History of the Department of Microbiology 1868 – 2009
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Medical Directors Arup Medical Directors and Consulting Faculty | 2015
MEDICAL DIRECTORS ARUP MEDICAL DIRECTORS AND CONSULTING FACULTY | 2015 MAY 2015 www.aruplab.com Information in this brochure is current as of May 2015. All content is subject to change. Please contact ARUP Client Services at (800) 522-2787 with any questions or concerns. ARUP LABORATORIES ARUP Laboratories is a national clinical and anatomic pathology reference laboratory and a nonprofit enterprise of the University of Utah and its Department of Pathology. Located in Salt Lake City, Utah, ARUP offers in excess of 3,000 tests and test combinations, ranging from routine screening tests to esoteric molecular and genetic assays. Rather than competing with its clients for physician office business, ARUP chooses instead to support clients’ existing test menus by offering complex and unique tests, with accompanying consultative support, to enhance their abilities to provide local and regional laboratory services. ARUP’s clients include many of the nation’s university teaching hospitals and children’s hospitals, as well as multihospital groups, major commercial laboratories, group purchasing organizations, military and other government facilities, and major clinics. In addition, ARUP is a worldwide leader in innovative laboratory research and development, led by the efforts of the ARUP Institute for Clinical and Experimental Pathology®. Since its formation in 1984 by the Department of Pathology at the University of Utah, ARUP has founded its reputation on reliable and consistent laboratory testing and service. This simple strategy contributes significantly to client satisfaction. When ARUP conducts surveys, clients regularly rate ARUP highly and respond that they would recommend ARUP to others. As the most responsive source of quality information and knowledge, ARUP strives to be the reference laboratory of choice for community healthcare systems. -
Review Pili in Gram-Negative and Gram-Positive Bacteria – Structure
Cell. Mol. Life Sci. 66 (2009) 613 – 635 1420-682X/09/040613-23 Cellular and Molecular Life Sciences DOI 10.1007/s00018-008-8477-4 Birkhuser Verlag, Basel, 2008 Review Pili in Gram-negative and Gram-positive bacteria – structure, assembly and their role in disease T. Profta,c,* and E. N. Bakerb,c a School of Medical Sciences, Department of Molecular Medicine & Pathology, University of Auckland, Private Bag 92019, Auckland 1142 (New Zealand), Fax: +64-9-373-7492, e-mail: [email protected] b School of Biological Sciences, University of Auckland, Auckland (New Zealand) c Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland (New Zealand) Received 08 August 2008; received after revision 24 September 2008; accepted 01 October 2008 Online First 27 October 2008 Abstract. Many bacterial species possess long fila- special form of bacterial cell movement, known as mentous structures known as pili or fimbriae extend- twitching motility. In contrast, the more recently ing from their surfaces. Despite the diversity in pilus discovered pili in Gram-positive bacteria are formed structure and biogenesis, pili in Gram-negative bac- by covalent polymerization of pilin subunits in a teria are typically formed by non-covalent homopo- process that requires a dedicated sortase enzyme. lymerization of major pilus subunit proteins (pilins), Minor pilins are added to the fiber and play a major which generates the pilus shaft. Additional pilins may role in host cell colonization. be added to the fiber and often function as host cell This review gives an overview of the structure, adhesins. Some pili are also involved in biofilm assembly and function of the best-characterized pili formation, phage transduction, DNA uptake and a of both Gram-negative and Gram-positive bacteria. -
Job Posting Clinical Microbiology Final
The Department of Pathology & Cell Biology at Columbia University Irving Medical Center (CUIMC) is recruiting for an MD, MD/PhD, or PhD academic clinical microbiologist of any rank to join our faculty as a Medical Director of the NewYork-Presbyterian/CUIMC Clinical Microbiology Laboratory. Applicants should have an established track record of accomplishment within the field of clinical microbiology and a demonstrated ability to lead an experienced group of laboratory technologists, supervisors, and staff. In addition to strong clinical and technical skills, particular emphasis is placed on candidates with a demonstrated record of collegiality and inter-departmental collaboration. Applicants must have completed a fellowship in clinical microbiology and be board-certified/board-eligible in Medical and Public Health Microbiology through the American Board of Medical Microbiology (ABMM) or board-certified/board- eligible in Clinical Pathology with subspecialty certification in Medical Microbiology through the American Board of Pathology (ABP). The applicant must also be able to satify clinical licensing requirements to serve as a Laboratory Director in New York State. The successful applicant will help oversee diagnostic testing in the areas of Bacteriology, Virology, Mycobacteriology, Mycology, and Parasitology. The position also includes responsibilities for teaching of pathology residents, medical students, infectious diseases fellows, and technical staff. Applicants must be currently involved in ongoing research with a track record of publications in the field. The position offers a competitive salary commensurate with training and experience, and an appointment to the faculty of the Columbia University Vagelos College of Physicians & Surgeons. The Clinical Microbiology Laboratory at NewYork-Presbyterian/CUIMC is located in the Washington Heights neighborhood of New York City, offering unparalleled opportunities to work and live in a thriving, diverse, metropolitan environment with access to world-class cultural institutions, restaurants, and entertainment. -
General Microbiology (11:680:390) Syllabus
COURSE SYLLABUS General Microbiology - 11:680:390 COURSE OVERVIEW General Microbiology 11:680:390 Fall, Spring, Summer Meeting times TBD Meeting Location Lecture: Sychronous Lecture Hall Cook/Douglas and Wright Labs Busch Meeting Location Lab: Food Science 209 CONTACT INFORMATION: Course Coordinator: Dr. Ines Rauschenbach Office Location: Lipman Hall, Room 215 Phone: 848-932-5635 Email: [email protected] Office Hours: By Appointment COURSE WEBSITE, RESOURCES AND MATERIALS: • Canvas • Text: Madigan MT, Bender KS, Buckley DH, Sattley WM, Stahl DA. 2020. Brock Biology of Microorganisms. 16th edition. Pearson, New York, NY. • Lab Manual o The lab manual (departmental publication) will be available for free through RUCore. • Electronic Notebook o We will be sending you a link to LabArchives. You must sign up before the start of your first lab. COURSE DESCRIPTION: This course offers a comprehensive study of the field of microbiology to science majors. The course will give detailed insights into five major themes: Structure and function of microbes (cellular structures, metabolism, and growth);,microbial genetics, microbial ecology, microbial diversity (prokaryotes, eukaryotes, viruses) and clinical microbiology (immunity, pathogenicity, epidemiology, control of microbes, and diseases). The course is taught in the synchronous lecture halls on Cook/Douglass and Busch campuses. Students are expected to participate in active learning activities and participate in class discussion to deepen their understanding of the microbial world and apply their knowledge to various concepts. LEARNING GOALS: Learning Goals for General Microbiology Lecture: After completion of the lecture component of the course, successful students will: 1. Demonstrate an understanding of the structural similarities and differences among microbes and the unique structure/function relationships of prokaryotic cells. -
Folic Acid Antagonists: Antimicrobial and Immunomodulating Mechanisms and Applications
International Journal of Molecular Sciences Review Folic Acid Antagonists: Antimicrobial and Immunomodulating Mechanisms and Applications Daniel Fernández-Villa 1, Maria Rosa Aguilar 1,2 and Luis Rojo 1,2,* 1 Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas, CSIC, 28006 Madrid, Spain; [email protected] (D.F.-V.); [email protected] (M.R.A.) 2 Consorcio Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, 28029 Madrid, Spain * Correspondence: [email protected]; Tel.: +34-915-622-900 Received: 18 September 2019; Accepted: 7 October 2019; Published: 9 October 2019 Abstract: Bacterial, protozoan and other microbial infections share an accelerated metabolic rate. In order to ensure a proper functioning of cell replication and proteins and nucleic acids synthesis processes, folate metabolism rate is also increased in these cases. For this reason, folic acid antagonists have been used since their discovery to treat different kinds of microbial infections, taking advantage of this metabolic difference when compared with human cells. However, resistances to these compounds have emerged since then and only combined therapies are currently used in clinic. In addition, some of these compounds have been found to have an immunomodulatory behavior that allows clinicians using them as anti-inflammatory or immunosuppressive drugs. Therefore, the aim of this review is to provide an updated state-of-the-art on the use of antifolates as antibacterial and immunomodulating agents in the clinical setting, as well as to present their action mechanisms and currently investigated biomedical applications. Keywords: folic acid antagonists; antifolates; antibiotics; antibacterials; immunomodulation; sulfonamides; antimalarial 1. -
Career Guide Biological Sciences Concentration in Microbiology
MAJOR TO BACHELOR OF SCIENCE IN CAREER GUIDE BIOLOGICAL SCIENCES CONCENTRATION IN MICROBIOLOGY Majoring in biological sciences with a concentration in microbiology provides students with intellectual and technical skills required for success in the broad area of microbiology, which includes clinical, environmental, ecological, evolutionary, molecular, metabolic, and physiological perspectives of microbes, including aspects of virology and immunology. Students concentrating in microbiology should also be able to explain the diversity and ABOUT THE MAJOR/ similarity of microbes, including their physiology, mechanisms of pathogenesis and host CONCENTRATION defenses, and unique ecology. SKILLS Research Problem-Solving Ability to Operate Critical Thinking Scientific Equipment Agricultural and Food Scientist Environmental Scientist Quality Control Analyst Bacteriologist Lab Technician* Regulatory Affairs Specialist Biomedical Scientist* Medical Device Specialist Research Microbiologist Biotechnologist* Mycologist Science Educator* Cell Biologist Parasitologists Virologist POTENTIAL CAREER Clinical Microbiologist Public Health Professional OPPORTUNITIES *Additional education/certification may be required COMMON CAREER AREAS FOR THIS MAJOR Organismal/ Research & Biomedical Healthcare Ecological Education Biotechnology Bioinformatics Development Sciences Biology Do volunteer work Get part-time job or internship Did you know UNLV has programs, student A part-time, temporary, and summer job or groups, and academic service-learning internship can -
And the Winner Should Be
EDITORIAL And the winner should be… It is time that the tremendous contribution made by Carl Woese to microbiology, medicine and biology as a whole is rewarded by the Nobel committee. Among microbiologists, Carl Woese’s achievements are isolates can allow rapid disease diagnosis. As culturing is well known. His most lauded accomplishments include the not required, sequence analysis can be used to diagnose recognition of an entirely new domain of organisms, many different infectious diseases and is now common in the Archaea1, and the subsequent introduction of the clinical diagnostic laboratories. In the case of Whipple’s three-domain phylogeny2 that is now widely recognized as disease, it even led to the identification of a previously the most accurate reflection of the relatedness of all organ- unknown bacterium (Tropheryma whipplei) as the cause4. isms. We are so used to using neatly organized taxonomic Second, using 16S rRNA-based phylogeny, it is possible to trees to demonstrate the relationships between different study the human microbiota at a detailed level. In recent microorganisms that it is easy to forget that not so long ago years, we have begun to obtain a comprehensive picture the classification of bacteria was considered hopeless. In of the composition of the human-associated microbiota 1963 Roger Stanier, then one of the foremost researchers in various niches, including the gut, skin and oral cavity. in the field of bacterial classification, proclaimed that “The This has led to the insight that shifts in the gut-associated ultimate scientific goal of biological classification cannot microbiota are associated with diseases such as Crohn’s be achieved in the case of bacteria” (REF. -
Journal of Microbiology, Immunology and Infection
JOURNAL OF MICROBIOLOGY, IMMUNOLOGY AND INFECTION AUTHOR INFORMATION PACK TABLE OF CONTENTS XXX . • Description p.1 • Impact Factor p.1 • Abstracting and Indexing p.2 • Editorial Board p.2 • Guide for Authors p.4 ISSN: 1684-1182 DESCRIPTION . Journal of Microbiology, Immunology and Infection, launched in 1968, is the official bi-monthly publication of the Taiwan Society of Microbiology, the Chinese Society of Immunology, the Infectious Diseases Society of Taiwan and the Taiwan Society of Parasitology. The journal is an open access journal, committed to disseminating information on the latest trends and advances in microbiology, immunology, infectious diseases and parasitology. Articles on clinical or laboratory investigations of relevance to microbiology, immunology, infectious diseases, parasitology and other related fields that are of interest to the medical profession are eligible for consideration. Article types considered include perspectives, review articles, original articles, brief reports and correspondence. The Editorial Board of the Journal comprises a dedicated team of local and international experts in the field of microbiology, immunology, infectious diseases and parasitology. All members of the Editorial Board actively guide and set the direction of the journal. With the aim of promoting effective and accurate scientific information, an expert panel of referees constitutes the backbone of the peer- review process in evaluating the quality and content of manuscripts submitted for publication. JMII is open access and indexed in SCIE, PubMed, MEDLINE, EMBASE, Scopus, AIDS & Cancer Reseach, CABI, BIOSIS Previews, Biological Abstracts, EBSCOhost, CancerLit, Reactions Weekly (online), Chemical Abstracts, HealthSTAR, Global Health, ProQuest. Benefits to authors We also provide many author benefits, such as free PDFs, a liberal copyright policy, special discounts on Elsevier publications and much more. -
Sol Spiegelman, a Pioneer in Molecular Biology
They Wand 0SS tk Slmsldera of Giants: Sol S@egelman, a Piomer in l$lokcular Biology Number 21 May 23,1983 Science in our century has been Indeed, it is upon his widely acclaimed marked by tremendous upheavals in un- discoveries that much of the framework derstanding, brought about by momen- of the discipline now rests. Sol was still tous discoveries and extraordinary pe~ deeply involved in a number of projects ple. One such upheaval has occurred in when, tragically, he died following a biology. It began in the 1930s, when a brief illness on January 21, 1983.2 This new field, molecular biology, was born essay is dedicated to his memory, and to of the synthesis of five distinct disci- the surviving members of his family: hw plines: physical chemistry, crystallogra- wife, Helen; his daughter, Marjorie; and phy, genetics, microbiology, and bio- hk sons, Willard and George. chemistry.1 I deeply regret that Sol did not have Molecular biologists try to explain the opportunity to read this long biological phenomena at the molecular overdue discussion of his work. I had level. By the mid-twentieth century, planned to do this as part of our series of they had settled several problems that essays on various awards in science—in plagued previous generations of biolo- particular, the Feltnnelfi prize, men- gists. For instance, proteins and nucleic tioned later. Sol was one of the true acids had been known since the nine- giants of modem science. So it is with a teenth century to be very large mole- mixed sense of pain and gratitude that I cules, each consisting of long chains of use thk opportunity to pay tribute to a subunits—amino acids in the case of man whose genius was unique. -
Introduction to Bacteriology and Bacterial Structure/Function
INTRODUCTION TO BACTERIOLOGY AND BACTERIAL STRUCTURE/FUNCTION LEARNING OBJECTIVES To describe historical landmarks of medical microbiology To describe Koch’s Postulates To describe the characteristic structures and chemical nature of cellular constituents that distinguish eukaryotic and prokaryotic cells To describe chemical, structural, and functional components of the bacterial cytoplasmic and outer membranes, cell wall and surface appendages To name the general structures, and polymers that make up bacterial cell walls To explain the differences between gram negative and gram positive cells To describe the chemical composition, function and serological classification as H antigen of bacterial flagella and how they differ from flagella of eucaryotic cells To describe the chemical composition and function of pili To explain the unique chemical composition of bacterial spores To list medically relevant bacteria that form spores To explain the function of spores in terms of chemical and heat resistance To describe characteristics of different types of membrane transport To describe the exact cellular location and serological classification as O antigen of Lipopolysaccharide (LPS) To explain how the structure of LPS confers antigenic specificity and toxicity To describe the exact cellular location of Lipid A To explain the term endotoxin in terms of its chemical composition and location in bacterial cells INTRODUCTION TO BACTERIOLOGY 1. Two main threads in the history of bacteriology: 1) the natural history of bacteria and 2) the contagious nature of infectious diseases, were united in the latter half of the 19th century. During that period many of the bacteria that cause human disease were identified and characterized. 2. Individual bacteria were first observed microscopically by Antony van Leeuwenhoek at the end of the 17th century. -
James A. Mccloskey, Jr
CHEMICAL HERITAGE FOUNDATION JAMES A. MCCLOSKEY, JR. Transcript of Interviews Conducted by Michael A. Grayson at the McCloskeys’ Home Helotes, Texas on 19 and 20 March 2012 (With Subsequent Corrections and Additions) James A. McCloskey, Jr. ACKNOWLEDGMENT This oral history is one in a series initiated by the Chemical Heritage Foundation on behalf of the American Society for Mass Spectrometry. The series documents the personal perspectives of individuals related to the advancement of mass spectrometric instrumentation, and records the human dimensions of the growth of mass spectrometry in academic, industrial, and governmental laboratories during the twentieth century. This project is made possible through the generous support of the American Society for Mass Spectrometry. This oral history is designated Free Access. Please note: Users citing this interview for purposes of publication are obliged under the terms of the Chemical Heritage Foundation (CHF) Center for Oral History to credit CHF using the format below: James A. McCloskey, Jr., interview by Michael A. Grayson at the McCloskeys’ home, Helotes, Texas, 19-20 March 2012 (Philadelphia: Chemical Heritage Foundation, Oral History Transcript # 0702). Chemical Heritage Foundation Center for Oral History 315 Chestnut Street Philadelphia, Pennsylvania 19106 The Chemical Heritage Foundation (CHF) serves the community of the chemical and molecular sciences, and the wider public, by treasuring the past, educating the present, and inspiring the future. CHF maintains a world-class collection of materials that document the history and heritage of the chemical and molecular sciences, technologies, and industries; encourages research in CHF collections; and carries out a program of outreach and interpretation in order to advance an understanding of the role of the chemical and molecular sciences, technologies, and industries in shaping society. -
Laboratory Exercises in Microbiology: Discovering the Unseen World Through Hands-On Investigation
City University of New York (CUNY) CUNY Academic Works Open Educational Resources Queensborough Community College 2016 Laboratory Exercises in Microbiology: Discovering the Unseen World Through Hands-On Investigation Joan Petersen CUNY Queensborough Community College Susan McLaughlin CUNY Queensborough Community College How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/qb_oers/16 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] Laboratory Exercises in Microbiology: Discovering the Unseen World through Hands-On Investigation By Dr. Susan McLaughlin & Dr. Joan Petersen Queensborough Community College Laboratory Exercises in Microbiology: Discovering the Unseen World through Hands-On Investigation Table of Contents Preface………………………………………………………………………………………i Acknowledgments…………………………………………………………………………..ii Microbiology Lab Safety Instructions…………………………………………………...... iii Lab 1. Introduction to Microscopy and Diversity of Cell Types……………………......... 1 Lab 2. Introduction to Aseptic Techniques and Growth Media………………………...... 19 Lab 3. Preparation of Bacterial Smears and Introduction to Staining…………………...... 37 Lab 4. Acid fast and Endospore Staining……………………………………………......... 49 Lab 5. Metabolic Activities of Bacteria…………………………………………….…....... 59 Lab 6. Dichotomous Keys……………………………………………………………......... 77 Lab 7. The Effect of Physical Factors on Microbial Growth……………………………... 85 Lab 8. Chemical Control of Microbial Growth—Disinfectants and Antibiotics…………. 99 Lab 9. The Microbiology of Milk and Food………………………………………………. 111 Lab 10. The Eukaryotes………………………………………………………………........ 123 Lab 11. Clinical Microbiology I; Anaerobic pathogens; Vectors of Infectious Disease….. 141 Lab 12. Clinical Microbiology II—Immunology and the Biolog System………………… 153 Lab 13. Putting it all Together: Case Studies in Microbiology…………………………… 163 Appendix I.