Morphological Variation in Eight Taxa of Anthyllis Vulneraria S. Lato (Fabaceae)

Total Page:16

File Type:pdf, Size:1020Kb

Morphological Variation in Eight Taxa of Anthyllis Vulneraria S. Lato (Fabaceae) Ann. Bot. Fennici 42: 293–304 ISSN 0003-3847 Helsinki 30 August 2005 © Finnish Zoological and Botanical Publishing Board 2005 Morphological variation in eight taxa of Anthyllis vulneraria s. lato (Fabaceae) Egle Puidet, Jaan Liira, Jaanus Paal, Meelis Pärtel & Silvia Pihu Institute of Botany and Ecology, University of Tartu, 40 Lai Str., 51005 Tartu, Estonia Received 5 Oct. 2004, revised version received 10 Dec. 2004, accepted 17 Dec. 2004 Puidet, E., Liira, J., Paal, J., Pärtel, M. & Pihu, S. 2005: Morphological variation in eight taxa of Anthyllis vulneraria s. lato (Fabaceae). — Ann. Bot. Fennici 42: 293–304. Depending on the literature source, the number of existing Anthyllis species differs almost three-fold. In addition to the well-defined species, there are many cryptic ones. Statistical analysis (general linear models, discriminant analysis) of the morphologi- cal variation of eight Anthyllis taxa (for simplification classified as species) resulted in three groups of species: Vulneraria (A. vulneraria, A. maritima, A. arenaria and A. ¥ baltica), Macrocephala (A. macrocephala, A. ¥ colorata, and A. ¥ polyphylloides), and Coccinea (A. coccinea). Distinguishing features of these groups were calyx colour, corolla colour, hairiness of stems and petioles, and plant height. Key words: Anthyllis vulneraria, morphology, suboptimal classification, taxonomy, variation Introduction tion (Yakovlev et al. 1996). The species number has been given as 25 (Cullen 1986) up to 60 The genus Anthyllis (Fabaceae) is one of eight (Minjaev & Akulova 1987). Although some spe- genera in the tribe Loteae and is morphologically cies in the genus are well defined and universally and molecularly closely related to the genus accepted, there are many cryptic forms that have Hymenocarpus (Polhill 1994). This relationship been subject to different interpretations. The spe- has been confirmed in later studies (Allan & cies are morphologically quite similar. Although Porter 2000, Allan et al. 2003), which substanti- the genus contains some shrubs and subshrubs, ate the sister group relationship between Anthyl- all European species are herbaceous (Cullen lis and Hymenocarpus xerxinnatus. 1968). Cullen (1968) divided A. vulneraria s. Anthyllis vulneraria s. lato occurs from lato into three groups: subsp. vulneraria, subsp. the Volga River to England and from northern maritima and subsp. polyphylla. Europe to the Mediterranean (Hultén & Fries There are two main schools of thought with 1986a). It has also been introduced into North respect to the taxonomy of the genus Anthyl- America and New Zealand (Hultén & Fries lis. The first, popular in the area of the former 1986b). The exact number of Anthyllis species Soviet Union, distinguishes numerous species is controversial and depends on interpretation in Anthyllis vulneraria s. lato (Juzepczuk 1945, of their morphological-geographical boundaries Minjaev & Akulova 1987). The other line of with respect to active speciation and hybridisa- thought, prevalent in most of Europe, recognises 294 Puidet et al. • ANN. BOT. FENNICI Vol. 42 18 European species (Cullen 1968, Garcke 1972, detectable characteristic is hair disposition on the Hegi 1975, Ulvinen & Lampinen 1998) with stem and petiole. Anthyllis macrocephala, A. ¥ many species of the first school being recognised polyphylla and A. ¥ colorata have patent hairs on as subspecies or varieties. the stems and petioles, whereas the other species Anthyllis vulneraria s. lato is a particularly have appressed hairs (Cullen 1968, Garcke 1972, polymorphic taxon (Krall 1983). Its intraspecific Hegi 1975, Krall 1983, Eglite & Krall 1996, Krall classification is complicated; subspecies and 1999). Anthyllis maritima can be distinguished forms are closely similar and often have a hybrid from the other species by concolorous calyces, origin. Anthyllis vulneraria consists of local forms by sericeous calyx pubescence and some inflo- in limited areas, which are almost morphologi- rescences with few flowers (sometimes not fully cally indistinct (Jalas 1950, Talts 1959). On old developed) (Krall 1983, Eglite & Krall 1996, Roze arable lands in central and western Europe, hybrid 2004). Inflorescences of this species also feature complexes whose taxonomic status is difficult to long peduncles. Anthyllis arenaria has well-devel- determine have been found (Talts 1959). Estonian oped inflorescences that are sessile (Eglite & Krall habitats are similar to those in central and southern 1996, Krall 1999). Branches of this species form Sweden, where several varieties of Anthyllis have an acute angle with the stem (Roze 2004). Of been described and where populations of Anthyllis the species with bicoloured calyces, A. coccinea occur typically as hybrid complexes (Jalas 1950). is most readily distinguished by its red corolla This article investigates eight taxa (A. are- (Cullen 1968, Krall 1983, Eglite & Krall 1996, naria (Rupr.) Juz., A. coccinea (L.) Beck, A. Krall 1999). Anthyllis ¥ baltica has also some macrocephala Wend., A. maritima Schweigg. undeveloped inflorescences in axils, like A. mar- and A. vulneraria L., s. stricto, A. ¥ colorata itima (Eglite & Krall 1996, Roze 2004). Anthyllis Juz., A. ¥ baltica Juz., A. ¥ polyphylloides Juz.), vulneraria s. stricto has unbranched stems and which are recognised as species in this study, mainly apical inflorescences (Juzepczuk 1945, as they are also in the Baltic States (Talts 1959, Eglite & Krall 1996, Krall 1999). According to the Krall 1983, Eglite & Krall 1996, Krall 1999, keys and floras these eight taxa can be readily dis- Kukk 1999). These species and their equivalents tinguished, yet individual plants of genus Anthyl- in other classifications are listed in Table 1. lis in natural stands are difficult to identify. Whereas these eight taxa are considered sub- There are also many infrequently used char- species or varieties of Anthyllis vulneraria s. acteristics that can be found in other studies lato in Europe, their global distribution remains (Cullen 1968, Lukaszewska et al. 1983a, 1983b, indeterminable. The most widespread taxa in the Krall 1983, Tihomirov & Sokoloff 1996). Baltic region, A. vulneraria s. stricto, A. macro- Becker (1912) distinguished two growth cephala, A. maritima and A. arenaria, are distrib- forms in Anthyllis vulneraria s. lato: Vulgaris uted throughout the area, whereas A. coccinea and Vulneraria. They usually grow in similar occurs only in western Estonia and Latvia, and in conditions, but Vulgaris prefers moister habitats southern Sweden (Tabaka 1982, Minjaev & Aku- than Vulneraria. He also claimed that corollas lova 1987, Tabaka et al. 1988). Anthyllis vulner- are usually yellow in moister conditions, but aria and A. macrocephala also occur in southern principally red in dryer habitats. Becker’s results Finland (Ulvinen & Lampinen 1998). Anthyllis contradict all traditionally used characteristics to ¥ polyphylloides has the same distribution as its distinguish Anthyllis species. probable parent species. Anthyllis ¥ baltica is Lukaszewska et al. (1983a, 1983b, 1983c) ana- endemic to the Baltic region and A. ¥ colorata is lysed the morphological variability and Kalinowski endemic to Estonia (Minjaev & Akulova 1987). (1983a, 1983b) the isoenzymatic variability of A. A few characteristics in different keys and vulneraria s. lato populations from coastal areas floras distinguish these taxa (Table 2). Bicol- of the Baltic Sea in Poland. Different methods of oured rufous calyx teeth demarcate A. vulner- multivariate statistical analysis all confirm the dif- aria s. stricto, A. coccinea, A. ¥ baltica and A. ferences between populations, both in vegetative ¥ colorata from the other four species, which and sexual characteristics. For most traits a cor- have concolorous, green calyces. Another readily relation was found between the differentiation of ANN. BOT. FENNICI BOT. ANN. Table 1. Classification of species of the genus Anthyllis according to different taxonomic arrangements (– = taxon was not cited). *All infraspecific taxa are members of A. 42 Vol. vulneraria s. lato. Baltic countries Former Soviet Union Europe Europe Finland • Morphological variationineighttaxaof Eglite & Krall 1996 Juzepczuk 1945 Gracke 1972 Hegi 1975 Ulvinen & Lampinen 1998 A. vulneraria L., s. stricto A. Linnaei Sag. ssp. vulneraria L.,* var. vulneraria (Kerner) Wohlf., ssp. vulneraria, ssp. vulgaris (Koch) A. et G. var. vulgaris Koch. ssp. linnaei Sag. A. coccinea (L.) Beck A. coccinea (L.) Beck – var. coccinea L. – A. arenaria (Rupr.) Juz. A. arenaria (Rupr.) Juz. – – – A. maritima Schweigg. A. maritima Schweigg. ssp. maritima (Schweigg.) A. et G. var. maritima (Schweiggrer) Koch. – A. macrocephala Wend. A. polyphylla Kit. ssp. polyphylla (Kit.) Arcang. var. polyphylla (Kit.) Ser. ssp. polyphylla (DC.) Nyman Anthyllis vulneraria A. ¥ colorata Juz. A. colorata (Meinsh.) Juz. – – – A. ¥ polyphylloides Juz. A. polyphylloides Juz. – – – A. ¥ baltica Juz. ex Miniaev et Kloczkova – – – – 295 296 Table 2. Main characteristics of the Estonian Anthyllis species (Krall 1983, 1999, Eglite & Krall 1996). Characteristics vulneraria, coccinea arenaria maritima macrcocephala ¥ baltica ¥ colorata ¥ polyphylloides s. stricto Plant height 15–30 cm 4–15 cm 20–50 cm 20–40 cm 16–40 cm 20–40 cm 20–50 cm 15–30 cm Stem shape ascending, ascending, erect ascending erect ascending ascending, erect erect decumbent erect Hair disposition on stem appressed appressed appressed appressed patent appressed patent patent and petiole Number of stem leaves 2–3 1–2 2–4 3–4 3–5 2–3 2–3 3–5 Shape of
Recommended publications
  • The Pigmentation of the Corolla Certainly
    Neerl. 349-351. Acta Bot. 26(4), August 1977, p. BRIEF COMMUNICATIONS Some observations on the anthocyanins in the flowers of Anthyllis vulneraria L. (Legumi- nosae - Fabaceae) * A.A. Sterk P. de Vlaming** and A.C. Bolsman-Louwen* * ** Hugo de Vries-Laboratorium, Genetisch Instituut, Universiteit van Amsterdam Anthyllis vulnerariashows an appreciable variation in the colour of the corolla which ranges from pale yellow to a deep purplish red. Also the calyx often has purple teeth. Most of the subspecies of A. vulneraria (16 out of 24) occur in the Medi- in the N. and About the terranean area, more particularly W. parts. moiety of these subspecies has purple or reddish flowers; the other halfpredominantly central with yellow or yellowish ones. In Europe 4 subspecies yellow corollas variants In N. also 4 found occur; red-flowered are rare. Europe subspecies are red-flowered vulneraria vulneraria of which one has a variety: A. ssp. var. coccinea (Cullen 1968). The red floral colour is predominantly found in the Mediterraneanarea. According to Becker (1912) the red-floweredpopulations are mostly encountered in drierand warmer climates; the yellow-flowered ones being more dominantin the colderand moister regions. the of corolla Observations by Couberc (1971) suggest that pigmentation the is strongly influenced by environmental conditions and certainly does not always provide a reliable taxonomic characteristic. The anthocyanin pigments of Anthyllis had not been studied previously. The flavonols have been inves- tigated by Gonnet & Jay (1972). In this study flowers of 12 populations of A. vulneraria were studied and flowers of one population of A. montana. The results are shown in the table.
    [Show full text]
  • Atlas of the Flora of New England: Fabaceae
    Angelo, R. and D.E. Boufford. 2013. Atlas of the flora of New England: Fabaceae. Phytoneuron 2013-2: 1–15 + map pages 1– 21. Published 9 January 2013. ISSN 2153 733X ATLAS OF THE FLORA OF NEW ENGLAND: FABACEAE RAY ANGELO1 and DAVID E. BOUFFORD2 Harvard University Herbaria 22 Divinity Avenue Cambridge, Massachusetts 02138-2020 [email protected] [email protected] ABSTRACT Dot maps are provided to depict the distribution at the county level of the taxa of Magnoliophyta: Fabaceae growing outside of cultivation in the six New England states of the northeastern United States. The maps treat 172 taxa (species, subspecies, varieties, and hybrids, but not forms) based primarily on specimens in the major herbaria of Maine, New Hampshire, Vermont, Massachusetts, Rhode Island, and Connecticut, with most data derived from the holdings of the New England Botanical Club Herbarium (NEBC). Brief synonymy (to account for names used in standard manuals and floras for the area and on herbarium specimens), habitat, chromosome information, and common names are also provided. KEY WORDS: flora, New England, atlas, distribution, Fabaceae This article is the eleventh in a series (Angelo & Boufford 1996, 1998, 2000, 2007, 2010, 2011a, 2011b, 2012a, 2012b, 2012c) that presents the distributions of the vascular flora of New England in the form of dot distribution maps at the county level (Figure 1). Seven more articles are planned. The atlas is posted on the internet at http://neatlas.org, where it will be updated as new information becomes available. This project encompasses all vascular plants (lycophytes, pteridophytes and spermatophytes) at the rank of species, subspecies, and variety growing independent of cultivation in the six New England states.
    [Show full text]
  • Handbook a “Improving the Availability of Data and Information
    Improving the availability of data and information on species, habitats and sites Focus Area A Handbook on the application of existing scientific approaches, methods, tools and knowledge for a better implementation of the Birds and Habitat Directives Environment FOCUS AREA A IMPROVING THE AVAILABILITY OF DATA AND i INFORMATION ON SPECIES, HABITATS AND SITES Imprint Disclaimer This document has been prepared for the European Commis- sion. The information and views set out in the handbook are Citation those of the authors only and do not necessarily reflect the Schmidt, A.M. & Van der Sluis, T. (2021). E-BIND Handbook (Part A): Improving the availability of data and official opinion of the Commission. The Commission does not information on species, habitats and sites. Wageningen Environmental Research/ Ecologic Institute /Milieu Ltd. guarantee the accuracy of the data included. The Commission Wageningen, The Netherlands. or any person acting on the Commission’s behalf cannot be held responsible for any use which may be made of the information Authors contained therein. Lead authors: This handbook has been prepared under a contract with the Anne Schmidt, Chris van Swaay (Monitoring of species and habitats within and beyond Natura 2000 sites) European Commission, in cooperation with relevant stakehold- Sander Mücher, Gerard Hazeu (Remote sensing techniques for the monitoring of Natura 2000 sites) ers. (EU Service contract Nr. 07.027740/2018/783031/ENV.D.3 Anne Schmidt, Chris van Swaay, Rene Henkens, Peter Verweij (Access to data and information) for evidence-based improvements in the Birds and Habitat Kris Decleer, Rienk-Jan Bijlsma (Approaches and tools for effective restoration measures for species and habitats) directives (BHD) implementation: systematic review and meta- Theo van der Sluis, Rob Jongman (Green Infrastructure and network coherence) analysis).
    [Show full text]
  • Fruits and Seeds of Genera in the Subfamily Faboideae (Fabaceae)
    Fruits and Seeds of United States Department of Genera in the Subfamily Agriculture Agricultural Faboideae (Fabaceae) Research Service Technical Bulletin Number 1890 Volume I December 2003 United States Department of Agriculture Fruits and Seeds of Agricultural Research Genera in the Subfamily Service Technical Bulletin Faboideae (Fabaceae) Number 1890 Volume I Joseph H. Kirkbride, Jr., Charles R. Gunn, and Anna L. Weitzman Fruits of A, Centrolobium paraense E.L.R. Tulasne. B, Laburnum anagyroides F.K. Medikus. C, Adesmia boronoides J.D. Hooker. D, Hippocrepis comosa, C. Linnaeus. E, Campylotropis macrocarpa (A.A. von Bunge) A. Rehder. F, Mucuna urens (C. Linnaeus) F.K. Medikus. G, Phaseolus polystachios (C. Linnaeus) N.L. Britton, E.E. Stern, & F. Poggenburg. H, Medicago orbicularis (C. Linnaeus) B. Bartalini. I, Riedeliella graciliflora H.A.T. Harms. J, Medicago arabica (C. Linnaeus) W. Hudson. Kirkbride is a research botanist, U.S. Department of Agriculture, Agricultural Research Service, Systematic Botany and Mycology Laboratory, BARC West Room 304, Building 011A, Beltsville, MD, 20705-2350 (email = [email protected]). Gunn is a botanist (retired) from Brevard, NC (email = [email protected]). Weitzman is a botanist with the Smithsonian Institution, Department of Botany, Washington, DC. Abstract Kirkbride, Joseph H., Jr., Charles R. Gunn, and Anna L radicle junction, Crotalarieae, cuticle, Cytiseae, Weitzman. 2003. Fruits and seeds of genera in the subfamily Dalbergieae, Daleeae, dehiscence, DELTA, Desmodieae, Faboideae (Fabaceae). U. S. Department of Agriculture, Dipteryxeae, distribution, embryo, embryonic axis, en- Technical Bulletin No. 1890, 1,212 pp. docarp, endosperm, epicarp, epicotyl, Euchresteae, Fabeae, fracture line, follicle, funiculus, Galegeae, Genisteae, Technical identification of fruits and seeds of the economi- gynophore, halo, Hedysareae, hilar groove, hilar groove cally important legume plant family (Fabaceae or lips, hilum, Hypocalypteae, hypocotyl, indehiscent, Leguminosae) is often required of U.S.
    [Show full text]
  • Taxonomic Studies in Tribe Loteae (Fabaceae) in Egypt. I: Subtribe Anthyllidinae (Anthyllis, Hymenocarpos and Tripodion) Zaki A
    39 Egypt. J. Bot. Vol. 59, No.2, pp. 523 - 536 (2019) Taxonomic Studies in Tribe Loteae (Fabaceae) in Egypt. I: Subtribe Anthyllidinae (Anthyllis, Hymenocarpos and Tripodion) Zaki A. Turki, Faiza A. Shehata#, Esam M. Aqlan Botany and Microbiology Department, Faculty of Science, Menoufia University, Shebein El-Koom, Egypt. HE PLANT morphology, anatomical characters of stem and leaves, SEM of seed coat Tsurfaces were used to reassess the conflicted taxonomic relationships between the genera Anthyllis, Hymenocarpos and Tripodion. Previous studies treated the genera Hymenocarpos and Tripodion as synonyms to Anthyllis. The present study clearly indicated considerably differences between the three genera. The most important characters used to distinguish the studied genera are habit, inflorescence type, bract shape, calyx, pod shape and seed coat pattern. On the bases of morphology, anatomy and seed characters, three distinct genera, Anthyllis, Hymenocarpos and Tripodion are represented in the Egyptian flora, each with only one species. Keywords: Anthyllis, Hymenocarpos, Tripodion, Morphological, Anatomy, SEM seed. Introduction Hymenocarpos as synonymy to Circinus. Lassen (1986, 1987) has shown that Tripodion is an earlier The genus Anthyllis L. and Hymenocarpos Savi. name for Physanthyllis and recognized three are two genera of the family Fabaceae, belonging species in Tripodion. Akulova (1985, 1986) and to the subfamily Faboideae Rudd., tribe Loteae Sokoloff (2003 a, b) included Hymenocarpos as DC., subtribe Anthyllidinae W.D.J. Koch. The two synonymy to Anthyllis. genera distributed in Mediterranean regions, with some taxa extending into northern Europe, the In Egypt, Täckholm (1974) recognized genus Atlantic islands, Northern and Eastern Africa, and Anthyllis into A. tetraphylla and A.
    [Show full text]
  • VITRO ANTIOXIDANT ACTIVITY of SOME SECONDARY METABOLITES of Anthyllis Vulneraria L
    International Journal of Medicine and Pharmaceutical Sciences (IJMPS) ISSN 2250-0049 Vol.2, Issue 3, Dec 2012 51-64 © TJPRC Pvt. Ltd., PHENOLIC CONTENTS AND IN – VITRO ANTIOXIDANT ACTIVITY OF SOME SECONDARY METABOLITES OF Anthyllis vulneraria L. FROM ALGERIA MERIEM GHALEM 1, SALIMA MERGHACHE 2, SAID GHALEM 2 AND MERIEM BELARBI 1 1 Laboratory of Natural Products, Department of Biology, Faculty of Sciences of the Nature and the Life, University of Tlemcen, Algeria 2Laboratory of Natural and Bioactive substances (LASNABIO), Department of Chemistry, Faculty of Sciences, University of Tlemcen, Algeria ABSTRACT Anthyllis vulneraria L. is a plant used in folk medicine for treatment of inflammation, disturbances of metabolism and acne and accelerates the healing of wounds. In this study, total phenolic, flavonoid and proanthocyannidin contents, and antioxidant activities of Anthyllis vulneraria polyphenols, flavonoids and tannins extracts were evaluated using in vitro assays. The quantitative estimation showed that leaves and flowers of Anthyllis vulneraria were rich in polyphenols (185.00 – 326.66 mg PE / g DW). Anthyllis vulneraria flowers extract contained the highest levels of total phenolic content (326.66 mg PE /g DW) and flavonoid content (0.14 mg CE /g DW). The leaves extract had the highest content of proanthocyannidins (1.07 %). Polyphenols, flavonoids and tannins were extracted from leaves and flowers of Anthyllis vulneraria . In DPPH (2, 2-Diphenyl-1-picrylhydrazyl) radical scavenging assay, all extracts had shown significant optimum inhibition (53.52 – 93.46 %). In addition the IC 50 values of the extracts in DPPH free radical scavenging assay, ranged from 1.06 to 15.00 mg/ml, compared to 0.12, 0.21 and 0.46 mg/ml for gallic acid, tannic acid and ascorbic acid respectively.
    [Show full text]
  • Worksheet-2B.Pdf
    WHAT’S SO IMPORTANT ABOUT NAMES? Topics Covered: Classificaon and taxonomy Understanding the importance of Linnaeus’s contribuon to science Making and using keys What’s in a name? Giving something a name allows us to talk about it. Names are important not only for people, but also for the plants we culvate in our gardens. In the early days of botany (the 17th and early 18th centuries) plants were given long Lan phrases for names that described their parcular features. As more plants became known, names tended to become longer, and much more difficult to remember and use. Then, in the 18th century, a Swedish biologist named Carl Linnaeus developed and popularised a two‐name (binomial) system for all plant species—GENUS and SPECIES. His system is sll in use today. A useful definion GENUS: A group of organisms SPECIES: that have certain characteriscs in of a species is a group of organisms common but can be divided further which can interbreed to produce into other groups (i.e. into species) ferle offspring Binomial names The use of only two words (the binomial name) made it much easier to categorise and compare different plants and animals. Imagine, for instance, talking about a type of geranium using the old name: Geranium pedunculis bifloris, caule dichotomo erecto, foliis quinquepars incisis; summis sessilibus The binomial name is much easier to use: Geranium maculatum 1 WHAT’S SO IMPORTANT ABOUT NAMES? Who was Carl Linnaeus? Carl Linnaeus (1707–1778) was born and brought up in and around Råshult, in the countryside of southern Sweden.
    [Show full text]
  • Taxonomic and Phylogenetic Relationships Between Old World
    © Landesmuseum für Kärnten; download www.landesmuseum.ktn.gv.at/wulfenia; www.biologiezentrum.at Wulfenia 10 (2003): 15–50 Mitteilungen des Kärntner Botanikzentrums Klagenfurt Taxonomic and phylogenetic relationships between Old World and New World members of the tribe Loteae (Leguminosae): new insights from molecular and morphological data, with special emphasis on Ornithopus Galina V. Degtjareva, Carmen M. Valiejo-Roman, Tatiana E. Kramina, Evgeny M. Mironov, Tahir H. Samigullin & Dmitry D. Sokoloff Summary: The tribe Loteae s.l. (incl. Coronilleae) comprises about 275 species distributed in Eurasia, Africa, Australia, North and South America. 47 species of Loteae are endemic to the New World, while all others are restricted to the Old World. Main centres of diversity are Mediterranean region and California. The genus Ornithopus has an unusual disjunctive distribution, with one species (O. micranthus) in subtropical regions of Eastern South America and five species in Europe, Mediterranean region, Macaronesia and the Caucasus. We have produced sequences of nuclear ribosomal DNA ITS1-2 region of six Loteae species, and have studied fruit anatomy, pollen morphology and other morphological characters in several members of the tribe, with special emphasis on Ornithopus. Our data confirm that the genus Ornithopus, in its traditional circum- scription, represents a natural, monophyletic group. The ITS data strongly suggest sister group relationships between O. micranthus and Old World species of Ornithopus. We have confirmed results by ALLAN & PORTER (2000) and ALLAN et al. (2003) that Ornithopus tend to group with North American genus Hosackia on trees inferred from analyses of ITS sequences. There is little morphological support for such a grouping.
    [Show full text]
  • Spatial Pattern in Anthyllis Cytisoides Shrubland on Abandoned Land in Southeastern Spain
    Journal of Vegetation Science 8: 627-634, 1997 © IAVS; Opulus Press Uppsala. Printed in Sweden - Spatial pattern in Anthyllis cytisoides shrubland on abandoned land - 627 Spatial pattern in Anthyllis cytisoides shrubland on abandoned land in southeastern Spain Haase, Peter*, Pugnaire, Francisco I.1, Clark, S.C. & Incoll, L.D. Department of Biology, University of Leeds, Leeds LS2 9JT, UK; 1Present address: Estación Experimental de Zonas Áridas, General Segura 1, E-04001 Almería, Spain; *Author for correspondence; Dyckerhoffstrasse 3, D-49525 Lengerich, Germany; E-mail [email protected] Abstract. Univariate and bivariate distribution patterns of have different effects on plant water use, evapotranspi- small shrubs on abandoned land in semi-arid southeastern ration and hydrology (Shuttleworth & Wallace 1985). Spain were investigated by second-order spatial analysis Determination of the demography and patterns of sparse (Ripley’s K-function). All shrubs (Anthyllis cytisoides and vegetation and the prediction of their development and subdominant Artemisia barrelieri) were either randomly dis- tributed or clumped at scales of 0.25 - 1.0 m. The pattern possible change can therefore improve estimates of the shown by A. cytisoides shrubs alone changed from clumped to hydrological balance of ecosystems (Wallace et al. 1990). random with decreasing density. Pattern analysis and demo- In practice, however, such changes in the vegetative graphic data suggest a successive replacement of A. barrelieri, cover are rarely considered in models. which had high proportions (44 - 86 %) of dead shrubs, by the Sparse vegetation is typical of large areas of aban- dominant A. cytisoides. In two of three plots there was a doned land in semi-arid southeastern Spain, which re- positive association between A.
    [Show full text]
  • A Phylogenetic Effect on Strontium Concentrations in Angiosperms Neil Willey ∗, Kathy Fawcett
    Environmental and Experimental Botany 57 (2006) 258–269 A phylogenetic effect on strontium concentrations in angiosperms Neil Willey ∗, Kathy Fawcett Centre for Research in Plant Science, Faculty of Applied Sciences, University of the West of England, Frenchay, Bristol BS16 1QY, UK Received 21 February 2005; accepted 8 June 2005 Abstract A Residual Maximum Likelihood (REML) procedure was used to compile Sr concentrations in 103 plant species from experiments with Sr concentrations in 66 plant species from the literature. There were 14 species in common between experiments and the literature. The REML procedure loge-transformed data and removed absolute differences in Sr concentrations arising from soil factors and exposure times to estimate mean relative Sr concentrations for 155 species. One hundred and forty-two species formed a group with a normal frequency distribution in mean relative Sr concentration. A nested hierarchical analysis of variance (ANOVA) based on the most recent molecular phylogeny of the angiosperms showed that plant species do not behave independently for Sr concentration but that there is a significant phylogenetic effect on mean relative Sr concentrations. Concentrations of Sr in non-Eudicots were significantly less than in Eudicots and there were significant effects on Sr concentrations in the dataset down the phylogenetic hierarchy to the family level. Of the orders in the dataset the Cucurbitales, Lamiales, Saxifragales and Ranunculales had particularly high Sr concentrations and the Liliales, Poales, Myrtales and Fabales particularly low Sr concentrations. Mean relative Sr concentrations in 60 plant species correlated with those reported elsewhere for Ca in the same species, and the frequency distribution and some phylogenetic effects on Sr concentration in plants were similar to those reported for Ca.
    [Show full text]
  • Dispersal of Plants in the Central European Landscape – Dispersal Processes and Assessment of Dispersal Potential Exemplified for Endozoochory
    Dispersal of plants in the Central European landscape – dispersal processes and assessment of dispersal potential exemplified for endozoochory Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. Nat.) der Naturwissenschaftlichen Fakultät III – Biologie und Vorklinische Medizin – der Universität Regensburg vorgelegt von Susanne Bonn Stuttgart Juli 2004 l Promotionsgesuch eingereicht am 13. Juli 2004 Tag der mündlichen Prüfung 15. Dezember 2004 Die Arbeit wurde angeleitet von Prof. Dr. Peter Poschlod Prüfungsausschuss: Prof. Dr. Jürgen Heinze Prof. Dr. Peter Poschlod Prof. Dr. Karl-Georg Bernhardt Prof. Dr. Christoph Oberprieler Contents lll Contents Chapter 1 General introduction 1 Chapter 2 Dispersal processes in the Central European landscape 5 in the change of time – an explanation for the present decrease of plant species diversity in different habitats? Chapter 3 »Diasporus« – a database for diaspore dispersal – 25 concept and applications in case studies for risk assessment Chapter 4 Assessment of endozoochorous dispersal potential of 41 plant species by ruminants – approaches to simulate digestion Chapter 5 Assessment of endozoochorous dispersal potential of 77 plant species by ruminants – suitability of different plant and diaspore traits Chapter 6 Conclusion 123 Chapter 7 Summary 127 References 131 List of Publications 155 Acknowledgements V Acknowledgements This thesis was a long-term “project“, where the result itself – the thesis – was often not the primary goal. Consequently, many people have contributed directly or indirectly to this thesis. First of all I would like to thank Prof. Dr. Peter Poschlod, who directed all steps of this “project”. His enthusiasm for all subjects and questions concerning dispersal was always “infectious”, inspiring and motivating. I am also grateful to Prof.
    [Show full text]
  • Appendix O20309
    Oikos o20309 Soliveres, S., Torices, R. and Maestre, F. T. 2012. Evolutionary relationships can be more important than abiotic conditions in predicting the outcome of plant–plant interactions. – Oikos 121: 1638-1648. Appendix 1 Table A1. Summary of the outcomes of the pairwise interactions found at each site. Plot name Stipa tenacissima Quercus coccifera Neutral/negative Positive Neutral/negative Positive · Atractylis humilis · Atractylis humilis · Biscutella valentina · Biscutella valentina · Coris monspeliensis · Cynodon dactylon · Coris monspeliensis · Fumana thymifolia · Helianthemum violaceum · Cynodon dactylon · Fumana thymifolia · Helianthemum violaceum · Polygala rupestris · Polygala rupestris Barrax · Teucrium pseudochamaepytis · Sedum sediforme · Sedum sediforme · Stipa parviflora · Teucrium sp. · Teucrium sp · Stipa parviflora · Teucrium pseudochamaepytis · Thesium divaricatum · T. capitatum · Teucrium capitatum · Thesium divaricatum ·Thymus vulgaris · Thymus vulgaris · T. zygis · T. zygis · Genista scorpius · Genista scorpius · Helianthemum cinereum · Rosmarinus officinalis · Helianthemum cinereum Camporreal · Rosmarinus officinalis · Teucrium pseudochamaepytis · Teucrium pseudochamaepytis · Thymus vulgaris · Thymus vulgaris · Anthyllis citisoides · Asparagus horridus · Fumana sp. · Anthyllis citisoides · Asphodelus ramosus · Fumana thymifolia · F. thymifolia · Asparagus horridus Carrascoy · Brachypodium retusum · Globularia allipum · Globularia allipum · Asphodelus ramosus · Cistus clusii · Helianthemum marifolium · Helianthemum
    [Show full text]