The Genetic Code: Francis Crick’S Legacy and Beyond

Total Page:16

File Type:pdf, Size:1020Kb

The Genetic Code: Francis Crick’S Legacy and Beyond life Editorial The Genetic Code: Francis Crick’s Legacy and Beyond 1,2 Koji Tamura 1 DepartmentEditorial of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku,The Genetic Tokyo 125-8585, Code: Japan; Francis [email protected]; Crick’s Tel.: +81-3-5876-1472 Legacy and Beyond 2 Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, ChibaKoji 278-8510, Tamura 1,2 Japan Academic1 Department Editor: David of Biological Deamer Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Received:Katsushika 22 August-ku, 2016; Tokyo Accepted: 125-8585, 23Japan August; [email protected] 2016; Published:; Tel: +81- 253-5876 August-1472 2016 2 Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan Academic Editor: David Deamer FrancisReceived: Crick 22 August (Figure 20161); wasAccepted: born 23 onAugust 8 June 2016 1916,; Published: in Northampton, date England, and passed away on 28 July 2004, in La Jolla, California, USA. This year, 2016, marks the 100th anniversary of his birth. A drastic changeFrancis in Crick the life(Figure sciences 1) was was born brought on 8 June, about 1916, byin Northampton, the discovery England of the, double and passed helical away structure on 28 July, 2004, in La Jolla, California, USA. This year, 2016, marks the 100th anniversary of his of DNAbirth. by JamesA drastic Watson change andin the Francis life science Cricks was in brought 1953 [about1], eventually by the discovery leading of the to double the deciphering helical of the geneticstructure code of [ 2DNA]. The by elucidation James Watson of theand geneticFrancis codeCrick wasin 1953 one [1], of theeventually greatest leading discoveries to the of the 20th century.deciphering The geneticof the genetic code code is an [2]. algorithm The elucidation that connects of the genetic 64 RNA code triplets was one to of 20 the amino greate acids,st and functionsdiscoveries as the Rosetta of the 20th stone century of molecular. The genetic biology. code is an algorithm that connects 64 RNA triplets to 20 amino acids, and functions as the Rosetta stone of molecular biology. FigureFigure 1. Sir 1.Francis Sir Francis Crick, Crick, La La Jolla Jolla 1982, 1982, Photograph Photograph by Norman Norman Seeff Seeff.. Credit: Credit: Norman Norman Seeff Seeff Productions. Productions. At the age of 60, Crick moved to La Jolla from Cambridge, England, and shifted his focus to the Atbrain the age and ofhuman 60, Crick consciousness. moved toHe La tackled Jolla this from subject Cambridge, for the last England, 28 years of and his shiftedlife. His hislife- focuslong to the brain andinterest human was consciousness.the distinction between He tackled the living this and subject the non for-living the last, which 28 years motivated of his his life. research His life-long interestcareer was the. Crick distinction was arguably between one theof the living 20th andcentury’s the non-living, most influential which scientists motivated, and hishe researchdevoted career. Crick washims arguablyelf to science one until of thehis death. 20th century’s most influential scientists, and he devoted himself to Francis Crick continued to exercise his intellectual abilities throughout his life. His research science until his death. style was characterized by collaborations with outstanding partners, James Watson in discovering Francis Crick continued to exercise his intellectual abilities throughout his life. His research Life 2016, 6, 36; doi:10.3390/life6030036 www.mdpi.com/journal/life style was characterized by collaborations with outstanding partners, James Watson in discovering the Life 2016, 6, 36; doi:10.3390/life6030036 www.mdpi.com/journal/life Life 2016, 6, 36 2 of 5 Life 2016, 6, 36 2 of 5 structure of DNA, Sydney Brenner in cracking the genetic code, Leslie Orgel in probing the origins of life,the structure and Christof of DNA Koch, in Sydney understanding Brenner humanin cracking consciousness. the genetic Francis code, Crick Leslie was Or nevergel in modest probing in the his choiceorigins of of scientific life, and problems Christof [Koch3] and in was understanding like “the conductor human ofconsciousness. the scientific orchestra”Francis Crick [4]. Hewas always never discussedmodest in his ideas,choice whichof scientific helped problems in the progress [3] and hewas made like “the in science. conductor Interestingly, of the scientific his son, orchestra” Michael, then[4]. He 12 always years old, discussed was the his first ideas, person which to helped read the in earliest the progress written he description made in science. of the Interestingly, genetic code. Crickhis son wrote, Michael the following, then 12 years in a letterold, was to Michael, the first person to read the earliest written description of the genetic code. Crick wrote the following in a letter to Michael, “ ... Now we believe that the D.N.A. is a code. That is, the order of the bases (the letters) makes “one…Now gene we different believe fromthat anotherthe D.N.A. gene is (just a code. as oneThat page is, the of printorder is of different the bases from (the another).letters) makes You can one genenow different see how Naturefrom another makes gene copies (just of theas one genes. page Because of print if is the different two chains from unwindanother). into You two can separate now see howchains, Nature and ifmakes each chaincopies thenof the makes genes another. Because chain if the come two together chains onunwind it, then into because two separat A alwayse chains, goes andwith if T,each and chain G with then C, makes we shall another get two chain copies come where together. ” on (Figure it, then2). because A always goes with T, and G with C, we shall get two copies where…” (Figure 2). Figure 2. LetterLetter from from Francis Francis Crick Crick to his to son his, son,Michael Michael,, explaining explaining his and his Watson and Watson’s’s discovery discovery of the ofstructure the structure of DNA. of DNA.The letter The is letter the earliest is the earliest written written description description of the ofgenetic the genetic mechanism mechanism on 19 onMarch, 19 March 1953. 1953.Credit: Credit: Wellcome Wellcome Library, Library, London. London. This is the fundamental principle of biology. The big questions that arose after the discovery of the structure of DNA were “how is the code used?” and “what is it a code for?” Francis Crick turned his attention to find answers to these questions for the next 13 years. George Gamow, who is famous for the Big Bang theory, founded the 20-member “RNA Tie Club” with Watson, to discuss Life 2016, 6, 36 3 of 5 This is the fundamental principle of biology. The big questions that arose after the discovery of the structure of DNA were “how is the code used?” and “what is it a code for?” Francis Crick turned his attention to find answers to these questions for the next 13 years. George Gamow, who is Life 2016, 6, 36 3 of 5 famous for the Big Bang theory, founded the 20-member “RNA Tie Club” with Watson, to discuss the transmission of information by DNA. RNA-illustrated neckties were provided to all members, and a the transmission of information by DNA. RNA-illustrated neckties were provided to all members, golden tiepin with the abbreviation for one of the 20 amino acids was given to each member. Crick and a golden tiepin with the abbreviation for one of the 20 amino acids was given to each member. was “TYR” (tyrosine). Crick’s famous “adaptor hypothesis” was prepared for circulation in the RNA Crick was “TYR” (tyrosine). Crick’s famous “adaptor hypothesis” was prepared for circulation in Tie Club [5], but when Paul Zamecnik and collaborators discovered transfer RNA (tRNA) [6], Crick the RNA Tie Club [5], but when Paul Zamecnik and collaborators discovered transfer RNA (tRNA) did not believe that it was indeed the adaptor, because of its unexpectedly large size. Crick insisted [6], Crick did not believe that it was indeed the adaptor, because of its unexpectedly large size. Crick that there would be 20 different adaptors for the amino acids, and that they would bring the amino insisted that there would be 20 different adaptors for the amino acids, and that they would bring acids to join the sequence of a nascent protein. A manuscript entitled “Ideas on protein synthesis the amino acids to join the sequence of a nascent protein. A manuscript entitled “Ideas on protein (October, 1956)” remains extant (Figure3). Crick spoke about “The Central Dogma” at a Society for synthesis (October, 1956)” remains extant (Figure 3). Crick spoke about “The Central Dogma” at a Experimental Biology symposium on “The Biological Replication of Macromolecules”, held at the Society for Experimental Biology symposium on “The Biological Replication of Macromolecules”, University College London in September, 1957. The Central Dogma holds true even today, and is held at the University College London in September, 1957. The Central Dogma holds true even another example of Crick’s genius. today, and is another example of Crick’s genius. Figure 3. The earliest written description of “The Central Dogma” in a manuscriptmanuscript entitledentitled “Ideas on protein synthesis (October(October,1956)”. 1956)”. Credit:Credit: WellcomeWellcome Library,Library, London. London. In 1961, Francis Crick, Sydney Brenner, Leslie Barnett, and Richard Watts-Tobin first demonstrated the three bases of DNA code for one amino acid [7]. That was the moment that scientists cracked the code of life. However, ironically, the first decoding of the “word” of the genetic code was reported in the same year by a non-member of the RNA Tie Club, Marshall Nirenberg, who spoke at the International Biochemical Congress in Moscow.
Recommended publications
  • Insight from the Sociology of Science
    CHAPTER 7 INSIGHT FROM THE SOCIOLOGY OF SCIENCE Science is What Scientists Do It has been argued a number of times in previous chapters that empirical adequacy is insufficient, in itself, to establish the validity of a theory: consistency with the observable ‘facts’ does not mean that a theory is true,1 only that it might be true, along with other theories that may also correspond with the observational data. Moreover, empirical inadequacy (theories unable to account for all the ‘facts’ in their domain) is frequently ignored by individual scientists in their fight to establish a new theory or retain an existing one. It has also been argued that because experi- ments are conceived and conducted within a particular theoretical, procedural and instrumental framework, they cannot furnish the theory-free data needed to make empirically-based judgements about the superiority of one theory over another. What counts as relevant evidence is, in part, determined by the theoretical framework the evidence is intended to test. It follows that the rationality of science is rather different from the account we usually provide for students in school. Experiment and observation are not as decisive as we claim. Additional factors that may play a part in theory acceptance include the following: intuition, aesthetic considerations, similarity and consistency among theories, intellectual fashion, social and economic influences, status of the proposer(s), personal motives and opportunism. Although the evidence may be inconclusive, scientists’ intuitive feelings about the plausibility or aptness of particular ideas will make it appear convincing. The history of science includes many accounts of scientists ‘sticking to their guns’ concerning a well-loved theory in the teeth of evidence to the contrary, and some- times in the absence of any evidence at all.
    [Show full text]
  • The Joys and Burdens of Our Heroes 12/05/2021
    More Fun Than Fun: The Joys and Burdens of Our Heroes 12/05/2021 An iconic photo of Konrad Lorenz with his favourite geese. Photo: Willamette Biology, CC BY-SA 2.0 This article is part of the ‘More Fun Than Fun‘ column by Prof Raghavendra Gadagkar. He will explore interesting research papers or books and, while placing them in context, make them accessible to a wide readership. RAGHAVENDRA GADAGKAR Among the books I read as a teenager, two completely changed my life. One was The Double Helix by Nobel laureate James D. Watson. This book was inspiring at many levels and instantly got me addicted to molecular biology. The other was King Solomon’s Ring by Konrad Lorenz, soon to be a Nobel laureate. The study of animal behaviour so charmingly and unforgettably described by Lorenz kindled in me an eternal love for the subject. The circumstances in which I read these two books are etched in my mind and may have partly contributed to my enthusiasm for them and their subjects. The Double Helix was first published in London in 1968 when I was a pre-university student (equivalent to 11th grade) at St Joseph’s college in Bangalore and was planning to apply for the prestigious National Science Talent Search Scholarship. By then, I had heard of the discovery of the double-helical structure of DNA and its profound implications. I was also tickled that this momentous discovery was made in 1953, the year of my birth. I saw the announcement of Watson’s book on the notice board in the British Council Library, one of my frequent haunts.
    [Show full text]
  • Discovery of DNA Structure and Function: Watson and Crick By: Leslie A
    01/08/2018 Discovery of DNA Double Helix: Watson and Crick | Learn Science at Scitable NUCLEIC ACID STRUCTURE AND FUNCTION | Lead Editor: Bob Moss Discovery of DNA Structure and Function: Watson and Crick By: Leslie A. Pray, Ph.D. © 2008 Nature Education Citation: Pray, L. (2008) Discovery of DNA structure and function: Watson and Crick. Nature Education 1(1):100 The landmark ideas of Watson and Crick relied heavily on the work of other scientists. What did the duo actually discover? Aa Aa Aa Many people believe that American biologist James Watson and English physicist Francis Crick discovered DNA in the 1950s. In reality, this is not the case. Rather, DNA was first identified in the late 1860s by Swiss chemist Friedrich Miescher. Then, in the decades following Miescher's discovery, other scientists--notably, Phoebus Levene and Erwin Chargaff--carried out a series of research efforts that revealed additional details about the DNA molecule, including its primary chemical components and the ways in which they joined with one another. Without the scientific foundation provided by these pioneers, Watson and Crick may never have reached their groundbreaking conclusion of 1953: that the DNA molecule exists in the form of a three-dimensional double helix. The First Piece of the Puzzle: Miescher Discovers DNA Although few people realize it, 1869 was a landmark year in genetic research, because it was the year in which Swiss physiological chemist Friedrich Miescher first identified what he called "nuclein" inside the nuclei of human white blood cells. (The term "nuclein" was later changed to "nucleic acid" and eventually to "deoxyribonucleic acid," or "DNA.") Miescher's plan was to isolate and characterize not the nuclein (which nobody at that time realized existed) but instead the protein components of leukocytes (white blood cells).
    [Show full text]
  • Cambridge's 92 Nobel Prize Winners Part 2 - 1951 to 1974: from Crick and Watson to Dorothy Hodgkin
    Cambridge's 92 Nobel Prize winners part 2 - 1951 to 1974: from Crick and Watson to Dorothy Hodgkin By Cambridge News | Posted: January 18, 2016 By Adam Care The News has been rounding up all of Cambridge's 92 Nobel Laureates, celebrating over 100 years of scientific and social innovation. ADVERTISING In this installment we move from 1951 to 1974, a period which saw a host of dramatic breakthroughs, in biology, atomic science, the discovery of pulsars and theories of global trade. It's also a period which saw The Eagle pub come to national prominence and the appearance of the first female name in Cambridge University's long Nobel history. The Gender Pay Gap Sale! Shop Online to get 13.9% off From 8 - 11 March, get 13.9% off 1,000s of items, it highlights the pay gap between men & women in the UK. Shop the Gender Pay Gap Sale – now. Promoted by Oxfam 1. 1951 Ernest Walton, Trinity College: Nobel Prize in Physics, for using accelerated particles to study atomic nuclei 2. 1951 John Cockcroft, St John's / Churchill Colleges: Nobel Prize in Physics, for using accelerated particles to study atomic nuclei Walton and Cockcroft shared the 1951 physics prize after they famously 'split the atom' in Cambridge 1932, ushering in the nuclear age with their particle accelerator, the Cockcroft-Walton generator. In later years Walton returned to his native Ireland, as a fellow of Trinity College Dublin, while in 1951 Cockcroft became the first master of Churchill College, where he died 16 years later. 3. 1952 Archer Martin, Peterhouse: Nobel Prize in Chemistry, for developing partition chromatography 4.
    [Show full text]
  • | Sydney Brenner |
    | SYDNEY BRENNER | TOP THREE AWARDS • Nobel Prize in Physiology, 2002 • Albert Lasker Special Achievement Award, 2000 • National Order of Mapungubwe (Gold), 2004 DEFINING MOMENT To view the DNA model for the first time. 32 |LEGENDS OF SOUTH AFRICAN SCIENCE| A LIFE DEDICATED TO SCIENCE C. ELEGANS WORK In the more than eight decades that Nobel Laureate, Prof Sydney Brenner, “To start with we propose to identify every cell in the worm and trace line- has all-consumingly devoted his life to science, he twice wrote powerful age. We shall also investigate the constancy of development and study proposals of no longer than a page. Short but sweet, these kick-started the its control by looking for mutants,” is how Brenner ended his proposal on two projects that are part of his lasting legacy. Caenorhabditis elegans to the UK Medical Research Council in October 1963. He was looking for a new challenge after already having helped to The first was to request funding to study a worm, because he saw in the show that genetic code is composed of non-overlapping triplets and that nematode Caenorhabditis elegans the ideal genetic model organism. messenger ribonucleic acid (mRNA) exists. He was right, and received the Nobel Prize for his efforts. The other pro- posal, which set out how Singapore could become a hub for biomedical His first paper on C. elegans appeared in Genetics in 1974, and in all, the research, earned him the title of “mentor to a nation’s science ambitions”. work took about 20 years to reach its full potential.
    [Show full text]
  • 2004 Albert Lasker Nomination Form
    albert and mary lasker foundation 110 East 42nd Street Suite 1300 New York, ny 10017 November 3, 2003 tel 212 286-0222 fax 212 286-0924 Greetings: www.laskerfoundation.org james w. fordyce On behalf of the Albert and Mary Lasker Foundation, I invite you to submit a nomination Chairman neen hunt, ed.d. for the 2004 Albert Lasker Medical Research Awards. President mrs. anne b. fordyce The Awards will be offered in three categories: Basic Medical Research, Clinical Medical Vice President Research, and Special Achievement in Medical Science. This is the 59th year of these christopher w. brody Treasurer awards. Since the program was first established in 1944, 68 Lasker Laureates have later w. michael brown Secretary won Nobel Prizes. Additional information on previous Lasker Laureates can be found jordan u. gutterman, m.d. online at our web site http://www.laskerfoundation.org. Representative Albert Lasker Medical Research Awards Program Nominations that have been made in previous years may be updated and resubmitted in purnell w. choppin, m.d. accordance with the instructions on page 2 of this nomination booklet. daniel e. koshland, jr., ph.d. mrs. william mccormick blair, jr. the honorable mark o. hatfied Nominations should be received by the Foundation no later than February 2, 2004. Directors Emeritus A distinguished panel of jurors will select the scientists to be honored. The 2004 Albert Lasker Medical Research Awards will be presented at a luncheon ceremony given by the Foundation in New York City on Friday, October 1, 2004. Sincerely, Joseph L. Goldstein, M.D. Chairman, Awards Jury Albert Lasker Medical Research Awards ALBERT LASKER MEDICAL2004 RESEARCH AWARDS PURPOSE AND DESCRIPTION OF THE AWARDS The major purpose of these Awards is to recognize and honor individuals who have made signifi- cant contributions in basic or clinical research in diseases that are the main cause of death and disability.
    [Show full text]
  • James A. Mccloskey, Jr
    CHEMICAL HERITAGE FOUNDATION JAMES A. MCCLOSKEY, JR. Transcript of Interviews Conducted by Michael A. Grayson at the McCloskeys’ Home Helotes, Texas on 19 and 20 March 2012 (With Subsequent Corrections and Additions) James A. McCloskey, Jr. ACKNOWLEDGMENT This oral history is one in a series initiated by the Chemical Heritage Foundation on behalf of the American Society for Mass Spectrometry. The series documents the personal perspectives of individuals related to the advancement of mass spectrometric instrumentation, and records the human dimensions of the growth of mass spectrometry in academic, industrial, and governmental laboratories during the twentieth century. This project is made possible through the generous support of the American Society for Mass Spectrometry. This oral history is designated Free Access. Please note: Users citing this interview for purposes of publication are obliged under the terms of the Chemical Heritage Foundation (CHF) Center for Oral History to credit CHF using the format below: James A. McCloskey, Jr., interview by Michael A. Grayson at the McCloskeys’ home, Helotes, Texas, 19-20 March 2012 (Philadelphia: Chemical Heritage Foundation, Oral History Transcript # 0702). Chemical Heritage Foundation Center for Oral History 315 Chestnut Street Philadelphia, Pennsylvania 19106 The Chemical Heritage Foundation (CHF) serves the community of the chemical and molecular sciences, and the wider public, by treasuring the past, educating the present, and inspiring the future. CHF maintains a world-class collection of materials that document the history and heritage of the chemical and molecular sciences, technologies, and industries; encourages research in CHF collections; and carries out a program of outreach and interpretation in order to advance an understanding of the role of the chemical and molecular sciences, technologies, and industries in shaping society.
    [Show full text]
  • The Great-Grandmother of LUCA (Last Universal Common Ancestor)
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 June 2018 doi:10.20944/preprints201806.0035.v1 Be introduced to the First Universal Common Ancestor (FUCA): the great-grandmother of LUCA (Last Universal Common Ancestor) Francisco Prosdocimi1*, Marco V José2 and Sávio Torres de Farias3* 1 Laboratório de Biologia Teórica e de Sistemas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil. 2 Theoretical Biology Group, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 CDMX, Mexico. 3 Laboratório de Genética Evolutiva Paulo Leminsk, Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brasil. * Correspondence: [email protected]; [email protected] Abstract The existence of a common ancestor to all living organisms in Earth is a necessary corollary of Darwin idea of common ancestry. The Last Universal Common Ancestor (LUCA) has been normally considered as the ancestor of cellular organisms that originated the three domains of life: Bacteria, Archaea and Eukarya. Recent studies about the nature of LUCA indicate that this first organism should present hundreds of genes and a complex metabolism. Trying to bring another of Darwin ideas into the origins of life discussion, we went back into the prebiotic chemistry trying to understand how LUCA could be originated 1 © 2018 by the author(s). Distributed under a Creative Commons CC BY license. Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 June 2018 doi:10.20944/preprints201806.0035.v1 under gradualist assumptions. Along this line of reasoning, it became clear to us that the definition of another ancestral should be of particular relevance to the understanding about the emergence of biological systems.
    [Show full text]
  • Beyond the Big Bang • the Amazon's Lost Civilizations • the Truth
    SFI Bulletin winter 2006, vol. 21 #1 Beyond the Big Bang • The Amazon’s Lost Civilizations • The Truth Behind Lying The Bulletin of the Santa Fe Institute is published by SFI to keep its friends and supporters informed about its work. The Santa Fe Institute is a private, independent, multidiscipli- nary research and education center founded in 1984. Since its founding, SFI has devoted itself to creating a new kind of sci- entific research community, pursuing emerging synthesis in science. Operating as a visiting institution, SFI seeks to cat- alyze new collaborative, multidisciplinary research; to break down the barriers between the traditional disciplines; to spread its ideas and methodologies to other institutions; and to encourage the practical application of its results. Published by the Santa Fe Institute 1399 Hyde Park Road Santa Fe, New Mexico 87501, USA phone (505) 984-8800 fax (505) 982-0565 home page: http://www.santafe.edu Note: The SFI Bulletin may be read at the website: www.santafe.edu/sfi/publications/Bulletin/. If you would prefer to read the Bulletin on your computer rather than receive a printed version, contact Patrisia Brunello at 505/984-8800, Ext. 2700 or [email protected]. EDITORIAL STAFF: Ginger Richardson Lesley S. King Andi Sutherland CONTRIBUTORS: Brooke Harrington Janet Yagoda Shagam Julian Smith Janet Stites James Trefil DESIGN & PRODUCTION: Paula Eastwood PHOTO: ROBERT BUELTEMAN ©2004 BUELTEMAN PHOTO: ROBERT SFI Bulletin Winter 2006 TOCtable of contents 3 A Deceptively Simple Formula 2 How Life Began 3 From
    [Show full text]
  • Clinical Molecular Genetics in the Uk C.1975–C.2000
    CLINICAL MOLECULAR GENETICS IN THE UK c.1975–c.2000 The transcript of a Witness Seminar held by the History of Modern Biomedicine Research Group, Queen Mary, University of London, on 5 February 2013 Edited by E M Jones and E M Tansey Volume 48 2014 ©The Trustee of the Wellcome Trust, London, 2014 First published by Queen Mary, University of London, 2014 The History of Modern Biomedicine Research Group is funded by the Wellcome Trust, which is a registered charity, no. 210183. ISBN 978 0 90223 888 6 All volumes are freely available online at www.history.qmul.ac.uk/research/modbiomed/ wellcome_witnesses/ Please cite as: Jones E M, Tansey E M. (eds) (2014) Clinical Molecular Genetics in the UK c.1975–c.2000. Wellcome Witnesses to Contemporary Medicine, vol. 48. London: Queen Mary, University of London. CONTENTS What is a Witness Seminar? v Acknowledgements E M Tansey and E M Jones vii Illustrations and credits ix Abbreviations xi Ancillary guides xiii Introduction Professor Bob Williamson xv Transcript Edited by E M Jones and E M Tansey 1 Appendix 1 Photograph, with key, of delegates attending The Molecular Biology of Thalassaemia conference in Kolimbari, Crete, 1978 88 Appendix 2 Extracts from the University of Leiden postgraduate course Restriction Fragment Length Polymorphisms and Human Genetics, 1982 91 Appendix 3 Archival material of the Clinical Molecular Genetics Society 95 Biographical notes 101 References 113 Index 131 Witness Seminars: Meetings and Publications 143 WHAT IS A WITNESS SEMINAR? The Witness Seminar is a specialized form of oral history, where several individuals associated with a particular set of circumstances or events are invited to meet together to discuss, debate, and agree or disagree about their memories.
    [Show full text]
  • MCDB 5220 Methods and Logics April 21 2015 Marcelo Bassalo
    Cracking the Genetic Code MCDB 5220 Methods and Logics April 21 2015 Marcelo Bassalo The DNA Saga… so far Important contributions for cracking the genetic code: • The “transforming principle” (1928) Frederick Griffith The DNA Saga… so far Important contributions for cracking the genetic code: • The “transforming principle” (1928) • The nature of the transforming principle: DNA (1944 - 1952) Oswald Avery Alfred Hershey Martha Chase The DNA Saga… so far Important contributions for cracking the genetic code: • The “transforming principle” (1928) • The nature of the transforming principle: DNA (1944 - 1952) • X-ray diffraction and the structure of proteins (1951) Linus Carl Pauling The DNA Saga… so far Important contributions for cracking the genetic code: • The “transforming principle” (1928) • The nature of the transforming principle: DNA (1944 - 1952) • X-ray diffraction and the structure of proteins (1951) • The structure of DNA (1953) James Watson and Francis Crick The DNA Saga… so far Important contributions for cracking the genetic code: • The “transforming principle” (1928) • The nature of the transforming principle: DNA (1944 - 1952) • X-ray diffraction and the structure of proteins (1951) • The structure of DNA (1953) How is DNA (4 nucleotides) the genetic material while proteins (20 amino acids) are the building blocks? ? DNA Protein ? The Coding Craze ? DNA Protein What was already known? • DNA resides inside the nucleus - DNA is not the carrier • Protein synthesis occur in the cytoplasm through ribosomes {• Only RNA is associated with ribosomes (no DNA) - rRNA is not the carrier { • Ribosomal RNA (rRNA) was a homogeneous population The “messenger RNA” hypothesis François Jacob Jacques Monod The Coding Craze ? DNA RNA Protein RNA Tie Club Table from Wikipedia The Coding Craze Who won the race Marshall Nirenberg J.
    [Show full text]
  • Cambridge's 92 Nobel Prize Winners Part 4 - 1996 to 2015: from Stem Cell Breakthrough to IVF
    Cambridge's 92 Nobel Prize winners part 4 - 1996 to 2015: from stem cell breakthrough to IVF By Cambridge News | Posted: February 01, 2016 Some of Cambridge's most recent Nobel winners Over the last four weeks the News has been rounding up all of Cambridge's 92 Nobel Laureates, which this week comes right up to the present day. From the early giants of physics like JJ Thomson and Ernest Rutherford to the modern-day biochemists unlocking the secrets of our genome, we've covered the length and breadth of scientific discovery, as well as hugely influential figures in economics, literature and politics. What has stood out is the importance of collaboration; while outstanding individuals have always shone, Cambridge has consistently achieved where experts have come together to bounce their ideas off each other. Key figures like Max Perutz, Alan Hodgkin and Fred Sanger have not only won their own Nobels, but are regularly cited by future winners as their inspiration, as their students went on to push at the boundaries they established. In the final part of our feature we cover the last 20 years, when Cambridge has won an average of a Nobel Prize a year, and shows no sign of slowing down, with ground-breaking research still taking place in our midst today. The Gender Pay Gap Sale! Shop Online to get 13.9% off From 8 - 11 March, get 13.9% off 1,000s of items, it highlights the pay gap between men & women in the UK. Shop the Gender Pay Gap Sale – now. Promoted by Oxfam 1.1996 James Mirrlees, Trinity College: Prize in Economics, for studying behaviour in the absence of complete information As a schoolboy in Galloway, Scotland, Mirrlees was in line for a Cambridge scholarship, but was forced to change his plans when on the weekend of his interview he was rushed to hospital with peritonitis.
    [Show full text]