting military person- nel from harm. These advantages should make drone strikes more popu- lar than operations involving ground troops. Many critics contend that drone warfare will make political leaders too willing to authorize wars, which could weaken ethical and legal constraints on the use of force. Be- cause combat drones are a relatively new phenomenon, these arguments have largely been based on anecdotes, a handful of public opinion polls, or theoretical speculation. Drones and Support for the Use of Force utilizes experimental research to analyze the effects of combat drones on Americans’ support for the use of force. The authors develop expectations drawn from social science theory and then assess these conjectures using a series of survey experi- ments. Their findings— that drones have had important but nuanced ef- fects on support for the use of force— have implications for democratic control of military action and civil-military relations, and they provide insight into how the development and proliferation of current and future military technologies influence the domestic politics of foreign policy. James Igoe Walsh is Professor of Political Science at the University of North Carolina at Charlotte. Marcus Schulzke is an independent scholar and was formerly a Lecturer in the Department of Politics at the University of York.
    [Show full text]
  • Global Hawk Systems Engineering Case Study
    Global Hawk Systems Engineering Case Study GLOBAL HAWK SYSTEMS ENGINEERING CASE STUDY By: Bill Kinzig, MacAulay-Brown, Inc. Air Force Center for Systems Engineering 2900 Hobson Way, Wright-Patterson AFB, Ohio 45433-7765 Air Force Center for Systems Engineering (AFIT/SY) Page - i Air Force Institute of Technology ID 8844 Form Approved Report Documentation Page OMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 3. DATES COVERED 2010 2. REPORT TYPE 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Global Hawk Systems Engineering Case Study 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION Air Force Institute of Technology,Air Force Center for Systems REPORT NUMBER Engineering,2950 Hobson Way,Wright Patterson AFB,OH,45433 9.
    [Show full text]
  • “Friend of Humans”: an Argument for Developing Autonomous Weapons Systems
    “Friend of Humans”: An Argument for Developing Autonomous Weapons Systems Christopher P. Toscano* “New eras don’t come about because of swords; they’re created by the people who wield them.” ― Nobuhiro Watsuki * Lieutenant Commander Toscano is an active-duty Navy Judge Advocate and 2014 LLM Graduate of the George Washington University Law School. The author would like to thank Judge Wallach, CAPT Raul “Pete” Pedrozo, CAPT Stephanie M. Smart, COL Marc Warren, CDR Robert Passerello, CDR Susan McGarvey, CDR James Benoit, and Professors Dan Richard and Peter Raven-Hansen for their contributions to this article. The author would also like to thank his wife, Aki, for her enduring support: 本当にありがとう愛貴ちゃん!The positions and opinions expressed in this article are those of the author and do not represent the views of the United States Government, the Department of Defense, or the United States Navy. 1 Introduction1 With the introduction of robots2 to the battlefield, critics and activists have raised doubts that echo a long history of opposition to landmines, aviation, submarines, and nuclear technologies.3 War, however, is unavoidable, and weapons technology advancement is an inevitable consequence. Humanity’s inability to live at peace has led combatants to seek enhanced weapons and strategies to defeat their adversaries more effectively.4 More advanced weaponry never reduces humanity’s propensity for violence. As Clausewitz notes, “[t]he tendency to destroy the adversary, which lies at the bottom of the conception of War, is in no way changed or modified through the progress of civilization.”5 While this tendency is a sad commentary on human nature, weapons development also provides a hidden opportunity to safeguard against unnecessary destruction and loss of life.
    [Show full text]