Clinical Molecular Genetics in the Uk C.1975–C.2000

Total Page:16

File Type:pdf, Size:1020Kb

Clinical Molecular Genetics in the Uk C.1975–C.2000 CLINICAL MOLECULAR GENETICS IN THE UK c.1975–c.2000 The transcript of a Witness Seminar held by the History of Modern Biomedicine Research Group, Queen Mary, University of London, on 5 February 2013 Edited by E M Jones and E M Tansey Volume 48 2014 ©The Trustee of the Wellcome Trust, London, 2014 First published by Queen Mary, University of London, 2014 The History of Modern Biomedicine Research Group is funded by the Wellcome Trust, which is a registered charity, no. 210183. ISBN 978 0 90223 888 6 All volumes are freely available online at www.history.qmul.ac.uk/research/modbiomed/ wellcome_witnesses/ Please cite as: Jones E M, Tansey E M. (eds) (2014) Clinical Molecular Genetics in the UK c.1975–c.2000. Wellcome Witnesses to Contemporary Medicine, vol. 48. London: Queen Mary, University of London. CONTENTS What is a Witness Seminar? v Acknowledgements E M Tansey and E M Jones vii Illustrations and credits ix Abbreviations xi Ancillary guides xiii Introduction Professor Bob Williamson xv Transcript Edited by E M Jones and E M Tansey 1 Appendix 1 Photograph, with key, of delegates attending The Molecular Biology of Thalassaemia conference in Kolimbari, Crete, 1978 88 Appendix 2 Extracts from the University of Leiden postgraduate course Restriction Fragment Length Polymorphisms and Human Genetics, 1982 91 Appendix 3 Archival material of the Clinical Molecular Genetics Society 95 Biographical notes 101 References 113 Index 131 Witness Seminars: Meetings and Publications 143 WHAT IS A WITNESS SEMINAR? The Witness Seminar is a specialized form of oral history, where several individuals associated with a particular set of circumstances or events are invited to meet together to discuss, debate, and agree or disagree about their memories. The meeting is recorded, transcribed and edited for publication. This format was first devised and used by the Wellcome Trust’s History of Twentieth Century Medicine Group in 1993 to address issues associated with the discovery of monoclonal antibodies. We developed this approach after holding a conventional seminar, given by a medical historian, on the discovery of interferon. Many members of the invited audience were scientists or others involved in that work, and the detailed and revealing discussion session afterwards alerted us to the importance of recording ‘communal’ eyewitness testimonies. We learned that the Institute for Contemporary British History held meetings to examine modern political, diplomatic and economic history, which they called Witness Seminars, and this seemed a suitable title for us to use also. The unexpected success of our first Witness Seminar, as assessed by the willingness of the participants to attend, speak frankly, agree and disagree, and also by many requests for its transcript, encouraged us to develop the Witness Seminar model into a full programme, and since then more than 50 meetings have been held and published on a wide array of biomedical topics.1 These seminars have proved an ideal way to bring together clinicians, scientists, and others interested in contemporary medical history to share their memories. We are not seeking a consensus, but are providing the opportunity to hear an array of voices, many little known, of individuals who were ‘there at the time’ and thus able to question, ratify or disagree with others’ accounts – a form of open peer-review. The material records of the meeting also create archival sources for present and future use. The History of Twentieth Century Medicine Group became a part of the Wellcome Trust’s Centre for the History of Medicine at UCL in October 2000 until September 2010. It has been part of the School of History, Queen Mary, University of London, since October 2010, as the History of Modern Biomedicine Research Group, which the Wellcome Trust funds principally 1 See pages 143–8 for a full list of Witness Seminars held, details of the published volumes and other related publications. v under a Strategic Award entitled ‘The Makers of Modern Biomedicine’. The Witness Seminar format continues to be a major part of that programme, although now the subjects are largely focused on areas of strategic importance to the Wellcome Trust, including the neurosciences, clinical genetics, and medical technology.2 Once an appropriate topic has been agreed, usually after discussion with a specialist adviser, suitable participants are identified and invited. As the organization of the seminar progresses and the participants’ list is compiled, a flexible outline plan for the meeting is devised, with assistance from the meeting’s designated chairman/moderator. Each participant is sent an attendance list and a copy of this programme before the meeting. Seminars last for about four hours; occasionally full-day meetings have been held. After each meeting the raw transcript is sent to every participant, each of whom is asked to check his or her own contribution and to provide brief biographical details for an appendix. The editors incorporate participants’ minor corrections and turn the transcript into readable text, with footnotes, appendices and a bibliography. Extensive research and liaison with the participants is conducted to produce the final script, which is then sent to every contributor for approval and to assign copyright to the Wellcome Trust. Copies of the original, and edited, transcripts and additional correspondence generated by the editorial process are all deposited with the records of each meeting in the Wellcome Library, London (archival reference GC/253) and are available for study. For all our volumes, we hope that, even if the precise details of the more technical sections are not clear to the non-specialist, the sense and significance of the events will be understandable to all readers. Our aim is that the volumes inform those with a general interest in the history of modern medicine and medical science; provide historians with new insights, fresh material for study, and further themes for research; and emphasize to the participants that their own working lives are of proper and necessary concern to historians. 2 See our Group’s website at http://www.history.qmul.ac.uk/research/modbiomed (visited 13 August 2013). vi AcKNOWLEDGEMENTS This Witness Seminar is held under the auspices of our current Wellcome Trust Strategic Award ‘The Makers of Modern Biomedicine’. While building on the style and success of our previous meetings and volumes (listed on pages 143–8), we are now focusing on five main themes in contemporary biomedicine, one of which is clinical genetics (details at http://www.history.qmul.ac.uk/research/modbiomed/ index.html). Professor Peter Harper is our expert adviser on this part of the project, and the theme of clinical molecular genetics is one we have been discussing for some time. Peter has advised us on suitable participants, as have Professor Andrew Read and Professor Martin Bobrow; the latter also chaired the resultant meeting. We are most grateful to them all for their input. We also thank Professor Bob Williamson for writing the introduction for this volume. Professor Bert Bakker, Dr Fiona Macdonald and Dr John Old all generously provided archival material for reproduction in the appendix for which we are very grateful. Mr Laz Lazarou also gave material that will be deposited in the Wellcome Library with the records of this meeting. Thanks are also due to Professor Marcus Pembrey who commented on the final proof transcript. As with all our meetings, we depend a great deal on Wellcome Trust staff to ensure their smooth running: the Audiovisual Department, Catering, Reception, Security and Wellcome Images. We thank Mr Akio Morishima for the design and production of this volume; the indexer Ms Liza Furnival; Mrs Sarah Beanland and Ms Fiona Plowman for proofreading; Mrs Deborah Gee for transcribing the seminar; Ms Caroline Overy for assisting with running the seminar and Mr Adam Wilkinson who assisted in the organization and running of the meeting. Finally, we are most grateful to the Wellcome Trust for supporting this research programme. Tilli Tansey Emma Jones School of History, Queen Mary, University of London vii ILLUSTRATIONS AND CREDITS* Figure A Professor Bob Williamson; reproduced with his permission. xviii Table 1 Original outline programme for the seminar 6 Figure 1 Professor Tilli Tansey 3 Figure 2 Professor Martin Bobrow 4 Figure 3 Professor Malcolm Ferguson-Smith, Professor Peter Harper 5 Figure 4 Professor Andrew Read, Professor Peter Harper 7 Figure 5 Professors Julian Sampson, Bert Bakker, John Yates 10 Figure 6 Title page, laboratory manual for course Restriction Fragment Length Polymorphisms and Human Genetics, University of Leiden, 1982; reproduced with permission from Professor Bert Bakker. 12 Figure 7 Professor Marianne Schwartz, Dr John Philip; reproduced with permission from Professor Bert Bakker, University of Leiden. 13 Figure 8 Dr John Old 14 Figure 9 Professor Sir David Weatherall 16 Figure 10 Professor Bernadette Modell 22 Figure 11 Professor John Yates 30 Figure 12 Dr Rob Elles 33 Figure 13 Dr Helen Middleton-Price 40 * Unless otherwise stated, all photographs were taken by Ben Gilbert, Wellcome Trust, and reproduced courtesy of the Wellcome Library, London. ix Figure 14 Professor Patricia Jacobs; reproduced with her permission. 45 Figure 15 Mr Laz Lazarou 46 Figure 16 Dr Linda Meredith 47 Figure 17 Professor Julian Sampson 49 Figure 18 Dr Fiona Macdonald 54 Figure 19 Professor Malcolm Ferguson-Smith 59 Figure 20 Dr Rosalind Skinner 66 Figure 21 Dr Ian Lister Cheese 69
Recommended publications
  • Wellcome Trust Annual Report and Financial Statements 2017 Contents
    Annual Report and Financial Statements 2017 2 Wellcome Trust Annual Report and Financial Statements 2017 Contents Report from the Chair and the Director 5 Trustee’s Report 8 What we do 8 Review of Charitable Activities 9 Review of Investment Activities 18 Financial Review 29 Structure and Governance 34 Risk Management 37 Remuneration Report 40 Audit Committee Report 43 Independent Auditor’s Report 45 Financial Statements 58 Consolidated Statement of Financial Activities 58 Consolidated Balance Sheet 59 Statement of Financial Activities of the Trust 60 Balance Sheet of the Trust 61 Consolidated Cash Flow Statement 62 Notes to the Financial Statements 63 Reference and Administrative Details 117 3 Wellcome Trust Annual Report and Financial Statements 2017 “ At Wellcome, we believe in the power of ideas to improve health” Jeremy Farrar Director 4 Wellcome Trust Annual Report and Financial Statements 2017 Report from the Chair and the Director “Our core approach is funding people to explore great ideas, at every step of the way from discovery to impact” At Wellcome, we believe in the power of ideas to improve cause of maternal mortality in the world. It also includes health. Funded from our independent investment portfolio, supporting research in the humanities and social sciences, we support thousands of scientists and researchers in more such as a project which this year published ethical guidelines than 70 countries, as well as innovators, educators and artists. for involving pregnant women in Zika vaccine research. Together, we take on big problems, fuel imaginations and spark And resources like the Human Induced Pluripotent Stem Cell debate, working always to achieve better health for everyone.
    [Show full text]
  • The Future Role of Molecular and Cell Biology in Medical Practice in the Tropical Countries
    The future role of molecular and cell biology in medical practice in the tropical countries David Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK Downloaded from https://academic.oup.com/bmb/article/54/2/489/285007 by guest on 27 September 2021 Molecular and cell biology have a great deal to offer tropical medicine in the future. As well as helping to understand the population genetics and dynamics of both infectious and non-infectious diseases, they promise to provide a new generation of diagnostic and therapeutic agents, and to play a major role in the development of new vaccines and other approaches to the control of disease in tropical communities. Over the last 20 years there has been a gradual shift in the emphasis of basic biomedical research from the study of disease in patients and their organs to its definition at the level of molecules and cells. This new trend has been underpinned by a remarkable new technology which has made it possible to isolate and sequence genes, study their function and transfer them across the species barrier. In the short time during which this field has evolved, a great deal has been discovered about human pathology at the molecular level. Many monogenic diseases have been characterised, much has been learnt about the molecular and cell biology of cancer, and a start has been made in defining the different genes that comprise the complex interactions between nature and nurture that underlie many of the major killers of Western society. Enough is known already to suggest that this knowledge will have major implications for the development of more precise diagnostic and therapeutic agents in the future.
    [Show full text]
  • Uman Enome News
    uman enome news ISSN:l050-6101 Vol. 3, No.1, May 1991 DOE Holds Contractor-Grantee Workshop Physical Mapping Efforts Going Well; Gels Increasing Sequencing Efficiency he DOE Human Genome Prograll1 held its second Contractor-Grantee Workshop Charles R. Cantor and HGMIS gratefully Tin Santa Fe, New Mexico, on February l7-W. More than 200 program-sponsored acknowledge contribu­ scientists attended the meeting, in addition to invited guests and industry represen­ tions to this article by tatives. DOE-supported human genome research projects are conducted at 7 DOE Elbert W. Branscomb, national laboratories (including its 3 human genome centers), 37 major universities, Anthony V. Carrano, and 32 companies through collaborations and awards. Projects were represented by Leroy E. Hood, oral presentations or posters. Robert K. Moyzis, and Robert J. Robbins. Six platform sessions focused on the more focus is needed on the immediate following: informatics needs of ongoing biology projects. • physical mapping progress, Many parallel efforts under way in cloning, • large DNA fragment cloning, informatics, mapping, and sequencing will • strategies for preparing samples for further improve the technologies required for efficient DNA sequencing, genomics. Program participants feel that this situation is healthy at present and that a few • new methods for a variety of genome efforts, • DNA sequencing instrumentation, and In This fssue .•. • database and computer algorithm needs for existing or projected genome Page Genome News research. 1 DOE Holds Contractor-Grantee Workshop David Galas, Associate Director, Office of 5 LANL, Life Technologies Approve CRADA Health and Environmental Research (OHER), 6 Conncil on Competitiveness Urges Action spoke about the relationship between the 7 Moore Calls Tech Transfer Critical to Fntnre' Human Genome Program and other OHER 8 NIH Discusses eDNA Role with Invited Group programs.
    [Show full text]
  • Biochemistry and the Genomic Revolution 1.1
    Dedication About the authors Preface Tools and Techniques Clinical Applications Molecular Evolution Supplements Supporting Biochemistry, Fifth Edition Acknowledgments I. The Molecular Design of Life 1. Prelude: Biochemistry and the Genomic Revolution 1.1. DNA Illustrates the Relation between Form and Function 1.2. Biochemical Unity Underlies Biological Diversity 1.3. Chemical Bonds in Biochemistry 1.4. Biochemistry and Human Biology Appendix: Depicting Molecular Structures 2. Biochemical Evolution 2.1. Key Organic Molecules Are Used by Living Systems 2.2. Evolution Requires Reproduction, Variation, and Selective Pressure 2.3. Energy Transformations Are Necessary to Sustain Living Systems 2.4. Cells Can Respond to Changes in Their Environments Summary Problems Selected Readings 3. Protein Structure and Function 3.1. Proteins Are Built from a Repertoire of 20 Amino Acids 3.2. Primary Structure: Amino Acids Are Linked by Peptide Bonds to Form Polypeptide Chains 3.3. Secondary Structure: Polypeptide Chains Can Fold Into Regular Structures Such as the Alpha Helix, the Beta Sheet, and Turns and Loops 3.4. Tertiary Structure: Water-Soluble Proteins Fold Into Compact Structures with Nonpolar Cores 3.5. Quaternary Structure: Polypeptide Chains Can Assemble Into Multisubunit Structures 3.6. The Amino Acid Sequence of a Protein Determines Its Three-Dimensional Structure Summary Appendix: Acid-Base Concepts Problems Selected Readings 4. Exploring Proteins 4.1. The Purification of Proteins Is an Essential First Step in Understanding Their Function 4.2. Amino Acid Sequences Can Be Determined by Automated Edman Degradation 4.3. Immunology Provides Important Techniques with Which to Investigate Proteins 4.4. Peptides Can Be Synthesized by Automated Solid-Phase Methods 4.5.
    [Show full text]
  • Female Fellows of the Royal Society
    Female Fellows of the Royal Society Professor Jan Anderson FRS [1996] Professor Ruth Lynden-Bell FRS [2006] Professor Judith Armitage FRS [2013] Dr Mary Lyon FRS [1973] Professor Frances Ashcroft FMedSci FRS [1999] Professor Georgina Mace CBE FRS [2002] Professor Gillian Bates FMedSci FRS [2007] Professor Trudy Mackay FRS [2006] Professor Jean Beggs CBE FRS [1998] Professor Enid MacRobbie FRS [1991] Dame Jocelyn Bell Burnell DBE FRS [2003] Dr Philippa Marrack FMedSci FRS [1997] Dame Valerie Beral DBE FMedSci FRS [2006] Professor Dusa McDuff FRS [1994] Dr Mariann Bienz FMedSci FRS [2003] Professor Angela McLean FRS [2009] Professor Elizabeth Blackburn AC FRS [1992] Professor Anne Mills FMedSci FRS [2013] Professor Andrea Brand FMedSci FRS [2010] Professor Brenda Milner CC FRS [1979] Professor Eleanor Burbidge FRS [1964] Dr Anne O'Garra FMedSci FRS [2008] Professor Eleanor Campbell FRS [2010] Dame Bridget Ogilvie AC DBE FMedSci FRS [2003] Professor Doreen Cantrell FMedSci FRS [2011] Baroness Onora O'Neill * CBE FBA FMedSci FRS [2007] Professor Lorna Casselton CBE FRS [1999] Dame Linda Partridge DBE FMedSci FRS [1996] Professor Deborah Charlesworth FRS [2005] Dr Barbara Pearse FRS [1988] Professor Jennifer Clack FRS [2009] Professor Fiona Powrie FRS [2011] Professor Nicola Clayton FRS [2010] Professor Susan Rees FRS [2002] Professor Suzanne Cory AC FRS [1992] Professor Daniela Rhodes FRS [2007] Dame Kay Davies DBE FMedSci FRS [2003] Professor Elizabeth Robertson FRS [2003] Professor Caroline Dean OBE FRS [2004] Dame Carol Robinson DBE FMedSci
    [Show full text]
  • The Use of Non-Human Primates in Research in Primates Non-Human of Use The
    The use of non-human primates in research The use of non-human primates in research A working group report chaired by Sir David Weatherall FRS FMedSci Report sponsored by: Academy of Medical Sciences Medical Research Council The Royal Society Wellcome Trust 10 Carlton House Terrace 20 Park Crescent 6-9 Carlton House Terrace 215 Euston Road London, SW1Y 5AH London, W1B 1AL London, SW1Y 5AG London, NW1 2BE December 2006 December Tel: +44(0)20 7969 5288 Tel: +44(0)20 7636 5422 Tel: +44(0)20 7451 2590 Tel: +44(0)20 7611 8888 Fax: +44(0)20 7969 5298 Fax: +44(0)20 7436 6179 Fax: +44(0)20 7451 2692 Fax: +44(0)20 7611 8545 Email: E-mail: E-mail: E-mail: [email protected] [email protected] [email protected] [email protected] Web: www.acmedsci.ac.uk Web: www.mrc.ac.uk Web: www.royalsoc.ac.uk Web: www.wellcome.ac.uk December 2006 The use of non-human primates in research A working group report chaired by Sir David Weatheall FRS FMedSci December 2006 Sponsors’ statement The use of non-human primates continues to be one the most contentious areas of biological and medical research. The publication of this independent report into the scientific basis for the past, current and future role of non-human primates in research is both a necessary and timely contribution to the debate. We emphasise that members of the working group have worked independently of the four sponsoring organisations. Our organisations did not provide input into the report’s content, conclusions or recommendations.
    [Show full text]
  • Clinical Genetics in Britain: Origins and Development
    CLINICAL GENETICS IN BRITAIN: ORIGINS AND DEVELOPMENT The transcript of a Witness Seminar held by the Wellcome Trust Centre for the History of Medicine at UCL, London, on 23 September 2008 Edited by P S Harper, L A Reynolds and E M Tansey Volume 39 2010 ©The Trustee of the Wellcome Trust, London, 2010 First published by the Wellcome Trust Centre for the History of Medicine at UCL, 2010 The Wellcome Trust Centre for the History of Medicine at UCL is funded by the Wellcome Trust, which is a registered charity, no. 210183. ISBN 978 085484 127 1 All volumes are freely available online following the links to Publications/Wellcome Witnesses at www.ucl.ac.uk/histmed CONTENTS Illustrations and credits v Abbreviations vii Witness Seminars: Meetings and publications; Acknowledgements E M Tansey and L A Reynolds ix Introduction Sir John Bell xix Transcript Edited by P S Harper, L A Reynolds and E M Tansey 1 Appendix 1 Initiatives supporting clinical genetics, 1983–99 by Professor Rodney Harris 83 Appendix 2 The Association of Genetic Nurses and Counsellors (AGNC) by Professor Heather Skirton 87 References 89 Biographical notes 113 Glossary 133 Index 137 ILLUSTRATIONS AND CREDITS Figure 1 Professor Lionel Penrose, c. 1960. Provided by and reproduced with permission of Professor Shirley Hodgson. 8 Figure 2 Dr Mary Lucas, clinical geneticist at the Galton Laboratory, explains a poster to the University of London’s Chancellor, Princess Anne, October 1981. Provided by and reproduced with permission of Professor Joy Delhanty. 9 Figure 3 (a) The karyotype of a phenotypically normal woman and (b) family pedigree, showing three generations with inherited translocation.
    [Show full text]
  • Journal of Biomedical Discovery and Collaboration
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE Journal of Biomedical Discovery and provided by PubMed Central Collaboration BioMed Central Case Study Open Access The emergence and diffusion of DNA microarray technology Tim Lenoir*† and Eric Giannella† Address: Jenkins Collaboratory for New Technologies in Society, Duke University, John Hope Franklin Center, 2204 Erwin Road, Durham, North Carolina 27708-0402, USA Email: Tim Lenoir* - [email protected]; Eric Giannella - [email protected] * Corresponding author †Equal contributors Published: 22 August 2006 Received: 09 August 2006 Accepted: 22 August 2006 Journal of Biomedical Discovery and Collaboration 2006, 1:11 doi:10.1186/1747-5333-1-11 This article is available from: http://www.j-biomed-discovery.com/content/1/1/11 © 2006 Lenoir and Giannella; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract The network model of innovation widely adopted among researchers in the economics of science and technology posits relatively porous boundaries between firms and academic research programs and a bi-directional flow of inventions, personnel, and tacit knowledge between sites of university and industry innovation. Moreover, the model suggests that these bi-directional flows should be considered as mutual stimulation of research and invention in both industry and academe, operating as a positive feedback loop. One side of this bi-directional flow – namely; the flow of inventions into industry through the licensing of university-based technologies – has been well studied; but the reverse phenomenon of the stimulation of university research through the absorption of new directions emanating from industry has yet to be investigated in much detail.
    [Show full text]
  • Part I Officers in Institutions Placed Under the Supervision of the General Board
    2 OFFICERS NUMBER–MICHAELMAS TERM 2009 [SPECIAL NO.7 PART I Chancellor: H.R.H. The Prince PHILIP, Duke of Edinburgh, T Vice-Chancellor: 2003, Prof. ALISON FETTES RICHARD, N, 2010 Deputy Vice-Chancellors for 2009–2010: Dame SANDRA DAWSON, SID,ATHENE DONALD, R,GORDON JOHNSON, W,STUART LAING, CC,DAVID DUNCAN ROBINSON, M,JEREMY KEITH MORRIS SANDERS, SE, SARAH LAETITIA SQUIRE, HH, the Pro-Vice-Chancellors Pro-Vice-Chancellors: 2004, ANDREW DAVID CLIFF, CHR, 31 Dec. 2009 2004, IAN MALCOLM LESLIE, CHR, 31 Dec. 2009 2008, JOHN MARTIN RALLISON, T, 30 Sept. 2011 2004, KATHARINE BRIDGET PRETTY, HO, 31 Dec. 2009 2009, STEPHEN JOHN YOUNG, EM, 31 July 2012 High Steward: 2001, Dame BRIDGET OGILVIE, G Deputy High Steward: 2009, ANNE MARY LONSDALE, NH Commissary: 2002, The Rt Hon. Lord MACKAY OF CLASHFERN, T Proctors for 2009–2010: JEREMY LLOYD CADDICK, EM LINDSAY ANNE YATES, JN Deputy Proctors for MARGARET ANN GUITE, G 2009–2010: PAUL DUNCAN BEATTIE, CC Orator: 2008, RUPERT THOMPSON, SE Registrary: 2007, JONATHAN WILLIAM NICHOLLS, EM Librarian: 2009, ANNE JARVIS, W Acting Deputy Librarian: 2009, SUSANNE MEHRER Director of the Fitzwilliam Museum and Marlay Curator: 2008, TIMOTHY FAULKNER POTTS, CL Director of Development and Alumni Relations: 2002, PETER LAWSON AGAR, SE Esquire Bedells: 2003, NICOLA HARDY, JE 2009, ROGER DERRICK GREEVES, CL University Advocate: 2004, PHILIPPA JANE ROGERSON, CAI, 2010 Deputy University Advocates: 2007, ROSAMUND ELLEN THORNTON, EM, 2010 2006, CHRISTOPHER FORBES FORSYTH, R, 2010 OFFICERS IN INSTITUTIONS PLACED UNDER THE SUPERVISION OF THE GENERAL BOARD PROFESSORS Accounting 2003 GEOFFREY MEEKS, DAR Active Tectonics 2002 JAMES ANTHONY JACKSON, Q Aeronautical Engineering, Francis Mond 1996 WILLIAM NICHOLAS DAWES, CHU Aerothermal Technology 2000 HOWARD PETER HODSON, G Algebra 2003 JAN SAXL, CAI Algebraic Geometry (2000) 2000 NICHOLAS IAN SHEPHERD-BARRON, T Algebraic Geometry (2001) 2001 PELHAM MARK HEDLEY WILSON, T American History, Paul Mellon 1992 ANTHONY JOHN BADGER, CL American History and Institutions, Pitt 2009 NANCY A.
    [Show full text]
  • Blotting Techniques
    BLOTTING TECHNIQUES Dr.Ramesh C.K. Associate Professor and Chairman Department of Biotechnology Sahyadri Science College Shimoga - 577 203 Karnataka, India BLOTTING TECHNIQUES Southern Blot Northern blot Western blot It is used to detect It is used to detect It is used to detect the DNA. the RNA. proteins. SOUTHERN BLOTTING A technique for identifying specific sequences of DNA in which DNA fragments are separated by electrophoresis, transferred to a membrane, and identified with a suitable probe. Detects restriction fragments following a restriction enzyme digest of genomic DNA (RFLPs) Named after British biochemist Edwin Southern (alive and publishing!) Southern EM. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol Biol. 1975 Nov 5;98(3):503-17. History/Background • ‘Southern’ hybridization named after Sir Edwin Southern • Developed in 1975 • One of the most highly cited scientific publications “Used to detect the DNA” • This method Involves: Separation Transfer Hybridization. • This DNA can be: • Single gene • Part of a larger piece of DNA……..viral genome “The key to this method is Hybridization” Hybridization “Process of forming a dsDNA molecule between a ssDNA probe and a ss-target DNA” PRINCIPLE The mixture of molecules is separated. Immobilized on a matrix. Probe addition to the matrix to bind to the molecules. Unbound probes are removed. “The place where the probe is connected corresponds to the location of the immobilized target molecule.” Steps The DNA is digested Fragments Gel electrophoresis Transfer to membrane Probing Autoradiogram I. DNA Purification – Isolate the DNA in question from the rest of the cellular material in the nucleus.
    [Show full text]
  • HUMAN GENE MAPPING WORKSHOPS C.1973–C.1991
    HUMAN GENE MAPPING WORKSHOPS c.1973–c.1991 The transcript of a Witness Seminar held by the History of Modern Biomedicine Research Group, Queen Mary University of London, on 25 March 2014 Edited by E M Jones and E M Tansey Volume 54 2015 ©The Trustee of the Wellcome Trust, London, 2015 First published by Queen Mary University of London, 2015 The History of Modern Biomedicine Research Group is funded by the Wellcome Trust, which is a registered charity, no. 210183. ISBN 978 1 91019 5031 All volumes are freely available online at www.histmodbiomed.org Please cite as: Jones E M, Tansey E M. (eds) (2015) Human Gene Mapping Workshops c.1973–c.1991. Wellcome Witnesses to Contemporary Medicine, vol. 54. London: Queen Mary University of London. CONTENTS What is a Witness Seminar? v Acknowledgements E M Tansey and E M Jones vii Illustrations and credits ix Abbreviations and ancillary guides xi Introduction Professor Peter Goodfellow xiii Transcript Edited by E M Jones and E M Tansey 1 Appendix 1 Photographs of participants at HGM1, Yale; ‘New Haven Conference 1973: First International Workshop on Human Gene Mapping’ 90 Appendix 2 Photograph of (EMBO) workshop on ‘Cell Hybridization and Somatic Cell Genetics’, 1973 96 Biographical notes 99 References 109 Index 129 Witness Seminars: Meetings and publications 141 WHAT IS A WITNESS SEMINAR? The Witness Seminar is a specialized form of oral history, where several individuals associated with a particular set of circumstances or events are invited to meet together to discuss, debate, and agree or disagree about their memories. The meeting is recorded, transcribed, and edited for publication.
    [Show full text]
  • Clinical Genetics in Britain: Origins and Development Harper, PS; REYNOLDS, LA; TANSEY, EM
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Queen Mary Research Online Clinical Genetics in Britain: Origins and development Harper, PS; REYNOLDS, LA; TANSEY, EM For additional information about this publication click this link. http://qmro.qmul.ac.uk/jspui/handle/123456789/2823 Information about this research object was correct at the time of download; we occasionally make corrections to records, please therefore check the published record when citing. For more information contact [email protected] CLINICAL GENETICS IN BRITAIN: ORIGINS AND DEVELOPMENT The transcript of a Witness Seminar held by the Wellcome Trust Centre for the History of Medicine at UCL, London, on 23 September 2008 Edited by P S Harper, L A Reynolds and E M Tansey Volume 39 2010 ©The Trustee of the Wellcome Trust, London, 2010 First published by the Wellcome Trust Centre for the History of Medicine at UCL, 2010 The Wellcome Trust Centre for the History of Medicine at UCL is funded by the Wellcome Trust, which is a registered charity, no. 210183. ISBN 978 085484 127 1 All volumes are freely available online at: www.history.qmul.ac.uk/research/modbiomed/wellcome_witnesses/ Please cite as : Reynolds L A, Tansey E M. (eds) (2010) Clinical Genetics in Britain: Origins and development. Wellcome Witnesses to Twentieth Century Medicine, vol. 39. London: Wellcome Trust Centre for the History of Medicine at UCL. CONTENTS Illustrations and credits v Abbreviations vii Witness Seminars: Meetings and publications; Acknowledgements E M Tansey and L A Reynolds ix Introduction Sir John Bell xix Transcript Edited by P S Harper, L A Reynolds and E M Tansey 1 Appendix 1 Initiatives supporting clinical genetics, 1983–99 by Professor Rodney Harris 83 Appendix 2 The Association of Genetic Nurses and Counsellors (AGNC) by Professor Heather Skirton 87 References 89 Biographical notes 113 Glossary 133 Index 137 ILLUSTRATIONS AND CREDITS Figure 1 Professor Lionel Penrose, c.
    [Show full text]