The Role of Phenotypic Plasticity and Local Adaptation in Alpine Plants Facing Climate Change

Total Page:16

File Type:pdf, Size:1020Kb

The Role of Phenotypic Plasticity and Local Adaptation in Alpine Plants Facing Climate Change THE ROLE OF PHENOTYPIC PLASTICITY AND LOCAL ADAPTATION IN ALPINE PLANTS FACING CLIMATE CHANGE INAUGURALDISSERTATION zur Erlangung der Würde eines Doktors der Philosophie vorgelegt der PHILOSOPHISCH-NATURWISSENSCHAFTLICHEN FAKULTÄT der Universität Basel von ELENA HAMANN Aus Oldenburg, Deutschland Basel, 2017 Originaldokument gespeichert auf dem Dokumentenserver der Universität Basel edoc.unibas.ch Dieses Werk ist unter dem Vertrag „Creative Commons Namensnennung-Keine kommerzielle Nutzung-Keine Bearbeitung 3.0 Schweiz“ (CC BY-NC-ND 3.0 CH) lizenziert. Die vollständige Lizenz kann unter creativecommons.org/licenses/by-nc-nd/3.0/ch/ eingesehen werden. Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät auf Antrag von Prof. Dr. Jürg Stöcklin Dr. Andrea Plüss Basel, den 10. November 2015 Prof. Dr. J. Schibler Dekan “A garden requires patient labor and attention. Plants do not merely grow to satisfy ambitions or to fulfill good intentions. They thrive because someone expanded effort on them.” - Liberty Hyde Bailey __________ “If we knew what it was we were doing, it would not be called research, would it?” - Albert Einstein __________ “[…] Find out the cause for this effect, / Or rather say, the cause of this defect, / For this effect defective comes by cause. “ – Polonius (Act2, Scene 2, line 104) Hamlet, Shakespeare Contents Contents Chapter 1 General Introduction 7 Chapter 2 Lower plasticity exhibited by high- versus mid-elevation species in 21 their phenological responses to manipulated temperature and drought S. Gugger, H. Kesselring, J. Stöcklin, E. Hamann* Chapter 3 Plant responses to simulated warming and drought: a comparative 45 study of functional plasticity between congeneric mid and high elevation species E. Hamann*, H. Kesselring, J. Stöcklin Chapter 4 Past selection explains differentiation in flowering phenology of 67 nearby population of a common alpine plant H. Kesselring, G.F.J. Armbruster, E. Hamann, J. Stöcklin Chapter 5 Evidence of local adaptation to fine- and coarse-grained 91 environmental variability in Poa alpina in the Swiss Alps E. Hamann*, H. Kesselring, G.F.J. Armbruster, J.F. Scheepens, J. Stöcklin Chapter 6 High intraspecific phenotypic variation, but little evidence for local 111 adaptation in Geum reptans populations in the Central Swiss Alps E. Hamann*, H. Kesselring, G.F.J. Armbruster, J.F. Scheepens, J. Stöcklin Chapter 7 Spatial patterns of local adaptation in two common herbs from the 133 Central European Alps H. Kesselring, J.F. Scheepens, E. Hamann, G.F.J. Armbruster, J. Stöcklin Chapter 8 Novel microsatellite markers for the high-alpine Geum reptans 153 (Rosaceae) E. Hamann*, H. Kesselring, J. Stöcklin, G. F. J. Armbruster Chapter 9 New microsatellite markers for Anthyllis vulneraria (Fabaceae), 163 analyzed with Spreadex gel electrophoresis H. Kesselring, E. Hamann, J. Stöcklin, G. F. J. Armbruster Chapter 10 General Discussion 173 Acknowledgements 181 Curriculum Vitae 183 5 6 Chapter 1 Chapter 1 General Introduction 7 General Introduction 8 Chapter 1 General Introduction Lectori salutem, flora clearly distinct of that of lowlands (Chapin and Koerner, 1995). Before introducing the general aims, the Climate change, well illustrated in Europe main research questions, the experimental by increasing temperatures and changes in approach and the outline of this thesis, I precipitation patterns, has been reported by would like to set its research frame, which the IPCC (Kovats et al., 2014) and it has revolves in the scientific field of plant been suggested that these effects are population and evolutionary biology. For this proportionally more pronounced at high purpose, I will first provide information elevation (Beniston et al., 1997). Indeed, in about the environment of the Swiss Alps, its alpine regions the amplitude of temperature flora, and how it is threatened by climate changes are greater then the observed global change. I will then proceed to introduce changes (Beniston et al., 1994). While a terms such as evolution, natural selection, 0.7°C rise in air temperatures has been local adaptation, and phenotypic plasticity. reported globally, a 2°C change in temperature has been recorded in the Alps The Alpine flora and environment is (Auer et al., 2007). Additionally, summer threatened by climate change droughts are predicted to become more frequent in many regions including mountain areas (Kovats et al., 2014), leaving mountain Alpine biodiversity is particularly rich and biota particularly vulnerable to climate the flora of the Alps comprises about 4’000 change (Theurillat and Guisan, 2001, Körner, species (Aeschimann et al., 2004) and 2003). includes more than five hundred endemic In this context, it becomes increasingly species, i.e. unique to a particularly mountain important to investigate how the alpine flora region, where they have probably evolved. will respond to environmental changes and Plants had to adapt to the particular evolve in a future climate. environmental conditions at high altitude (Körner, 2003). With increasing elevation, plant life is challenged in many ways, by A brief introduction to local extreme temperatures, a short vegetation adaptation and phenotypic plasticity period, snow, and by a rising number of weather-related extreme events (Körner, Evolution, the heritable change over time 2003). The alpine landscape is also in the phenotype of an organism (Darwin, characterized by great spatial and temporal 1859) and natural selection, the process environmental heterogeneity, creating a which selects for particular phenotypic mosaic of micro-habitats (Scherrer and variants in a population, have led to the Körner, 2010, Scherrer and Körner, 2011). adaptation of plants to their environment. The environmental heterogeneity, along with Within a species, populations may the richness of endemics, highlights the genetically differ through natural selection or strength of selective forces and evolutionary random processes such as genetic drift. In processes in the alpine landscape (Ozenda, widespread plants, the heterogeneity of 1988, Kadereit et al., 2008), making alpine habitat conditions over large spatial scales 9 General Introduction may lead to changes in the selection from local adaptation, phenotypic plasticity pressures acting on functional plant traits and or a combination of both (Conner and Hartl, may thereby result in adaptive genetic 2004, Ghalambor et al., 2007, Franks et al., variation in a way that maximizes fitness in 2014). However, intraspecific differentiation different environments (Briggs and Walters, in alpine plants is also strongly affected by 1997). Indeed, widespread species show high the repeated oscillations during glaciations levels of variation (Bradshaw, 2006), and (Scheepens and Stöcklin, 2011, Scheepens et frequently perform well in a wide range of al., 2015). Thus, to some extent, phenotypic environmental conditions (Joshi et al., 2001, differentiation in alpine plants may be Santamaria et al., 2003). On the one hand, ecologically relevant and adaptive, but to adaptations to climatic variation or other some degree it may result from random conditions that differ at a larger spatial scale evolutionary processes (e.g. genetic drift). (coarse-grained environmental variation) There are not many studies on alpine plants should easily be maintained by natural that have rigorously tested hypotheses selection, while genetic adaptations to concerning local adaptation, either for environmental variability at a more local elevational effects (Galen and Stanton, 1991, scale (fine-grained environmental variation) Byars et al., 2007, Byars and Hoffmann, may be hindered by gene flow (Kawecki and 2009, Hautier et al., 2009), differences in Ebert, 2004). Since the pioneer studies of snow cover (Stanton and Galen, 1997), or Turesson (1922) and Clausen et al. (1941), adaptation to contrasting habitats (McGraw, patterns of intraspecific variability were the 1987, Leinonen et al., 2009). Mostly, local focus of many studies, and specialization to adaptation in these studies was demonstrated particular environmental conditions has been across wide climatic or elevational gradients frequently demonstrated (Van Tienderen, or to contrasting habitats, but populations 1991, Dudley, 1996, Van Tienderen, 1997, were rarely transplanted across their original Pluess and Stöcklin, 2005, Fischer et al., field sites. At the local scale genetic 2008). adaptation to environmental variability may As a result, it is usually assumed that be hampered by gene flow or source sink plants are locally adapted. Local adaptation is relations among nearby populations (Stanton characterized by adaptive differentiation and Galen, 1997, Kawecki and Ebert, 2004). among populations. Plants can be locally Nevertheless, differentiation among alpine adapted either constitutively via genotypic populations has also been demonstrated at differences or via phenotypic plasticity, the micro-scale, indicating the strength of which is the range of phenotypes a single small-scale heterogeneity as a selective force genotype can express as a function of its for local adaptation (Shimono et al., 2009). environment (Bradshaw, 1965). Genotypic In other cases, adaptation to small-scale variability and phenotypic plasticity can be environmental heterogeneity was missing considered as complementary mechanisms (Byars et al., 2009). Furthermore, local adjusting plants to environmental adaptation is also contingent on factors other heterogeneity (Van Tienderen, 1991, Van than spatial scale, such
Recommended publications
  • (Cruciferae) – Mustard Family
    BRASSICACEAE (CRUCIFERAE) – MUSTARD FAMILY Plant: herbs mostly, annual to perennial, sometimes shrubs; sap sometimes peppery Stem: Root: Leaves: mostly simple but sometimes pinnately divided; alternate, rarely opposite or whorled; no stipules Flowers: mostly perfect, mostly regular (actinomorphic); 4 sepals, 4 petals often forming a cross; 6 stamens with usually 2 outer ones shorter than the inner 4; ovary superior, mostly 2 fused carpels, 1 to many ovules, 1 pistil Fruit: seed pods, often used in classification, many are slender and long (Silique), some broad (Silicle) – see morphology slide Other: a large family, many garden plants such as turnip, radish, and cabbage, also some spices; often termed the Cruciferae family; Dicotyledons Group Genera: 350+ genera; 40+ locally WARNING – family descriptions are only a layman’s guide and should not be used as definitive Flower Morphology in the Brassicaceae (Mustard Family) - flower with 4 sepals, 4 petals (often like a cross, sometimes split or lobed), commonly small, often white or yellow, distinctive fruiting structures often important for ID 2 types of fruiting pods: in addition, fruits may be circular, flattened or angled in cross-section Silicle - (usually <2.5x long as wide), 2-valved with septum (replum) Silique - (usually >2.5x long as wide), 2- valved with septum (replum) Flowers, Many Genera BRASSICACEAE (CRUCIFERAE) – MUSTARD FAMILY Sanddune [Western] Wallflower; Erysimum capitatum (Douglas ex Hook.) Greene var. capitatum Wormseed Wallflower [Mustard]; Erysimum cheiranthoides L. (Introduced) Spreading Wallflower [Treacle Mustard]; Erysimum repandum L. (Introduced) Dame’s Rocket [Dame’s Violet]; Hesperis matronalis L. (Introduced) Purple [Violet] Rocket; Iodanthus pinnatifidus (Michx.) Steud. Michaux's Gladecress; Leavenworthia uniflora (Michx.) Britton [Cow; Field] Cress [Peppergrass]; Lepidium campestre L.) Ait.
    [Show full text]
  • Atlas of the Flora of New England: Fabaceae
    Angelo, R. and D.E. Boufford. 2013. Atlas of the flora of New England: Fabaceae. Phytoneuron 2013-2: 1–15 + map pages 1– 21. Published 9 January 2013. ISSN 2153 733X ATLAS OF THE FLORA OF NEW ENGLAND: FABACEAE RAY ANGELO1 and DAVID E. BOUFFORD2 Harvard University Herbaria 22 Divinity Avenue Cambridge, Massachusetts 02138-2020 [email protected] [email protected] ABSTRACT Dot maps are provided to depict the distribution at the county level of the taxa of Magnoliophyta: Fabaceae growing outside of cultivation in the six New England states of the northeastern United States. The maps treat 172 taxa (species, subspecies, varieties, and hybrids, but not forms) based primarily on specimens in the major herbaria of Maine, New Hampshire, Vermont, Massachusetts, Rhode Island, and Connecticut, with most data derived from the holdings of the New England Botanical Club Herbarium (NEBC). Brief synonymy (to account for names used in standard manuals and floras for the area and on herbarium specimens), habitat, chromosome information, and common names are also provided. KEY WORDS: flora, New England, atlas, distribution, Fabaceae This article is the eleventh in a series (Angelo & Boufford 1996, 1998, 2000, 2007, 2010, 2011a, 2011b, 2012a, 2012b, 2012c) that presents the distributions of the vascular flora of New England in the form of dot distribution maps at the county level (Figure 1). Seven more articles are planned. The atlas is posted on the internet at http://neatlas.org, where it will be updated as new information becomes available. This project encompasses all vascular plants (lycophytes, pteridophytes and spermatophytes) at the rank of species, subspecies, and variety growing independent of cultivation in the six New England states.
    [Show full text]
  • Checklist of the Vascular Plants of Redwood National Park
    Humboldt State University Digital Commons @ Humboldt State University Botanical Studies Open Educational Resources and Data 9-17-2018 Checklist of the Vascular Plants of Redwood National Park James P. Smith Jr Humboldt State University, [email protected] Follow this and additional works at: https://digitalcommons.humboldt.edu/botany_jps Part of the Botany Commons Recommended Citation Smith, James P. Jr, "Checklist of the Vascular Plants of Redwood National Park" (2018). Botanical Studies. 85. https://digitalcommons.humboldt.edu/botany_jps/85 This Flora of Northwest California-Checklists of Local Sites is brought to you for free and open access by the Open Educational Resources and Data at Digital Commons @ Humboldt State University. It has been accepted for inclusion in Botanical Studies by an authorized administrator of Digital Commons @ Humboldt State University. For more information, please contact [email protected]. A CHECKLIST OF THE VASCULAR PLANTS OF THE REDWOOD NATIONAL & STATE PARKS James P. Smith, Jr. Professor Emeritus of Botany Department of Biological Sciences Humboldt State Univerity Arcata, California 14 September 2018 The Redwood National and State Parks are located in Del Norte and Humboldt counties in coastal northwestern California. The national park was F E R N S established in 1968. In 1994, a cooperative agreement with the California Department of Parks and Recreation added Del Norte Coast, Prairie Creek, Athyriaceae – Lady Fern Family and Jedediah Smith Redwoods state parks to form a single administrative Athyrium filix-femina var. cyclosporum • northwestern lady fern unit. Together they comprise about 133,000 acres (540 km2), including 37 miles of coast line. Almost half of the remaining old growth redwood forests Blechnaceae – Deer Fern Family are protected in these four parks.
    [Show full text]
  • Handbook a “Improving the Availability of Data and Information
    Improving the availability of data and information on species, habitats and sites Focus Area A Handbook on the application of existing scientific approaches, methods, tools and knowledge for a better implementation of the Birds and Habitat Directives Environment FOCUS AREA A IMPROVING THE AVAILABILITY OF DATA AND i INFORMATION ON SPECIES, HABITATS AND SITES Imprint Disclaimer This document has been prepared for the European Commis- sion. The information and views set out in the handbook are Citation those of the authors only and do not necessarily reflect the Schmidt, A.M. & Van der Sluis, T. (2021). E-BIND Handbook (Part A): Improving the availability of data and official opinion of the Commission. The Commission does not information on species, habitats and sites. Wageningen Environmental Research/ Ecologic Institute /Milieu Ltd. guarantee the accuracy of the data included. The Commission Wageningen, The Netherlands. or any person acting on the Commission’s behalf cannot be held responsible for any use which may be made of the information Authors contained therein. Lead authors: This handbook has been prepared under a contract with the Anne Schmidt, Chris van Swaay (Monitoring of species and habitats within and beyond Natura 2000 sites) European Commission, in cooperation with relevant stakehold- Sander Mücher, Gerard Hazeu (Remote sensing techniques for the monitoring of Natura 2000 sites) ers. (EU Service contract Nr. 07.027740/2018/783031/ENV.D.3 Anne Schmidt, Chris van Swaay, Rene Henkens, Peter Verweij (Access to data and information) for evidence-based improvements in the Birds and Habitat Kris Decleer, Rienk-Jan Bijlsma (Approaches and tools for effective restoration measures for species and habitats) directives (BHD) implementation: systematic review and meta- Theo van der Sluis, Rob Jongman (Green Infrastructure and network coherence) analysis).
    [Show full text]
  • Vascular Plants and a Brief History of the Kiowa and Rita Blanca National Grasslands
    United States Department of Agriculture Vascular Plants and a Brief Forest Service Rocky Mountain History of the Kiowa and Rita Research Station General Technical Report Blanca National Grasslands RMRS-GTR-233 December 2009 Donald L. Hazlett, Michael H. Schiebout, and Paulette L. Ford Hazlett, Donald L.; Schiebout, Michael H.; and Ford, Paulette L. 2009. Vascular plants and a brief history of the Kiowa and Rita Blanca National Grasslands. Gen. Tech. Rep. RMRS- GTR-233. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 44 p. Abstract Administered by the USDA Forest Service, the Kiowa and Rita Blanca National Grasslands occupy 230,000 acres of public land extending from northeastern New Mexico into the panhandles of Oklahoma and Texas. A mosaic of topographic features including canyons, plateaus, rolling grasslands and outcrops supports a diverse flora. Eight hundred twenty six (826) species of vascular plant species representing 81 plant families are known to occur on or near these public lands. This report includes a history of the area; ethnobotanical information; an introductory overview of the area including its climate, geology, vegetation, habitats, fauna, and ecological history; and a plant survey and information about the rare, poisonous, and exotic species from the area. A vascular plant checklist of 816 vascular plant taxa in the appendix includes scientific and common names, habitat types, and general distribution data for each species. This list is based on extensive plant collections and available herbarium collections. Authors Donald L. Hazlett is an ethnobotanist, Director of New World Plants and People consulting, and a research associate at the Denver Botanic Gardens, Denver, CO.
    [Show full text]
  • Salix L.) in the European Alps
    diversity Review The Evolutionary History, Diversity, and Ecology of Willows (Salix L.) in the European Alps Natascha D. Wagner 1 , Li He 2 and Elvira Hörandl 1,* 1 Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, Untere Karspüle 2, 37073 Göttingen, Germany; [email protected] 2 College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; [email protected] * Correspondence: [email protected] Abstract: The genus Salix (willows), with 33 species, represents the most diverse genus of woody plants in the European Alps. Many species dominate subalpine and alpine types of vegetation. Despite a long history of research on willows, the evolutionary and ecological factors for this species richness are poorly known. Here we will review recent progress in research on phylogenetic relation- ships, evolution, ecology, and speciation in alpine willows. Phylogenomic reconstructions suggest multiple colonization of the Alps, probably from the late Miocene onward, and reject hypotheses of a single radiation. Relatives occur in the Arctic and in temperate Eurasia. Most species are widespread in the European mountain systems or in the European lowlands. Within the Alps, species differ eco- logically according to different elevational zones and habitat preferences. Homoploid hybridization is a frequent process in willows and happens mostly after climatic fluctuations and secondary contact. Breakdown of the ecological crossing barriers of species is followed by introgressive hybridization. Polyploidy is an important speciation mechanism, as 40% of species are polyploid, including the four endemic species of the Alps. Phylogenomic data suggest an allopolyploid origin for all taxa analyzed Citation: Wagner, N.D.; He, L.; so far.
    [Show full text]
  • List of Plants for Great Sand Dunes National Park and Preserve
    Great Sand Dunes National Park and Preserve Plant Checklist DRAFT as of 29 November 2005 FERNS AND FERN ALLIES Equisetaceae (Horsetail Family) Vascular Plant Equisetales Equisetaceae Equisetum arvense Present in Park Rare Native Field horsetail Vascular Plant Equisetales Equisetaceae Equisetum laevigatum Present in Park Unknown Native Scouring-rush Polypodiaceae (Fern Family) Vascular Plant Polypodiales Dryopteridaceae Cystopteris fragilis Present in Park Uncommon Native Brittle bladderfern Vascular Plant Polypodiales Dryopteridaceae Woodsia oregana Present in Park Uncommon Native Oregon woodsia Pteridaceae (Maidenhair Fern Family) Vascular Plant Polypodiales Pteridaceae Argyrochosma fendleri Present in Park Unknown Native Zigzag fern Vascular Plant Polypodiales Pteridaceae Cheilanthes feei Present in Park Uncommon Native Slender lip fern Vascular Plant Polypodiales Pteridaceae Cryptogramma acrostichoides Present in Park Unknown Native American rockbrake Selaginellaceae (Spikemoss Family) Vascular Plant Selaginellales Selaginellaceae Selaginella densa Present in Park Rare Native Lesser spikemoss Vascular Plant Selaginellales Selaginellaceae Selaginella weatherbiana Present in Park Unknown Native Weatherby's clubmoss CONIFERS Cupressaceae (Cypress family) Vascular Plant Pinales Cupressaceae Juniperus scopulorum Present in Park Unknown Native Rocky Mountain juniper Pinaceae (Pine Family) Vascular Plant Pinales Pinaceae Abies concolor var. concolor Present in Park Rare Native White fir Vascular Plant Pinales Pinaceae Abies lasiocarpa Present
    [Show full text]
  • Worksheet-2B.Pdf
    WHAT’S SO IMPORTANT ABOUT NAMES? Topics Covered: Classificaon and taxonomy Understanding the importance of Linnaeus’s contribuon to science Making and using keys What’s in a name? Giving something a name allows us to talk about it. Names are important not only for people, but also for the plants we culvate in our gardens. In the early days of botany (the 17th and early 18th centuries) plants were given long Lan phrases for names that described their parcular features. As more plants became known, names tended to become longer, and much more difficult to remember and use. Then, in the 18th century, a Swedish biologist named Carl Linnaeus developed and popularised a two‐name (binomial) system for all plant species—GENUS and SPECIES. His system is sll in use today. A useful definion GENUS: A group of organisms SPECIES: that have certain characteriscs in of a species is a group of organisms common but can be divided further which can interbreed to produce into other groups (i.e. into species) ferle offspring Binomial names The use of only two words (the binomial name) made it much easier to categorise and compare different plants and animals. Imagine, for instance, talking about a type of geranium using the old name: Geranium pedunculis bifloris, caule dichotomo erecto, foliis quinquepars incisis; summis sessilibus The binomial name is much easier to use: Geranium maculatum 1 WHAT’S SO IMPORTANT ABOUT NAMES? Who was Carl Linnaeus? Carl Linnaeus (1707–1778) was born and brought up in and around Råshult, in the countryside of southern Sweden.
    [Show full text]
  • And Betula Nana (Betulaceae)
    Acta Societatis Botanicorum Poloniae Journal homepage: pbsociety.org.pl/journals/index.php/asbp ORIGINAL RESEARCH PAPER Received: 2010.09.06 Accepted: 2010.12.29 Published electronically: 2012.10.01 Acta Soc Bot Pol 81(3):153–158 DOI: 10.5586/asbp.2012.027 Calculated characters of leaves are independent on environmental conditions in Salix herbacea (Salicaceae) and Betula nana (Betulaceae) Katarzyna Marcysiak* Department of Botany, Kazimierz Wielki University, Ossolińskich 12, 85–093 Bydgoszcz, Poland Abstract The goal of the study was to check if the shape-describing characters, calculated as ratios of the morphological measured traits are more stable, compared to the latter, and can be treated as independent on environmental conditions. The test was based on the example of leaves of Salix herbacea and Betula nana. The individuals of the two populations ofS. herbacea from Tatra Mts. were divided into two groups: with bigger and smaller leaves. The two populations of B. nana came from different substrata: the first one, collected from the mire on the lower altitude, had bigger leaves, and the second, collected from the granite plateau and higher altitude, had smaller leaves. For both species, the measured traits were generally more variable than the ratios calculated on their basis, as expressed by the variation coefficients. The results of Students' t-test analyses showed statistically significant differences between the two groups of S. herbacea and the two populations of B. nana with respect to almost all the measured characters, and no such differences for the calculated traits, reflecting the leaf shape. As the differentiation of the leaf size was probably bound to the environmental factors, the lack of the dependence of the leaf shape on the leaf size could lead to a conclusion of independence of the leaf shape on the environment conditions.
    [Show full text]
  • Morphological Variation in Eight Taxa of Anthyllis Vulneraria S. Lato (Fabaceae)
    Ann. Bot. Fennici 42: 293–304 ISSN 0003-3847 Helsinki 30 August 2005 © Finnish Zoological and Botanical Publishing Board 2005 Morphological variation in eight taxa of Anthyllis vulneraria s. lato (Fabaceae) Egle Puidet, Jaan Liira, Jaanus Paal, Meelis Pärtel & Silvia Pihu Institute of Botany and Ecology, University of Tartu, 40 Lai Str., 51005 Tartu, Estonia Received 5 Oct. 2004, revised version received 10 Dec. 2004, accepted 17 Dec. 2004 Puidet, E., Liira, J., Paal, J., Pärtel, M. & Pihu, S. 2005: Morphological variation in eight taxa of Anthyllis vulneraria s. lato (Fabaceae). — Ann. Bot. Fennici 42: 293–304. Depending on the literature source, the number of existing Anthyllis species differs almost three-fold. In addition to the well-defined species, there are many cryptic ones. Statistical analysis (general linear models, discriminant analysis) of the morphologi- cal variation of eight Anthyllis taxa (for simplification classified as species) resulted in three groups of species: Vulneraria (A. vulneraria, A. maritima, A. arenaria and A. ¥ baltica), Macrocephala (A. macrocephala, A. ¥ colorata, and A. ¥ polyphylloides), and Coccinea (A. coccinea). Distinguishing features of these groups were calyx colour, corolla colour, hairiness of stems and petioles, and plant height. Key words: Anthyllis vulneraria, morphology, suboptimal classification, taxonomy, variation Introduction tion (Yakovlev et al. 1996). The species number has been given as 25 (Cullen 1986) up to 60 The genus Anthyllis (Fabaceae) is one of eight (Minjaev & Akulova 1987). Although some spe- genera in the tribe Loteae and is morphologically cies in the genus are well defined and universally and molecularly closely related to the genus accepted, there are many cryptic forms that have Hymenocarpus (Polhill 1994).
    [Show full text]
  • Diversity and Evolution of Rosids
    *Malpighiales • large and diverse group of 39 families - many of them Diversity and contributing importantly to tropical Evolution of Rosids forest diversity . willows, spurges, and maples . *Salicaceae - willows, poplars *Salicaceae - willows, poplars Chemically defined by salicins (salicylic acid). Many 55 genera, 1000+ species of shrubs/trees - 450 are willows members of the tropical “Flacourtiaceae” with showy flowers (Salix), less numerous are poplars, aspens (Populus). also have salicins and are now part of the Salicaceae Populus deltoides - Salix babylonica - Dovyalis hebecarpa Oncoba spinosa American cottonwood weeping willow 1 *Salicaceae - willows, poplars *Salicaceae - willows, poplars Willows (Salix) are dioecious trees of temperate regions with female male • nectar glands at base of bract allows reduced flowers in aments - both insect and wind pollinated insect as well as wind pollination • fruit is a capsule with cottony seeds for wind dispersal female male Salix babylonica - weeping willow *Salicaceae - willows, poplars *Salicaceae - willows, poplars • species vary from large trees, shrubs, to tiny tundra subshrubs • many species are “precocious” - flower before leaves flush in spring Salix discolor - pussy willow Salix herbacea - Salix pedicellaris - Salix fragilis - dwarf willow bog willow crack willow 2 *Salicaceae - willows, poplars *Salicaceae - willows, poplars Populus - poplars, cottonwood, aspens male • flowers possess a disk • cottony seeds in capsule female Populus deltoides American cottonwood Populus deltoides - American cottonwood *Salicaceae - willows, poplars *Salicaceae - willows, poplars Populus balsamifera Balsam poplar, balm-of-gilead P. tremuloides P. grandidentata trrembling aspen bigtooth aspen • aspens are clonal from root sprouts, fast growing, light Populus alba wooded, and important for White poplar pulp in the paper industry Introduced from Europe 3 *Euphorbiaceae - spurges *Euphorbiaceae - spurges Euphorbiaceae s.l.
    [Show full text]
  • Flora-Lab-Manual.Pdf
    LabLab MManualanual ttoo tthehe Jane Mygatt Juliana Medeiros Flora of New Mexico Lab Manual to the Flora of New Mexico Jane Mygatt Juliana Medeiros University of New Mexico Herbarium Museum of Southwestern Biology MSC03 2020 1 University of New Mexico Albuquerque, NM, USA 87131-0001 October 2009 Contents page Introduction VI Acknowledgments VI Seed Plant Phylogeny 1 Timeline for the Evolution of Seed Plants 2 Non-fl owering Seed Plants 3 Order Gnetales Ephedraceae 4 Order (ungrouped) The Conifers Cupressaceae 5 Pinaceae 8 Field Trips 13 Sandia Crest 14 Las Huertas Canyon 20 Sevilleta 24 West Mesa 30 Rio Grande Bosque 34 Flowering Seed Plants- The Monocots 40 Order Alistmatales Lemnaceae 41 Order Asparagales Iridaceae 42 Orchidaceae 43 Order Commelinales Commelinaceae 45 Order Liliales Liliaceae 46 Order Poales Cyperaceae 47 Juncaceae 49 Poaceae 50 Typhaceae 53 Flowering Seed Plants- The Eudicots 54 Order (ungrouped) Nymphaeaceae 55 Order Proteales Platanaceae 56 Order Ranunculales Berberidaceae 57 Papaveraceae 58 Ranunculaceae 59 III page Core Eudicots 61 Saxifragales Crassulaceae 62 Saxifragaceae 63 Rosids Order Zygophyllales Zygophyllaceae 64 Rosid I Order Cucurbitales Cucurbitaceae 65 Order Fabales Fabaceae 66 Order Fagales Betulaceae 69 Fagaceae 70 Juglandaceae 71 Order Malpighiales Euphorbiaceae 72 Linaceae 73 Salicaceae 74 Violaceae 75 Order Rosales Elaeagnaceae 76 Rosaceae 77 Ulmaceae 81 Rosid II Order Brassicales Brassicaceae 82 Capparaceae 84 Order Geraniales Geraniaceae 85 Order Malvales Malvaceae 86 Order Myrtales Onagraceae
    [Show full text]