Diversity and Evolution of Rosids

Total Page:16

File Type:pdf, Size:1020Kb

Diversity and Evolution of Rosids Oxalidales • small, heterogeneous, novel group Diversity and of 6 families - seed character? Oxalidaceae Evolution of Rosids Wood sorrels . violets, willows, and spurges . Cephalotaceae Australian pitcher plant Oxalidaceae - wood sorrels Oxalidaceae - wood sorrels 6 genera, 770 species in the tropics and temperate areas - 700 6 genera, 770 species in the tropics and temperate areas - 700 belong to Oxalis (wood sorrel) belong to Oxalis (wood sorrel) • plants are herbaceous creepers or woody Oxalis corniculata - creeping yellow wood sorrel • typically 3-foliate vines leaves (the real shamrock) • leaves are acidic to taste due to oxalic acid in the form of calcium oxalate Oxalidaceae - wood sorrels Oxalidaceae - wood sorrels CA 5 CO 5 A 5+5 G (5) • 5 merous flowers CA 5 CO 5 A 5+5 G (5) • 5 merous flowers Oxalis corniculata Oxalis • fruits are 5 locular & Oxalis corniculata Oxalis • fruits are 5 locular & winged capsules or berries winged capsules or berries • tristyly common (3 levels at which 2 sets of anthers and 1 set of styles position) U U U Oxalidaceae - wood sorrels Oxalidaceae - wood sorrels • common native and introduced wood-sorrels • tropical fruit - carambola or star fruit: note 5 carpellate structure Oxalis stricta - Oxalis violaceae - tall wood-sorrel violet wood-sorrel Averrhoa carambola Oxalis acetosella - wood-sorrel *Malpighiales *Malpighiales • large and diverse group of 38 • unresolved! “novel” clade families - many of them • leaf margin teeth contributing importantly to tropical • “Parietales” subclade (placentation) forest diversity • hosts for Cymothoe butterflies *Malpighiales *Violaceae - violets • unusual life forms 23 genera, 800 species of herbs (temperate) to vines and small trees (tropics). 400-600 of them are violets (Viola). Rafflesiaceae parasite Rhizophoraceae Rafflesia Rhizophora mangle mangrove stream aquatic Podostemonaceae Viola tricolor - pansy, jonny-jump-up Rinorea - tropical shrub Podostemon *Violaceae - violets *Violaceae - violets Viola have either basal leaves or cauline CA 5 COZ 5 A 5 G (3) leaves - cordate or palmately lobed or divided. • Flowers insect pollinated, nectar guides, zygomorphic Stipules are well developed. • Perianth 5 merous • Lower petal spurred, 2 lower stamens have spurs going back into the petal spur • 3 fused carpels *Violaceae - violets *Violaceae - violets CA 5 COZ 5 A 5 G (3) Pistil forms 3 parting Viola affinis - capsule in chasmogamous sand violet flowers (open flowers) from out-crossing Cleistogamous, or closed flowers, form small capsules via self-pollination (note the parietal placentation in upper capsule) V. pedata Bird’s-foot violet V. pedatifida Prairie violet *Violaceae - violets *Violaceae - violets V. sororia - dooryard violet Wisconsin state flower! One of many stemless purple violets V. macloskeyi Wild white violet A small white flowered violet V. pubescens - downy yellow violet V. canadensis - Canada white violet a stemmed yellow violet a stemmed white violet *Violaceae - violets *Violaceae - violets • tropical taxa of other genera and Viola are woody • from where did the 10 species in Hawaii come? Hybanthus concolor - green violet Special concern, almost extripated *Violaceae - violets *Violaceae - violets • DNA places them within a • Beringian source is polyploid complex, amphi- rare, especially Beringian tundra species surprising with a group once considered tropical • bird migration V. langsdorffi pathway from Beringia to Hawaii is common and potential mechanism of dispersal Hypericaceae - St. John’s wort Hypericaceae - St. John’s wort 9 genera, 560 species of temperate herbs or small shrubs CA 5 CO 5 A ∞ G (3-5) Stamens many, often grouped • opposite leaved • leaves are punctate - with clearly visible clear to black dots, these sometimes seen on petals as well Hypericum perforatum - Klamath weed [ecologically invasive] Note the perforations along edge of yellow petals Hypericaceae - St. John’s wort Hypericaceae - St. John’s wort CA 5 CO 5 A ∞ G (3-5) • pistil made up of 3 to 5 fused CA 5 CO 5 A ∞ G (3-5) • pistil made up of 3 to 5 fused carpels carpels • placentation either axile (then 3-5 • placentation either axile (then 3-5 locuoles) or parietal (as here) locuoles) or parietal • fruit a capsule Hypericum pyrimidatum Hypericum pyrimidatum great St. John’s wort great St. John’s wort Hypericaceae - St. John’s wort *Salicaceae - willows, poplars Chemically defined by salicins (salicylic acid). Many • Hypericum common in high members of the tropical “Flacourtiaceae” with showy flowers elevation regions of tropics also have salicins and are now part of the Salicaceae Hypericum in Costa Rican paramo • Triadenum restricted to wetlands Triadenum virginicum marsh St. John’s wort Dovyalis hebecarpa Oncoba spinosa *Salicaceae - willows, poplars *Salicaceae - willows, poplars 55 genera, 1000+ species of shrubs/trees - 450 are willows Willows (Salix) are dioecious trees of temperate regions with (Salix), less numerous are poplars, aspens (Populus). reduced flowers in aments - both insect and wind pollinated female male Populus deltoides - Salix babylonica - Salix babylonica - American cottonwood weeping willow weeping willow *Salicaceae - willows, poplars *Salicaceae - willows, poplars female male • nectar glands at base of bract allows insect as well as wind pollination • fruit is a capsule with cottony seeds for wind dispersal • many species are “precocious” - flower before leaves flush in spring Salix discolor - pussy willow *Salicaceae - willows, poplars *Salicaceae - willows, poplars Populus - poplars, cottonwood, aspens • species vary from large trees, shrubs, to tiny tundra male subshrubs • flowers possess a disk • cottony seeds in capsule female Populus deltoides Salix herbacea - Salix pedicellaris - Salix fragilis - American cottonwood dwarf willow bog willow crack willow *Salicaceae - willows, poplars *Salicaceae - willows, poplars Populus balsamifera Balsam poplar, balm-of-gilead P. tremuloides P. grandidentata trrembling aspen bigtooth aspen • aspens are clonal from root sprouts, fast growing, light wooded, and important for Populus alba White poplar pulp in the paper industry Introduced from Europe *Salicaceae - willows, poplars *Euphorbiaceae - spurges Euphorbiaceae s.l. is polyphyletic and now broken into 3 families Phyllanthaceae Euphorbiaceae Putranjivaceae Populus deltoides - American cottonwood *Euphorbiaceae - spurges *Euphorbiaceae - spurges • large cosmopolitan family of trees, CA 5 CO 0 A ∞ G 0 shrubs, and herbs of 222 genera and CA 5 CO 0 A 0 G (3) 6000 species Majority of the family has unisexual • latex bearing and filled with flowers, 5 sepals, no petals, numerous nasty chemicals (source of stamens, 3 fused carpels, and capsules rubber, castor oil, tapioca, female poinsettia) Codianum male • leaves alternate, simple (often palmately lobed) or palmately compound Ricinus - castor oil bean *Euphorbiaceae - spurges *Euphorbiaceae - spurges A quite different arrangement Euphorbia corollata - flowering spurge The “flower” of our of unisexual flowers is seen in flowering spurge is actually many of our spurges of the a highly modified genera Euphorbia and inflorescence = cyathium Chamaesyce. Flower or inflorescence? Shown here are 3 cyathia; the whole unit here is one cyathium *Euphorbiaceae - spurges *Euphorbiaceae - spurges Cyathium is composed of: Cyathium is composed of: glands glands appendages of glands *Euphorbiaceae - spurges *Euphorbiaceae - spurges Cyathium is composed of: Cyathium is composed of: glands glands appendages of glands appendages of glands ∞ male flowers, 1- stamened (no perianth) ∞ male flowers, 1- stamened (no perianth) 1 female flower (tricarpellate - 3 styles) *Euphorbiaceae - spurges *Euphorbiaceae - spurges Euphorbia pulcherrima - poinsettia Euphorbia esula - leafy spurge • one of several species labelled “obnoxious weed” by state law Euphorbia canariensis Euphorbia dendroides Euphorbia is a “giant” genus (> 2,000 spp.) with some spectacular radiations - is the cyathium a “key innovation”? *Euphorbiaceae - spurges *Euphorbiaceae - spurges • economically important members from Neotropics Manihot esculenta - Hura - poison arrow manioc, cassava, tapioca Hevea - rubber • besides Euphorbiaceae, with Hura crepitans - one of the most deadly arrow poisons known, what is another family of flowering plants with arrow poisons? *Euphorbiaceae - spurges Passifloraceae - passion flower Spectacular group of vines and trees in the parietal placentation pantropics - one ingrediant of Hawaiian punch Passiflora • besides its use as a poison, what other features does Hura crepitans possess that makes it a pretty nasty plant? berry fruit Passifloraceae - passion flower Linaceae - flax Co-evolutionary relationships involving leaf shapes, Heliconid A small family of herbs most noted as the source of flax butterfly egg layers, extrafloral nectaries, and patrolling ants (linen), linseed oil, and base chemicals for linoleum. Linum bienne Linum sulcatum - grooved yellow flax Linum narbonense Rhizophoraceae - mangroves Malpighiaceae - malpighs Asian and Madagascar tropical trees and Diverse woody family of pantropical region with distinctive Rhizophora - one widespread mangrove red mangrove clawed petals and floral nectaries. Bruguiera Byrsonima spicata Malpighia Hiptage.
Recommended publications
  • Bruguiera Gymnorrhiza (Largeleaf Mangrove, Oriental Mangrove) Answer Score
    Bruguiera gymnorrhiza (Largeleaf mangrove, Oriental mangrove) Answer Score 1.01 Is the species highly domesticated? n 0 1.02 Has the species become naturalised where grown? 1.03 Does the species have weedy races? 2.01 Species suited to FL climates (USDA hardiness zones; 0-low, 1-intermediate, 2- 2 high) 2.02 Quality of climate match data (0-low; 1-intermediate; 2-high) 2 2.03 Broad climate suitability (environmental versatility) y 1 2.04 Native or naturalized in regions with an average of 11-60 inches of annual y 1 precipitation 2.05 Does the species have a history of repeated introductions outside its natural n range? 3.01 Naturalized beyond native range n 0 3.02 Garden/amenity/disturbance weed n 0 3.03 Weed of agriculture n 0 3.04 Environmental weed ? 3.05 Congeneric weed 4.01 Produces spines, thorns or burrs n 0 4.02 Allelopathic y 1 4.03 Parasitic n 0 4.04 Unpalatable to grazing animals 4.05 Toxic to animals n 0 4.06 Host for recognised pests and pathogens n 0 4.07 Causes allergies or is otherwise toxic to humans n 0 4.08 Creates a fire hazard in natural ecosystems n 0 4.09 Is a shade tolerant plant at some stage of its life cycle y 1 4.10 Grows on infertile soils (oligotrophic, limerock, or excessively draining soils). n 0 North & Central Zones: infertile soils; South Zone: shallow limerock or Histisols. 4.11 Climbing or smothering growth habit n 0 4.12 Forms dense thickets n 0 5.01 Aquatic y 5 5.02 Grass n 0 5.03 Nitrogen fixing woody plant n 0 5.04 Geophyte n 0 6.01 Evidence of substantial reproductive failure in native habitat
    [Show full text]
  • Euphorbiaceae
    Botanische Bestimmungsübungen 1 Euphorbiaceae Euphorbiaceae (Wolfsmilchgewächse) 1 Systematik und Verbreitung Die Euphorbiaceae gehören zu den Eudikotyledonen (Kerneudikotyledonen > Superrosiden > Rosiden > Fabiden). Innerhalb dieser wird die Familie zur Ordnung der Malpighiales (Malpighienartige) gestellt. Die Euphorbiaceae umfassen rund 230 Gattungen mit ca. 6.000 Arten. Sie werden in 4 Unterfamilien gegliedert: 1. Cheilosoideae, 2. Acalyphoideae, 3. Crotonoideae und 4. Euphorbioideae sowie in 6 Triben unterteilt. Die Familie ist überwiegend tropisch verbreitet mit einem Schwerpunkt im indomalaiischen Raum und in den neuweltlichen Tropen. Die Gattung Euphorbia (Wolfsmilch) ist auch in außertropischen Regionen wie z. B. dem Mittelmeerraum, in Südafrika sowie in den südlichen USA häufig. Heimisch ist die Familie mit Mercurialis (Bingelkraut; 2 Arten) und Euphorbia (Wolfsmilch; 20-30 Arten) vertreten. Abb. 1: Verbreitungskarte. 2 Morphologie 2.1 Habitus Die Familie ist sehr vielgestaltig. Es handelt sich um ein- und mehrjährige krautige Pflanzen, Halbsträucher, Sträucher bis große Bäume oder Sukkulenten. Besonders in S-Afrika und auf den Kanarischen Inseln kommen auf hitzebelasteten Trockenstandorten zahlreiche kakteenartige stammsukkulente Arten vor, die in den Sprossachsen immens viel Wasser speichern können. © PD DR. VEIT M. DÖRKEN, Universität Konstanz, FB Biologie Botanische Bestimmungsübungen 2 Euphorbiaceae Abb. 2: Lebensformen; entweder einjährige (annuelle) oder ausdauernde (perennierende) krautige Pflanzen, aber auch viele Halbsträucher,
    [Show full text]
  • Management of Invasive Plants and Pests of Illinois
    MANAGEMENT OF INVASIVE PLANTS AND PESTS OF ILLINOIS AUTHORS Tricia Bethke, Forest Pest Outreach Coordinator, The Morton Arboretum Christopher Evans, Extension Forester, UIUC NRES ORIGINAL AUTHOR Karla Gage, Southern Illinois University 2 ACKNOWLEDGEMENTS This publication was funded, in part, through a grant from the Illinois Forestry Development Council (ifdc.nres.illinois.edu). Management of Invasive Plants and Pests of Illinois is an update and expansion of the original Management of Invasive Plants of Southern Illinois. The authors wish to acknowledge the Illinois Wildlife Preservation Fund, which supported the creation of the original document. The authors wish to thank The Morton Arboretum and Kurt Dreisilker, Mark Hochsprung, Mark McKinney and Clair Ryan for their edits and review of this document. The authors wish to thank The Morton Arboretum’s Natural Areas Conservation Training Program, which is generously funded by the Tellabs Foundation, for support, in part, of the publication of this guide. The authors wish to thank the USDA Animal Plant and Health Inspection Service which supported, in part, the update and publication of this document. The authors wish to thank the River to River Cooperative Weed Management Area and Kevin Rohling for assisting in the development of this publication. The Department of Natural Resources and Environmental Sciences and Extension Forestry at the University of Illinois would like to thank and acknowledge the Renewable Resources Extension Act (RREA) and the USDA National Institute of Food and Agriculture
    [Show full text]
  • A Compilation and Analysis of Food Plants Utilization of Sri Lankan Butterfly Larvae (Papilionoidea)
    MAJOR ARTICLE TAPROBANICA, ISSN 1800–427X. August, 2014. Vol. 06, No. 02: pp. 110–131, pls. 12, 13. © Research Center for Climate Change, University of Indonesia, Depok, Indonesia & Taprobanica Private Limited, Homagama, Sri Lanka http://www.sljol.info/index.php/tapro A COMPILATION AND ANALYSIS OF FOOD PLANTS UTILIZATION OF SRI LANKAN BUTTERFLY LARVAE (PAPILIONOIDEA) Section Editors: Jeffrey Miller & James L. Reveal Submitted: 08 Dec. 2013, Accepted: 15 Mar. 2014 H. D. Jayasinghe1,2, S. S. Rajapaksha1, C. de Alwis1 1Butterfly Conservation Society of Sri Lanka, 762/A, Yatihena, Malwana, Sri Lanka 2 E-mail: [email protected] Abstract Larval food plants (LFPs) of Sri Lankan butterflies are poorly documented in the historical literature and there is a great need to identify LFPs in conservation perspectives. Therefore, the current study was designed and carried out during the past decade. A list of LFPs for 207 butterfly species (Super family Papilionoidea) of Sri Lanka is presented based on local studies and includes 785 plant-butterfly combinations and 480 plant species. Many of these combinations are reported for the first time in Sri Lanka. The impact of introducing new plants on the dynamics of abundance and distribution of butterflies, the possibility of butterflies being pests on crops, and observations of LFPs of rare butterfly species, are discussed. This information is crucial for the conservation management of the butterfly fauna in Sri Lanka. Key words: conservation, crops, larval food plants (LFPs), pests, plant-butterfly combination. Introduction Butterflies go through complete metamorphosis 1949). As all herbivorous insects show some and have two stages of food consumtion.
    [Show full text]
  • Observational Monitoring of Biological Control Vs. Herbicide to Suppress Leafy Spurge (Euphorbia Esula) for Eight Years
    Session 9 Post-release Evaluation and Management 417 Observational Monitoring of Biological Control vs. Herbicide to Suppress Leafy Spurge (Euphorbia esula) for Eight Years R. A. Progar1, G. Markin2, D. Scarbrough3, C. L. Jorgensen4 and T. Barbouletos5 1USDA Forest Service, Pacific Northwest Research Station, 3200 Jefferson Way, Corvallis, OR 97331 [email protected] 2USDA Forest Service, Rocky Mountain Research Station, 1648 South 7th Avenue, MSU Campus, Bozeman, MT 59717-2780 [email protected] 3USDA Forest Service, Forest Health Protection, Boise Field Office, 1249 Vinnell Way, Suite 200, Boise, ID 83709 [email protected] [email protected] [email protected] Abstract The effectiveness of Aphthona flea beetles (87 percent A. lacertosa Rosenhauer and A. czwalinae Weise, and 13 percent A. nigriscutis Foudras) as biological control agents of leafy spurge, Ephorbia esula L. was compared with a single application of herbicide (picloram) and untreated plots for a period of 8 years. Percentage of cover of leafy spurge, grasses; and flea beetle numbers were measured each year from 2000 through 2007. Cover of leafy spurge on Aphthona biological control plots exhibited annual declines until 2005. In 2006, these plots showed a temporary rebound in leafy spurge coverage followed by a decline in 2007. Spurge cover increased on the herbicide-treated plots and remained unchanged on the untreated check plots from 2000 through 2003. In 2003, the flea beetles began to emigrate from the release points within the biological control plots and dispersed throughout much of the surrounding leafy spurge infested area including the herbicide treated and check plots. This dispersal and colonization caused a subsequent decline in spurge cover on the herbicide-treated and control plots from 2004 through 2007.
    [Show full text]
  • Proceedings Amurga Co
    PROCEEDINGS OF THE AMURGA INTERNATIONAL CONFERENCES ON ISLAND BIODIVERSITY 2011 PROCEEDINGS OF THE AMURGA INTERNATIONAL CONFERENCES ON ISLAND BIODIVERSITY 2011 Coordination: Juli Caujapé-Castells Funded and edited by: Fundación Canaria Amurga Maspalomas Colaboration: Faro Media Cover design & layout: Estudio Creativo Javier Ojeda © Fundación Canaria Amurga Maspalomas Gran Canaria, December 2013 ISBN: 978-84-616-7394-0 How to cite this volume: Caujapé-Castells J, Nieto Feliner G, Fernández Palacios JM (eds.) (2013) Proceedings of the Amurga international conferences on island biodiversity 2011. Fundación Canaria Amurga-Maspalomas, Las Palmas de Gran Canaria, Spain. All rights reserved. Any unauthorized reprint or use of this material is prohibited. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system without express written permission from the author / publisher. SCIENTIFIC EDITORS Juli Caujapé-Castells Jardín Botánico Canario “Viera y Clavijo” - Unidad Asociada CSIC Consejería de Medio Ambiente y Emergencias, Cabildo de Gran Canaria Gonzalo Nieto Feliner Real Jardín Botánico de Madrid-CSIC José María Fernández Palacios Universidad de La Laguna SCIENTIFIC COMMITTEE Juli Caujapé-Castells, Gonzalo Nieto Feliner, David Bramwell, Águedo Marrero Rodríguez, Julia Pérez de Paz, Bernardo Navarro-Valdivielso, Ruth Jaén-Molina, Rosa Febles Hernández, Pablo Vargas. Isabel Sanmartín. ORGANIZING COMMITTEE Pedro
    [Show full text]
  • FLORA from FĂRĂGĂU AREA (MUREŞ COUNTY) AS POTENTIAL SOURCE of MEDICINAL PLANTS Silvia OROIAN1*, Mihaela SĂMĂRGHIŢAN2
    ISSN: 2601 – 6141, ISSN-L: 2601 – 6141 Acta Biologica Marisiensis 2018, 1(1): 60-70 ORIGINAL PAPER FLORA FROM FĂRĂGĂU AREA (MUREŞ COUNTY) AS POTENTIAL SOURCE OF MEDICINAL PLANTS Silvia OROIAN1*, Mihaela SĂMĂRGHIŢAN2 1Department of Pharmaceutical Botany, University of Medicine and Pharmacy of Tîrgu Mureş, Romania 2Mureş County Museum, Department of Natural Sciences, Tîrgu Mureş, Romania *Correspondence: Silvia OROIAN [email protected] Received: 2 July 2018; Accepted: 9 July 2018; Published: 15 July 2018 Abstract The aim of this study was to identify a potential source of medicinal plant from Transylvanian Plain. Also, the paper provides information about the hayfields floral richness, a great scientific value for Romania and Europe. The study of the flora was carried out in several stages: 2005-2008, 2013, 2017-2018. In the studied area, 397 taxa were identified, distributed in 82 families with therapeutic potential, represented by 164 medical taxa, 37 of them being in the European Pharmacopoeia 8.5. The study reveals that most plants contain: volatile oils (13.41%), tannins (12.19%), flavonoids (9.75%), mucilages (8.53%) etc. This plants can be used in the treatment of various human disorders: disorders of the digestive system, respiratory system, skin disorders, muscular and skeletal systems, genitourinary system, in gynaecological disorders, cardiovascular, and central nervous sistem disorders. In the study plants protected by law at European and national level were identified: Echium maculatum, Cephalaria radiata, Crambe tataria, Narcissus poeticus ssp. radiiflorus, Salvia nutans, Iris aphylla, Orchis morio, Orchis tridentata, Adonis vernalis, Dictamnus albus, Hammarbya paludosa etc. Keywords: Fărăgău, medicinal plants, human disease, Mureş County 1.
    [Show full text]
  • Pollination of Cultivated Plants in the Tropics 111 Rrun.-Co Lcfcnow!Cdgmencle
    ISSN 1010-1365 0 AGRICULTURAL Pollination of SERVICES cultivated plants BUL IN in the tropics 118 Food and Agriculture Organization of the United Nations FAO 6-lina AGRICULTUTZ4U. ionof SERNES cultivated plans in tetropics Edited by David W. Roubik Smithsonian Tropical Research Institute Balboa, Panama Food and Agriculture Organization of the United Nations F'Ø Rome, 1995 The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. M-11 ISBN 92-5-103659-4 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the copyright owner. Applications for such permission, with a statement of the purpose and extent of the reproduction, should be addressed to the Director, Publications Division, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, 00100 Rome, Italy. FAO 1995 PlELi. uion are ted PlauAr David W. Roubilli (edita Footli-anal ISgt-iieulture Organization of the Untled Nations Contributors Marco Accorti Makhdzir Mardan Istituto Sperimentale per la Zoologia Agraria Universiti Pertanian Malaysia Cascine del Ricci° Malaysian Bee Research Development Team 50125 Firenze, Italy 43400 Serdang, Selangor, Malaysia Stephen L. Buchmann John K. S. Mbaya United States Department of Agriculture National Beekeeping Station Carl Hayden Bee Research Center P.
    [Show full text]
  • Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- ERICACEAE
    Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- ERICACEAE ERICACEAE (Heath Family) A family of about 107 genera and 3400 species, primarily shrubs, small trees, and subshrubs, nearly cosmopolitan. The Ericaceae is very important in our area, with a great diversity of genera and species, many of them rather narrowly endemic. Our area is one of the north temperate centers of diversity for the Ericaceae. Along with Quercus and Pinus, various members of this family are dominant in much of our landscape. References: Kron et al. (2002); Wood (1961); Judd & Kron (1993); Kron & Chase (1993); Luteyn et al. (1996)=L; Dorr & Barrie (1993); Cullings & Hileman (1997). Main Key, for use with flowering or fruiting material 1 Plant an herb, subshrub, or sprawling shrub, not clonal by underground rhizomes (except Gaultheria procumbens and Epigaea repens), rarely more than 3 dm tall; plants mycotrophic or hemi-mycotrophic (except Epigaea, Gaultheria, and Arctostaphylos). 2 Plants without chlorophyll (fully mycotrophic); stems fleshy; leaves represented by bract-like scales, white or variously colored, but not green; pollen grains single; [subfamily Monotropoideae; section Monotropeae]. 3 Petals united; fruit nodding, a berry; flower and fruit several per stem . Monotropsis 3 Petals separate; fruit erect, a capsule; flower and fruit 1-several per stem. 4 Flowers few to many, racemose; stem pubescent, at least in the inflorescence; plant yellow, orange, or red when fresh, aging or drying dark brown ...............................................Hypopitys 4 Flower solitary; stem glabrous; plant white (rarely pink) when fresh, aging or drying black . Monotropa 2 Plants with chlorophyll (hemi-mycotrophic or autotrophic); stems woody; leaves present and well-developed, green; pollen grains in tetrads (single in Orthilia).
    [Show full text]
  • Pinery Provincial Park Vascular Plant List Flowering Latin Name Common Name Community Date
    Pinery Provincial Park Vascular Plant List Flowering Latin Name Common Name Community Date EQUISETACEAE HORSETAIL FAMILY Equisetum arvense L. Field Horsetail FF Equisetum fluviatile L. Water Horsetail LRB Equisetum hyemale L. ssp. affine (Engelm.) Stone Common Scouring-rush BS Equisetum laevigatum A. Braun Smooth Scouring-rush WM Equisetum variegatum Scheich. ex Fried. ssp. Small Horsetail LRB Variegatum DENNSTAEDIACEAE BRACKEN FAMILY Pteridium aquilinum (L.) Kuhn Bracken-Fern COF DRYOPTERIDACEAE TRUE FERN FAMILILY Athyrium filix-femina (L.) Roth ssp. angustum (Willd.) Northeastern Lady Fern FF Clausen Cystopteris bulbifera (L.) Bernh. Bulblet Fern FF Dryopteris carthusiana (Villars) H.P. Fuchs Spinulose Woodfern FF Matteuccia struthiopteris (L.) Tod. Ostrich Fern FF Onoclea sensibilis L. Sensitive Fern FF Polystichum acrostichoides (Michaux) Schott Christmas Fern FF ADDER’S-TONGUE- OPHIOGLOSSACEAE FERN FAMILY Botrychium virginianum (L.) Sw. Rattlesnake Fern FF FLOWERING FERN OSMUNDACEAE FAMILY Osmunda regalis L. Royal Fern WM POLYPODIACEAE POLYPODY FAMILY Polypodium virginianum L. Rock Polypody FF MAIDENHAIR FERN PTERIDACEAE FAMILY Adiantum pedatum L. ssp. pedatum Northern Maidenhair Fern FF THELYPTERIDACEAE MARSH FERN FAMILY Thelypteris palustris (Salisb.) Schott Marsh Fern WM LYCOPODIACEAE CLUB MOSS FAMILY Lycopodium lucidulum Michaux Shining Clubmoss OF Lycopodium tristachyum Pursh Ground-cedar COF SELAGINELLACEAE SPIKEMOSS FAMILY Selaginella apoda (L.) Fern. Spikemoss LRB CUPRESSACEAE CYPRESS FAMILY Juniperus communis L. Common Juniper Jun-E DS Juniperus virginiana L. Red Cedar Jun-E SD Thuja occidentalis L. White Cedar LRB PINACEAE PINE FAMILY Larix laricina (Duroi) K. Koch Tamarack Jun LRB Pinus banksiana Lambert Jack Pine COF Pinus resinosa Sol. ex Aiton Red Pine Jun-M CF Pinery Provincial Park Vascular Plant List 1 Pinery Provincial Park Vascular Plant List Flowering Latin Name Common Name Community Date Pinus strobus L.
    [Show full text]
  • A High-Quality Genome Assembly and Annotation of the Gray Mangrove, Avicennia Marina
    bioRxiv preprint doi: https://doi.org/10.1101/2020.05.30.124800; this version posted May 31, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 A high-quality genome assembly and annotation of the gray mangrove, Avicennia marina 2 3 Running title: Genome assembly of the gray mangrove 4 5 Guillermo Friis1*, Joel Vizueta2, David R. Nelson1, Basel Khraiwesh1,3, Enas Qudeimat1,3, 6 Kourosh Salehi-Ashtiani1, Alejandra Ortega4, Alyssa Marshell5, Carlos M. Duarte4, John A. 7 Burt1 8 9 1Center for Genomics and Systems Biology, New York University - Abu Dhabi, PO Box 129188, 10 Abu Dhabi, United Arab Emirates 11 12 2Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la 13 Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain 14 15 3Center for Desert Agriculture, Division of Biological and Environmental Sciences and 16 Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955- 17 6900, Saudi Arabia 18 19 4 Red Sea Research Center (RSRC) and Computational Bioscience Research Center, King 20 Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia 21 22 5Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, 23 Sultan Qaboos University, Muscat, Oman bioRxiv preprint doi: https://doi.org/10.1101/2020.05.30.124800; this version posted May 31, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • The New York Botanical Garden
    Vol. XV DECEMBER, 1914 No. 180 JOURNAL The New York Botanical Garden EDITOR ARLOW BURDETTE STOUT Director of the Laboratories CONTENTS PAGE Index to Volumes I-XV »33 PUBLISHED FOR THE GARDEN AT 41 NORTH QUBKN STRHBT, LANCASTER, PA. THI NEW ERA PRINTING COMPANY OFFICERS 1914 PRESIDENT—W. GILMAN THOMPSON „ „ _ i ANDREW CARNEGIE VICE PRESIDENTS J FRANCIS LYNDE STETSON TREASURER—JAMES A. SCRYMSER SECRETARY—N. L. BRITTON BOARD OF- MANAGERS 1. ELECTED MANAGERS Term expires January, 1915 N. L. BRITTON W. J. MATHESON ANDREW CARNEGIE W GILMAN THOMPSON LEWIS RUTHERFORD MORRIS Term expire January. 1916 THOMAS H. HUBBARD FRANCIS LYNDE STETSON GEORGE W. PERKINS MVLES TIERNEY LOUIS C. TIFFANY Term expire* January, 1917 EDWARD D. ADAMS JAMES A. SCRYMSER ROBERT W. DE FOREST HENRY W. DE FOREST J. P. MORGAN DANIEL GUGGENHEIM 2. EX-OFFICIO MANAGERS THE MAYOR OP THE CITY OF NEW YORK HON. JOHN PURROY MITCHEL THE PRESIDENT OP THE DEPARTMENT OP PUBLIC PARES HON. GEORGE CABOT WARD 3. SCIENTIFIC DIRECTORS PROF. H. H. RUSBY. Chairman EUGENE P. BICKNELL PROF. WILLIAM J. GIES DR. NICHOLAS MURRAY BUTLER PROF. R. A. HARPER THOMAS W. CHURCHILL PROF. JAMES F. KEMP PROF. FREDERIC S. LEE GARDEN STAFF DR. N. L. BRITTON, Director-in-Chief (Development, Administration) DR. W. A. MURRILL, Assistant Director (Administration) DR. JOHN K. SMALL, Head Curator of the Museums (Flowering Plants) DR. P. A. RYDBERG, Curator (Flowering Plants) DR. MARSHALL A. HOWE, Curator (Flowerless Plants) DR. FRED J. SEAVER, Curator (Flowerless Plants) ROBERT S. WILLIAMS, Administrative Assistant PERCY WILSON, Associate Curator DR. FRANCIS W. PENNELL, Associate Curator GEORGE V.
    [Show full text]