Aerospace Propulsion

Total Page:16

File Type:pdf, Size:1020Kb

Aerospace Propulsion Unmanned Aerial Vehicle Propulsion by Sean Brown A PROJECT submitted to Oregon State University University Honors College in partial fulfillment of the requirements for the degree of Honors Baccalaureate of Science in Mechanical Engineering (Honors Associate) Presented February 27th, 2015 Commencement June 2015 2 4 ©Copyright by Sean Brown February 27th, 2015 All Rights Reserved 5 Unmanned Aerial Vehicle Propulsion by Sean Brown A PROJECT submitted to Oregon State University University Honors College in partial fulfillment of the requirements for the degree of Honors Baccalaureate of Science in Mechanical Engineering (Honors Associate) Presented February 27th, 2015 Commencement June 2015 6 TABLE OF CONTENTS Table of Contents ............................................................................................................................. 8 1 Introduction ............................................................................................................................ 12 2 Propulsion Systems ................................................................................................................ 12 2.1 Piston-Propeller.............................................................................................................. 12 2.2 Gas turbine ..................................................................................................................... 12 2.2.1 Turbojets ................................................................................................................ 12 2.2.2 Turboprops ............................................................................................................. 13 2.2.3 Turbofans ............................................................................................................... 13 2.2.4 Afterburner ............................................................................................................. 13 2.3 Hypersonic ..................................................................................................................... 13 2.3.1 Ramjets and Scramjets ........................................................................................... 13 2.3.2 Pulse Detonation .................................................................................................... 14 2.4 Rocket ............................................................................................................................ 14 2.4.1 Solid Propellant ...................................................................................................... 14 2.4.2 Liquid Propellant ................................................................................................... 14 2.4.3 Hybrid Propellant ................................................................................................... 15 2.5 Electric ........................................................................................................................... 15 2.5.1 Battery Powered ..................................................................................................... 16 2.5.2 Fuel Cell ................................................................................................................. 17 2.5.3 Solar Electric .......................................................................................................... 18 3 Parameters comparison .......................................................................................................... 18 3.1 Velocity .......................................................................................................................... 18 3.2 Weight/Payload .............................................................................................................. 21 3.2.1 Cargo Aircraft ........................................................................................................ 21 3.2.2 Heavy Transportation Aircraft ............................................................................... 21 3.2.3 Midsize Transportation Aircraft ............................................................................. 22 3.2.4 Light Transportation Aircraft ................................................................................. 22 3.2.5 Military Fighter Aircraft ........................................................................................ 23 3.2.6 Light Aircraft ......................................................................................................... 23 3.2.7 Light-Sport Aircraft ............................................................................................... 24 3.2.8 Ultralight Aircraft .................................................................................................. 24 8 3.2.9 Conclusion ............................................................................................................. 25 3.3 Mission ........................................................................................................................... 26 3.3.1 Stealth .................................................................................................................... 26 3.3.2 Reconnaissance ...................................................................................................... 26 3.3.3 Air Superiority ....................................................................................................... 26 3.3.4 Attack Aircraft ....................................................................................................... 26 3.3.5 Bombers ................................................................................................................. 27 3.3.6 Trainers (Military and Private) .............................................................................. 27 3.3.7 Aerobatic Aircraft .................................................................................................. 27 3.3.8 Transportation ........................................................................................................ 27 3.3.9 Amphibious Aircraft .............................................................................................. 27 3.3.10 Conclusion ............................................................................................................. 27 4 Parameters Comparison of UAVs .......................................................................................... 28 4.1 Types of UAVs .............................................................................................................. 28 4.1.1 Micro Air Vehicles ................................................................................................ 28 4.1.2 Vertical Takeoff and Landing (VTOL) .................................................................. 29 4.1.3 Low Altitude, Short Endurance (LASE) & Low Altitude, Long Endurance (LALE) 29 4.1.4 Medium Altitude, Long Endurance (MALE)......................................................... 30 4.1.5 High Altitude, Long Endurance (HALE) ............................................................... 30 4.1.6 Conclusion ............................................................................................................. 31 4.2 UAV Missions ............................................................................................................... 32 4.2.1 Military .................................................................................................................. 32 4.2.2 Research ................................................................................................................. 34 4.2.3 Commercial ............................................................................................................ 36 4.3 Electric Motor vs. Internal Combustion Engine: Case Study ........................................ 38 4.4 How UAV Engine Types Compare to Manned Engine Types ...................................... 39 5 Engine Research..................................................................................................................... 39 5.1 Introduction .................................................................................................................... 39 5.2 Experimental Setup ........................................................................................................ 40 5.2.1 Engine Assembly ................................................................................................... 40 5.2.2 Test Stand Construction ......................................................................................... 42 5.2.3 Data acquisition systems ........................................................................................ 43 5.2.4 Systems verification ............................................................................................... 45 5.2.5 Safety features ........................................................................................................ 46 9 5.3 Data Collection .............................................................................................................. 46 5.3.1 Reason for data collection ...................................................................................... 46 5.3.2 Procedures .............................................................................................................. 46 5.4 Data Analysis ................................................................................................................. 47 5.4.1 Initial Data Analysis .............................................................................................
Recommended publications
  • Ivchenko Progress
    ® AdvancedAdvanced turboprop,turboprop, propfanpropfan andand turbojetturbojet bypassbypass enginesengines forfor GAGA andand lightlight airplanesairplanes S. DMYTRIYEV 23.11.09 ® HISTORY ZAPOROZHYE MACHINE-BUILDING DESIGN BUREAU PROGRESS STATE ENTERPRISE NAMED AFTER ACADEMICIAN A.G. IVCHENKO (SE IVCHENKO-PROGRESS) Foundation date: May 5, 1945 Over a whole past period, engine manufacturing plants have produced more than 80 , 000 aircraft gas turbine and piston engines, turbostarters and industrial plants. Today, the engines designed by SE IVCHENKO-PROGRESS power 57 types of flying vehicle in 109 countries. Over the years, SE IVCHENKO-PROGRESS engines logged more than 300 million flight hours. © SE Ivchenko-Progress, 2009 2 ® HISTORY D-27 propfan , ÒV3-117 VÌÀ- SBÌ1 turboprop , D-436 turbofan , AI -22 turbofan , AI -222 turbofan , AI -450 turboshaft , 4-th stage AI -450 turboprop , SPM-21 turbofan Turbofans with high power and thrust : 3- rd stage D-136, D-18Ò Turbofans : AI -25, AI -25ÒË, D-36 2-nd stage APUs: AI -9, AI -9 V Turboprops : AI -20, AI -24 1- st stage APU: AI -8 Piston engines: AI -26 , AI-14, AI-4 © SE Ivchenko-Progress, 2009 3 ® DIRECTIONS OF ACTIVITY CIVIL AVIATION: commercial aircraft and helicopters Ìè-2Ì Àí-140 Àí-14 8 STATE AVIATION : trainers and combat trainers, military transport aircraft and helicopters , multipurpose aircraft ßê-18Ò Àí-70 Ìè-26Ò ßê-130 Áe-200 Àí-124 © SE Ivchenko-Progress, 2009 4 ® THE BASIC SPHERES OF ACTIVITIES DESIGN MANUFACTURE OVERHAUL TEST AND DEVELOPMENT PUTTING IN SERIES PRODUCTION AND IMPROVEMENT OF CONSUMER'S CHARACTERISTICS © SE Ivchenko-Progress, 2009 5 INTERNATIONAL RECOGNITION OF ® CERTIFICATION AUTHORITIES Totally 60 certificates of various types European Aviation Safety Agency (Germany) Certificate No.
    [Show full text]
  • Robust Gas Turbine and Airframe System Design in Light of Uncertain
    Robust Gas Turbine and Airframe System Design in Light of Uncertain Fuel and CO2 Prices Stephan Langmaak1, James Scanlan2, and András Sóbester3 University of Southampton, Southampton, SO16 7QF, United Kingdom This paper presents a study that numerically investigated which cruise speed the next generation of short-haul aircraft with 150 seats should y at and whether a con- ventional two- or three-shaft turbofan, a geared turbofan, a turboprop, or an open rotor should be employed in order to make the aircraft's direct operating cost robust to uncertain fuel and carbon (CO2) prices in the Year 2030, taking the aircraft pro- ductivity, the passenger value of time, and the modal shift into account. To answer this question, an optimization loop was set up in MATLAB consisting of nine modules covering gas turbine and airframe design and performance, ight and aircraft eet sim- ulation, operating cost, and optimization. If the passenger value of time is included, the most robust aircraft design is powered by geared turbofan engines and cruises at Mach 0.80. If the value of time is ignored, however, then a turboprop aircraft ying at Mach 0.70 is the optimum solution. This demonstrates that the most fuel-ecient option, the open rotor, is not automatically the most cost-ecient solution because of the relatively high engine and airframe costs. 1 Research Engineer, Computational Engineering and Design 2 Professor of Aerospace Design, Computational Engineering and Design, AIAA member 3 Associate Professor in Aircraft Engineering, Computational Engineering and Design, AIAA member 1 I. Introduction A. Background IT takes around 5 years to develop a gas turbine engine, which then usually remains in pro- duction for more than two decades [1, 2].
    [Show full text]
  • Aerospace Engine Data
    AEROSPACE ENGINE DATA Data for some concrete aerospace engines and their craft ................................................................................. 1 Data on rocket-engine types and comparison with large turbofans ................................................................... 1 Data on some large airliner engines ................................................................................................................... 2 Data on other aircraft engines and manufacturers .......................................................................................... 3 In this Appendix common to Aircraft propulsion and Space propulsion, data for thrust, weight, and specific fuel consumption, are presented for some different types of engines (Table 1), with some values of specific impulse and exit speed (Table 2), a plot of Mach number and specific impulse characteristic of different engine types (Fig. 1), and detailed characteristics of some modern turbofan engines, used in large airplanes (Table 3). DATA FOR SOME CONCRETE AEROSPACE ENGINES AND THEIR CRAFT Table 1. Thrust to weight ratio (F/W), for engines and their crafts, at take-off*, specific fuel consumption (TSFC), and initial and final mass of craft (intermediate values appear in [kN] when forces, and in tonnes [t] when masses). Engine Engine TSFC Whole craft Whole craft Whole craft mass, type thrust/weight (g/s)/kN type thrust/weight mini/mfin Trent 900 350/63=5.5 15.5 A380 4×350/5600=0.25 560/330=1.8 cruise 90/63=1.4 cruise 4×90/5000=0.1 CFM56-5A 110/23=4.8 16
    [Show full text]
  • SP's Aviation June 2011
    SP’s AN SP GUIDE PUBLICATION ED BUYER ONLY) ED BUYER AS -B A NDI I News Flies. We Gather Intelligence. Every Month. From India. 75.00 ( ` Aviationwww.spsaviation.net JUNE • 2011 ENGINE POWERPAGE 18 Regional Aviation FBO Services in India Interview with CAS No Slowdown in Indo-US Relationship LENG/2008/24199 Interview: Pratt & Whitney EBACE 2011 RNI NUMBER: DELENG/2008/24199 DE Show Report Our jets aren’t built tO airline standards. FOr which Our custOmers thank us daily. some manufacturers tout the merits of building business jets to airline standards. we build to an even higher standard: our own. consider the citation mustang. its airframe service life is rated at 37,500 cycles, exceeding that of competing airframes built to “airline standards.” in fact, it’s equivalent to 140 years of typical use. excessive? no. just one of the many ways we go beyond what’s required to do what’s expected of the world’s leading maker of business aircraft. CALL US TODAY. DEMO A CITATION MUSTANG TOMORROW. 000-800-100-3829 | WWW.AvIATOR.CESSNA.COM The Citation MUSTANG Cessna102804 Mustang Airline SP Av.indd 1 12/22/10 12:57 PM BAILEY LAUERMAN Cessna Cessna102804 Mustang Airline SP Av Cessna102804 Pub: SP’s Aviation Color: 4-color Size: Trim 210mm x 267mm, Bleed 277mm x 220mm SP’s AN SP GUIDE PUBLICATION TABLE of CONTENTS News Flies. We Gather Intelligence. Every Month. From India. AviationIssue 6 • 2011 Dassault Rafale along with EurofighterT yphoon were found 25 Indo-US Relationship compliant with the IAF requirements of a medium multi-role No Slowdown
    [Show full text]
  • Proyecto Fin De Carrera Ingeniería Aeronáutica Desarrollo De Un
    Proyecto Fin de Carrera Ingeniería Aeronáutica Desarrollo de un modelo de turbohélice de tres ejes. Análisis y evaluación de prestaciones en diferentes aplicaciones. Autor: Luca García Hernández Tutor: Francisco J. Jiménez-Espadafor Aguilar Dep. Ingeniería Energética Escuela Técnica Superior de Ingeniería Universidad de Sevilla Sevilla, 2017 Proyecto Fin de Carrera Ingeniería Aeronáutica Desarrollo de un modelo de turbohélice de tres ejes. Análisis y evaluación de prestaciones en diferentes aplicaciones. Autor: Luca García Hernández Tutor: Francisco J. Jiménez-Espadafor Aguilar Catedrático Dep. Ingeniería Energética Escuela Técnica Superior de Ingeniería Universidad de Sevilla Sevilla, 2017 Proyecto Fin de Carrera: Desarrollo de un modelo de turbohélice de tres ejes. Análisis y evaluación de prestaciones en diferentes aplicaciones. Autor: Luca García Hernández Tutor: Francisco J. Jiménez-Espadafor Aguilar El tribunal nombrado para juzgar el trabajo arriba indicado, compuesto por los siguientes profesores: Presidente: Vocal/es: Secretario: acuerdan otorgarle la calificación de: El Secretario del Tribunal Fecha: Agradecimientos Los proyectos finales de carrera encierran muchas historias de constancia y superación a lo largo del tiempo. Con este proyecto, pongo fin a una etapa muy importante de mi vida. Escribir estas palabras supone una gran satisfacción por la meta alcanzada y una gran alegría, pues supone el inicio de la etapa como ingeniero, en la que aplicar todo lo aprendido a lo largo de la carrera. Este proyecto me ha hecho profundizar considerablemente en el campo de los motores aeronáuticos y las herramientas para su modelado matemático. Ha sido muy enriquecedor para mí y seguro que los conocimientos aquí adquiridos, me serán de gran utilidad. Este logro no es sólo personal, pues sin la ayuda y el acompañamiento de muchas personas no podría haberlo conseguido.
    [Show full text]
  • The Power for Flight: NASA's Contributions To
    The Power Power The forFlight NASA’s Contributions to Aircraft Propulsion for for Flight Jeremy R. Kinney ThePower for NASA’s Contributions to Aircraft Propulsion Flight Jeremy R. Kinney Library of Congress Cataloging-in-Publication Data Names: Kinney, Jeremy R., author. Title: The power for flight : NASA’s contributions to aircraft propulsion / Jeremy R. Kinney. Description: Washington, DC : National Aeronautics and Space Administration, [2017] | Includes bibliographical references and index. Identifiers: LCCN 2017027182 (print) | LCCN 2017028761 (ebook) | ISBN 9781626830387 (Epub) | ISBN 9781626830370 (hardcover) ) | ISBN 9781626830394 (softcover) Subjects: LCSH: United States. National Aeronautics and Space Administration– Research–History. | Airplanes–Jet propulsion–Research–United States– History. | Airplanes–Motors–Research–United States–History. Classification: LCC TL521.312 (ebook) | LCC TL521.312 .K47 2017 (print) | DDC 629.134/35072073–dc23 LC record available at https://lccn.loc.gov/2017027182 Copyright © 2017 by the National Aeronautics and Space Administration. The opinions expressed in this volume are those of the authors and do not necessarily reflect the official positions of the United States Government or of the National Aeronautics and Space Administration. This publication is available as a free download at http://www.nasa.gov/ebooks National Aeronautics and Space Administration Washington, DC Table of Contents Dedication v Acknowledgments vi Foreword vii Chapter 1: The NACA and Aircraft Propulsion, 1915–1958.................................1 Chapter 2: NASA Gets to Work, 1958–1975 ..................................................... 49 Chapter 3: The Shift Toward Commercial Aviation, 1966–1975 ...................... 73 Chapter 4: The Quest for Propulsive Efficiency, 1976–1989 ......................... 103 Chapter 5: Propulsion Control Enters the Computer Era, 1976–1998 ........... 139 Chapter 6: Transiting to a New Century, 1990–2008 ....................................
    [Show full text]
  • POLITECNICO DI MILANO Thermodynamic Analysis of A
    POLITECNICO DI MILANO School of Industrial and Information Engineering Department of Aerospace Science and Technology Master of Science in Aeronautical Engineering Thermodynamic analysis of a turboprop engine with regeneration and intercooling Advisor: Prof. Roberto ANDRIANI M.Sc. Dissertation of: Rasheed Michael ISHOLA Matr. 895396 April 2020 Academic Year 2019-2020 Contents Introduction 1 1 Turbopropeller engines overview 2 1.1 Turbopropeller characteristics . .4 1.2 Comparison with turbojets and piston-powered engines . .4 1.3 Turbopropeller-powered aircrafts . .5 1.4 Turbopropeller manufacturers . .9 1.4.1 Pratt & Whitney Canada (PWC) [1] . .9 1.4.2 Rolls-Royce [2] . 17 1.4.3 General Electric Aviation [3] . 22 1.4.4 JSC Kuznetsov [4] . 26 1.4.5 JSC \UEC-Klimov" [5] . 27 1.4.6 Ivchenko-Progress ZMKB [6] . 28 1.4.7 Honeywell Aerospace [7] . 33 1.4.8 PBS Aerospace [8] . 34 2 Thermodynamics of a turbopropeller engine with heat exchange 36 2.1 Intercooling and regeneration . 36 2.2 Thermodynamic cycle . 39 2.2.1 Assumptions . 39 2.2.2 The cycle . 42 2.3 Performances . 48 3 The code 53 3.1 Assumptions and data used . 54 3.1.1 Efficiencies and pressure losses . 54 3.1.2 Fuel properties . 54 3.1.3 Specific heat values . 55 3.2 Code Structure . 57 3.2.1 Input file . 57 3.2.2 Output files . 58 3.2.3 Code details . 62 4 Numerical simulation 78 4.1 Results . 78 4.1.1 Determination of the best βn condition . 79 4.1.2 Performances vs βc ..........................
    [Show full text]
  • Tutorial IEEE PHM SAFRAN AIRCRAFT ENGINES Dallas 2017
    Tutorial IEEE PHM SAFRAN AIRCRAFT ENGINES Dallas 2017 Marion Jedruszek, François Demaison, Jerome Lacaille, Josselin Coupard, Guillaume Bastard, Yacine Stouky Prognostics & Health Monitoring @ Safran Safran Aircraft Engines, 77550 Moissy-Cramayel, France This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran SAFRAN AIRCRAFT ENGINES PHM / TUTORIAL CONTENTS Global PHM System Architecture Operational realizations System perimeter PHM Systems on CFM56 & Silvercrest engine Engine dysfunction analysis Gaining in confidence in a PHM System Engine wear modes Predictive & Effective maintenance System architecture 1 2 3 4 Introduction & Context Embedding a PHM System Why PHM for Aircraft Engines ? Constraints on airborne systems Harsh environment & monitoring Chapter progress bar 2 June 2017 / R& T 1 2 3 4 Q This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran 443 0,121 0,062 ABOUT US 0,062 3 June 2017 / R& T 1 2 3 4 Q This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran About us SAFRAN GROUP IN BRIEF 1/4 More than 70 successful 1 single-aisle commercial jet takes Ariane5 launches in a raw off every 2 seconds, powered by our engines 1 out of 3 helicopter Over 35,000 turbine engines sold power worlwide 17,300 nacelle transmissions, components in totaling over 850 service million flight-hours More than 40,000 500km of electrical wiring on an landings a day using our Airbus A380 equipment 4 June 2017 / R& T 2 3 4 Q This document and the information therein are the property of Safran.
    [Show full text]
  • Designing Unmanned Aircraft Systems: a Comprehensive Approach
    Designing Unmanned Aircraft Systems: A Comprehensive Approach Jay Gundlach Aurora Flight Sciences Manassas, Virginia AIAA EDUCATION SERIES Joseph A. Schetz, Editor-in-Chief Virginia Polytechnic Institute and State University Blacksburg, Virginia Published by the American Institute of Aeronautics and Astronautics, Inc. 1801 Alexander Bell Drive, Reston, Virginia 20191-4344 NOMENCLATURE Item Definition A area; availability; ground area covered in a mission; radar antenna area, m2; conversion between radians and minutes of arc Aa achieved availability Abound bounded area for a closed section 2 Ad IR detector sensitive area, m 2 Aeff effective antenna area, length Ai inherent availability AO operational availability; UA availability 2 Ap propeller disk area, length ARate area coverage rate Ar effective collection area of optical receiver ASurf surface area AR aspect ratio ARWet wetted aspect ratio AR0 aspect ratio along spanwise path a UA acceleration; maximum fuselage cross-section width; speed of sound; detector characteristic dimension awa radar mainlobe width metric awr radar mainlobe width metric ax acceleration along the x direction (acceleration) B acuity gain due to binoculars; boom area; effective noise bandwidth of receiving process, Hz 21 BDoppler Doppler bandwidth (time ) BN effective noise bandwidth of the receiving process 21 BT radar signal bandwidth (time ) BSFCSL brake specific fuel consumption at sea level b web length; wing span; maximum fuselage cross- section height bw wing span b0 span without dihedral C cost of contractor
    [Show full text]
  • Air University Review: September-October 1973, Volume
    AIR U N I V E R S IT V PROFESSIONAl JOURNAlrcificw Of THE UNITED STATES AIR FORCE T H E T he Threat, F oreicn Policy, and Cost Control: P.ARAMETERS FOR F o RCE P l ANNINC................................................................................................... 2 Col. Edward Stellini, USAF Keyn o t e of the 1970s: Joint Ven t c r es lnto Spa c e ................................................................16 Phillip O. Davis William G. Holder Air Force Review Swords, P lowsh.ares, .and Procress....................................................................................... 3 0 Lt. Gen. Kenneth W. Schultz, USAF D rone Remo t el y Pil o t e d Veh icl es and Aer ospac e Power...............................................44 Lt. Col. E. J. Kellerstrass, USAF SuPERSONIC D e LIVERY OF CoNVENTIONAL W ea PONS—F a CT OR F a NCY?.................................. 55 Charles S. Epstein Ner ve Cen t er for Spa c e Defen se...................................................................................................... 66 Maj. Sainuel C. Beainer, USAF In My Opinion T he Unit Co mma n der and the Bureaucracy............................................................... 63 Lt. Col. Arthur C. Mussman, USAF T he Nixo n Doctrine—a New Era in Foreign Policy? ...............................................89 Maj. H. A. Staley, USAF Books and Ideas W here There’s P.ain Theres Hope: M il it a r y Pr o fessio n a l ism in the Dock .......................................................................................................93
    [Show full text]
  • Regulatory Support Document Control of Air Pollution from Aircraft
    Regulatory Support Document Control of Air Pollution from Aircraft and Aircraft Engines For the Direct Final Rule for aircraft emission standards Published May 8, 1997 Harmonizes US aircraft standards with international standards U.S. Environmental Protection Agency Office of Air and Radiation Office of Mobile Sources February, 1997 Table of Contents Page Part 1: Introduction..................................... 1 1.1 Background....................................... 1 ICAO............................................. 1 Setup....................................... 1 Establishment of standards.................. 1 Rulemaking-EPA................................... 2 1.2 Description of Regulatory Action................. 2 EPA.............................................. 2 Responsibilities............................ 2 Emissions and power setting................. 2 Comparison to ICAO.......................... 3 1.3 Certification Process............................ 3 FAA.............................................. 3 Engine certification........................ 3 Designee system........................ 3 Enforcement of rules........................ 3 Granting of exemptions...................... 4 Part 2: Turbine Engine Technology........................ 4 2.1 Overview......................................... 4 2.2 Turboprops....................................... 5 2.3 Turbojets........................................ 6 2.4 Turbofans........................................ 7 2.5 Propfan/Unducted Fan............................. 8 2.6 Combustion......................................
    [Show full text]
  • APPLIED to GENERAL AVIATION by R. W. Awker BEECH AIRCRAFT
    NASA CR 175020 NfLg/ APPLIED TO GENERAL AVIATION [N&SA-CR-175320) EVAIUAIICN CF _OPFAN N86-24695 _OPULSICN APSLIE_ TO G_N£_AL AVIATION [Beech Aircraft Corp.) |45 p HC A07/_F A01 CSCL 21E Unclas G3/07 43075 by R. W. Awker BEECH AIRCRAFT CORPORATION WICHITA, KANSAS Prepared For NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Lewis Research Center Cleveland, Ohio 44135 Contract NAS3- 24349 NASA CR 175020 I /ISA EVALUATION OF PROPFAN PROPULSION APPLIED TO GENERAL AVIATION by R. W. Awker BEECH AIRCRAFT CORPORATION WICHITA, KANSAS Prepared For NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Lewis Research Center Cleveland, Ohio 44135 Contract NAS3- 24349 FORWARD This report presents the results of a study conducted by The Beech Aircraft Corporation with support from Hamilton Standard Division of United Technologies Corporation (UTC) and Pratt and Whitney, Canada Division of United Technologies Corporation (UTC) for the National Aeronautics and Space Administration, Lewis Research Center (NASA-LeRC) under NASA contract NAS3-24349, "Multiple Application Propfan Studies (MAPS) Category One (1)" The study was conducted from August, 1984 to June, 1985. The Study Manager for Beech was Randal W. Awker. The NASA Contract Manager for the study was Susan M. Johnson, NASA-LeRC, Cleveland, Ohio. The author wishes to express special thanks to the following UTC personel who provided valuable technical assistance and propulsion system data that made this report possible. Derek Emerson Pratt and Whitney, Canada Ira Kei ter Hamilton Standard Richard Millar Pratt and Whitney, Canada Bernard Palfreeman --- Pratt and Whitney, Canada Additionally, the author wishes to express his appreciation to Pratt and Whitney, Canada for supporting the study at no cost.
    [Show full text]