F: Acknowledgements

Total Page:16

File Type:pdf, Size:1020Kb

F: Acknowledgements Appendix F Acknowledgements OTA wishes to acknowledge the many people con- James E. Bowman tributed to the preparation of this report. Members of University of Chicago the advisory panel and contractors are listed at the Elbert Branscomb front of the report. Workshop participants are listed Lawrence Livermore National Laboratory in appendix C. Others helped by commenting on drafts Douglas Brutlag of the report, providing information or advice, or con- Stanford University senting to interviews with OTA staff. OTA particularly thanks those at the National Institutes of Health, the Martin Buechi Department of Energy, the National Science Founda- Embassy of Switzerland tion, the Howard Hughes Medical Institute, and other John Burris organizations for their invaluable efforts to inform National Academy of Sciences OTA about their activities. Our gratitude is extended to: Andrew Bush Carlos Abella U.S. Senate Embassy of Spain Mark Cantley Bruce M. Alberts Commission of the European Economic Community University of California al San Francisco Charles R. Cantor Duane Alexander College of Physicians and Surgeons of National Institute of Child Health and Human Columbia University Development C. Thomas Caskey Norman Anderson Baylor College of Medicine Large Scale Biology James Cassatt Wyatt Anderson National Institute of General Medical Sciences University of Georgia James W. Chamberlain David G. Baldwin U.S. Embassy, Brazil Tetrarch Inc. Andrew T. L. Chen David Baltimore Centers for Disease Control Whitehead Institute James F. Childress Phil Beachy University of Virginia Carnegie Institution of Washington George M. Church George I. Bell Harvard University Medical School Los Alamos National Laboratory Mary Clutter Celeste Berg National Science Foundation Carnegie Institution of Washington Stanley Cohen Fred Bergmann Stanford Medical School National Institute of General Medical Sciences Francis Collins Michel Bernon University of Michigan Embassy of France P. Michael Conneally Ralph Bledsoe Indiana University Medical Center Domestic Policy Council Cheryl Corsaro Lars Bolund National Institutes of Health University of Aarhus, Denmark Alan Coulson Judith Bostock MRC Molecular Biology Laboratory Office of Management and Budget Cambridge, United Kingdom David Botstein Genentech, Inc. 197 Charles L. Coulter F. Edwin Froehlich Division of Research Resources U.S. Senate National Institutes of Health Robert Fujimura David Cox Oak Ridge National Laboratory University of California at San Francisco David George James F. Crow National Biomedical Research Foundation University of Wisconsin Frank Gibson Terry Curtin The Australian National University U.S. Senate Paul Gilman Kay E. Davies U.S. Senate Oxford University Alan Goldhammer Bernard D. Davis Industrial Biotechnology Association Harvard University Medical School George M. Gould Ronald Davis Hoffmann-La Roche, Inc. Stanford University Denise Greenlaw Michael Dean U.S. Senate National Cancer Institute Santiago Grisolia Larry L. Deaven University of Kansas Medical Center Los Alamos National Laboratory Ralph Hardy Albert de la Chapelle Boyce Thompson Institute University of Helsinki Wendy Harris Enrique Martin de] Campo Johns Hopkins University Press Organization of American States Nemat Hashem Charles DeLisi Ain Shams University Mount Sinai School of Medicine Cairo, Egypt Vincent DeVita Cyril G. Hide National Cancer Institute South African Embassy Denis Dewez C. Edgar Hildebrand Embassy of Belgium Los Alamos National Laboratory Russell F. Doolittle Joseph R. Hlubucek University of California, San Diego Embassy of Australia Janet Dorigan Sverker Hogberg Office of Science and Technolo~ Policy Swedish Embassy Renato Dulbecco Michael Hunkapiller The Salk Institute Applied Biosystems, Inc. Irene Eckstrand Thomas Isenhour National Institute of General Medical Sciences Utah State University Peter Farnham Trefor Jenkins American Society for Biochemistry and University of the Witwatersrand Molecular Biology Johannesburg, South Africa James Fickett Chalmers Johnson Los Alamos National Laboratory University of California, Berkeley John C. Fletcher Irving S. Johnson University of Virginia Eli Lilly & Co. Donald S. Fredrickson Eric T. Juengst National Institutes of Health The Pennsylvania State University Jean Frezal Robert F. Karnei Hospital for Sick Children, Paris Armed Forces Institute of Pathology 198 Steven Keith Kenichi Matsubara US. Senate Osaka University Japan Michael J. Kelly Intelligenetics, Inc. Sunil Maulik BIONET/Intelligenetics Kenneth Kemphues Cornell University George Mazuzan National Science Foundation Thomas Koetzle Protein Data Bank, Brookhaven National Laboratory Jack McConnell Johnson & Johnson George S. Kopp U.S. House of Representatives Victor A. McKusick The Johns Hopkins University Arthur Kornberg Stanford University Mortimer L. Mendelssohn Lawrence Livermore National Laboratory David Kristofferson BIONET/Intelligenetics Bruce Merrifield U.S. Department of Commerce Louis Kunkel Howard Hughes Medical Institute, Boston Bradie Metheny Tricom, Inc. Alphonse Lafontaine Ministerie van Volksgezondheid en van het Gezin Jerome P. Miksche Brussels, Belgium U.S. Department of Agriculture Roe Laird Sankar Mitra Ministry of State/Science and Technology Oak Ridge National Laboratory Canada Jan Mohr Eric Lander Institute of Clinical Genetics, University of Copenhagen Whitehead Institute Robert G. Morris Norman Latker U.S. Embassy, Argentina U.S. Department of Commerce Diane Morton Eileen Lee Cornell University U.S. House of Representatives Jay Moskowitz Hans Lehrach National Institutes of Health Imperial Cancer Research Fund Tom Murray Rachel Levinson Case Western Reserve University National Institutes of Health DeLill Nasser Jack G. Lewis National Science Foundation University of Southern California Dorothy Nelkin Jiayao Li New York University The Embassy of the People’s Republic of China Norrine Noonan Washington, D.C. Office of Management and Budget Donald A.B. Lindberg Stephen O’Brien National Library of Medicine National Cancer Institute John Logsdon Maynard V. Olson George Washington University Washington University School of Medicine Jeffrey T. Lutz Gilbert S. Omenn U.S. Embassy, Indonesia University of Washington Jerold R. Mande Stuart Orkin U.S. Senate Howard Hughes Medical Institute, Boston Emmanuele Mannarino Joseph Osterman U.S. Embassy, Italy U.S. Army Medical Research and Development Daniel R. Masys Command National Library of Medicine 199 Joseph Palca Joseph Sambrook Nature University of Texas Health Science Center M. Iqbal Parker Mona Sarfaty University of Cape Town U.S. Senate Jane Peterson D. Schmitz National Institute of General Medical Sciences U.S. Embassy, Federal Republic of Germany Ulf Petterson David Schwartz University of Uppsala, Sweden Carnegie Institution of Washington Kate Phillips Charles Scriver Council on Governmental Relations McGill University and Science Council of Canada Betty Pickett Division of Research Resources Gerald Seizer National Institutes of Health National Science Foundation Maya Pines Leroy C. Simpkins Howard Hughes Medical Institute US. Embassy, Mexico George Poste Michael Simpson Smith Kline & French Laboratories Library of Congress Michael Probert Robert Sinsheimer Medical Research Council California Institute of Technology United Kingdom Mark Skolnick Theodore T. puck University of Utah Eleanor Roosevelt Institute for Cancer Research Bent Skou Robert Rabin Royal Danish Embassy National Science Foundation David A. Smith Alan S. Rabson U.S. Department of Energy National Cancer Institute Lloyd Smith Lisa J. Raines University of Wisconsin Industrial Biotechnology Association Robert Smith William F. Raub The Johns Hopkins University National Institutes of Health Temple Smith Jeremy Rifkin Dana Farber Cancer Institute Foundation for Economic Trends Rand Snell Jerry H. Roberts U.S. Senate National Institutes of Health M. Anne Spence Leslie Roberts University of California, Los Angeles Science J. Claiborne Stephens Richard Roberts Human Gene Mapping Library Cold Spring Harbor Laboratories Robert E. Stevenson Thomas Rollins American Type Culture Collection U.S. Senate Irene Stith-Coleman Leon E. Rosenberg Library of Congress Yale University J. Thomas Stocker Luigi Rossi-Bernardo U.S. Department of Defense Consiglio Nazionale della Ricerche, Italy Gary Stormo John Roth University of Colorado University of Utah William Szkrybalo Lesley Russell Pharmaceutical Manufacturers’ U.S. House of Representatives Association 200 Bruna Tesso Norman Whiteley Organization for Economic Cooperation and Applied Biosystems, Inc. Development Robert Williamson Ignacio Tinoco Saint Mary’s Hospital, London University of California, Berkeley JoAnn Wise Kevin M. Ulmer University of Illinois SeQ, Ltd. Carl Woese Victor L. Urquidi University of Illinois EIColegio de Mexico, A.C. John Wooley Paul Van Belkom National Science Foundation National Health and Medical Research Council James B. Wyngaarden Commonweakh of Australia National Institutes of Health Dorle Vawter Douglas J. Yarrow University of Minnesota Health Center Embassy of the United Kingdom Robert Walgate Philip Youderian The Panes Institute University of Southern California Bertil Wennergren Debbie Zucker Swedish Commission on Genetic U.S. Senate Engineering.
Recommended publications
  • James A. Mccloskey, Jr
    CHEMICAL HERITAGE FOUNDATION JAMES A. MCCLOSKEY, JR. Transcript of Interviews Conducted by Michael A. Grayson at the McCloskeys’ Home Helotes, Texas on 19 and 20 March 2012 (With Subsequent Corrections and Additions) James A. McCloskey, Jr. ACKNOWLEDGMENT This oral history is one in a series initiated by the Chemical Heritage Foundation on behalf of the American Society for Mass Spectrometry. The series documents the personal perspectives of individuals related to the advancement of mass spectrometric instrumentation, and records the human dimensions of the growth of mass spectrometry in academic, industrial, and governmental laboratories during the twentieth century. This project is made possible through the generous support of the American Society for Mass Spectrometry. This oral history is designated Free Access. Please note: Users citing this interview for purposes of publication are obliged under the terms of the Chemical Heritage Foundation (CHF) Center for Oral History to credit CHF using the format below: James A. McCloskey, Jr., interview by Michael A. Grayson at the McCloskeys’ home, Helotes, Texas, 19-20 March 2012 (Philadelphia: Chemical Heritage Foundation, Oral History Transcript # 0702). Chemical Heritage Foundation Center for Oral History 315 Chestnut Street Philadelphia, Pennsylvania 19106 The Chemical Heritage Foundation (CHF) serves the community of the chemical and molecular sciences, and the wider public, by treasuring the past, educating the present, and inspiring the future. CHF maintains a world-class collection of materials that document the history and heritage of the chemical and molecular sciences, technologies, and industries; encourages research in CHF collections; and carries out a program of outreach and interpretation in order to advance an understanding of the role of the chemical and molecular sciences, technologies, and industries in shaping society.
    [Show full text]
  • The Great-Grandmother of LUCA (Last Universal Common Ancestor)
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 June 2018 doi:10.20944/preprints201806.0035.v1 Be introduced to the First Universal Common Ancestor (FUCA): the great-grandmother of LUCA (Last Universal Common Ancestor) Francisco Prosdocimi1*, Marco V José2 and Sávio Torres de Farias3* 1 Laboratório de Biologia Teórica e de Sistemas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil. 2 Theoretical Biology Group, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 CDMX, Mexico. 3 Laboratório de Genética Evolutiva Paulo Leminsk, Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brasil. * Correspondence: [email protected]; [email protected] Abstract The existence of a common ancestor to all living organisms in Earth is a necessary corollary of Darwin idea of common ancestry. The Last Universal Common Ancestor (LUCA) has been normally considered as the ancestor of cellular organisms that originated the three domains of life: Bacteria, Archaea and Eukarya. Recent studies about the nature of LUCA indicate that this first organism should present hundreds of genes and a complex metabolism. Trying to bring another of Darwin ideas into the origins of life discussion, we went back into the prebiotic chemistry trying to understand how LUCA could be originated 1 © 2018 by the author(s). Distributed under a Creative Commons CC BY license. Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 June 2018 doi:10.20944/preprints201806.0035.v1 under gradualist assumptions. Along this line of reasoning, it became clear to us that the definition of another ancestral should be of particular relevance to the understanding about the emergence of biological systems.
    [Show full text]
  • Beyond the Big Bang • the Amazon's Lost Civilizations • the Truth
    SFI Bulletin winter 2006, vol. 21 #1 Beyond the Big Bang • The Amazon’s Lost Civilizations • The Truth Behind Lying The Bulletin of the Santa Fe Institute is published by SFI to keep its friends and supporters informed about its work. The Santa Fe Institute is a private, independent, multidiscipli- nary research and education center founded in 1984. Since its founding, SFI has devoted itself to creating a new kind of sci- entific research community, pursuing emerging synthesis in science. Operating as a visiting institution, SFI seeks to cat- alyze new collaborative, multidisciplinary research; to break down the barriers between the traditional disciplines; to spread its ideas and methodologies to other institutions; and to encourage the practical application of its results. Published by the Santa Fe Institute 1399 Hyde Park Road Santa Fe, New Mexico 87501, USA phone (505) 984-8800 fax (505) 982-0565 home page: http://www.santafe.edu Note: The SFI Bulletin may be read at the website: www.santafe.edu/sfi/publications/Bulletin/. If you would prefer to read the Bulletin on your computer rather than receive a printed version, contact Patrisia Brunello at 505/984-8800, Ext. 2700 or [email protected]. EDITORIAL STAFF: Ginger Richardson Lesley S. King Andi Sutherland CONTRIBUTORS: Brooke Harrington Janet Yagoda Shagam Julian Smith Janet Stites James Trefil DESIGN & PRODUCTION: Paula Eastwood PHOTO: ROBERT BUELTEMAN ©2004 BUELTEMAN PHOTO: ROBERT SFI Bulletin Winter 2006 TOCtable of contents 3 A Deceptively Simple Formula 2 How Life Began 3 From
    [Show full text]
  • Signature of Controversy
    I n “In this volume Granville Sewell provides “As the debate over intelligent design grows T delightful and wide-ranging commentary on increasingly heated... it is refreshing to find a HE the origins debate and intelligent design... discussion of the topic that is calm, thoughtful, Sewell provides much needed clarity on topics and far-ranging, with no sense of having to B e ignature f that are too often misunderstood. His discussion advance an agenda or decimate the opposition. G I S o of the commonly confused problem of entropy In this regard, Granville Sewell’s In the NNI is a must read.” Beginning succeeds brilliantly.” Cornelius G. Hunter, Ph.D. William A. Dembski, Ph.D. N author of The Design Inference author of Science’s Blind Spot G ontroversy A N c In this wide-ranging collection of essays on origins, mathematician Granville Sewell looks at the D big bang, the fine-tuning of the laws of physics, and the evolution of life. He concludes that while O there is much in the history of life that seems to suggest natural causes, there is nothing to support THER Responses to critics of signature in the cEll Charles Darwin’s idea that natural selection of random variations can explain major evolutionary E S advances (“easily the dumbest idea ever taken seriously by science,” he calls it). Sewell explains S A Y why evolution is a fundamentally different and much more difficult problem than others solved s ON by science, and why increasing numbers of scientists are now recognizing what has long been I obvious to the layman, that there is no explanation possible without design.
    [Show full text]
  • History of the Department of Microbiology 1868 – 2009
    June 2015 HISTORY OF THE DEPARTMENT OF MICROBIOLOGY 1868 – 2009 University of Illinois at Urbana-Champaign 1 A HISTORY OF THE DEPARTMENT OF MICROBIOLOGY 1868 – 2009 This 141 year history of the Department of Microbiology includes an article (Chapter 1), written and published in 1959 by the Department, which covers the period 1868 to 1959. I joined the Department in 1953, and my recounting of the Department’s history includes personal observations as well as anecdotes told to me by H. O. Halvorson and others. Later I realized what a unique experience it had been to join a first-class department, and I resolved to play a role in maintaining its research stature. Ralph Wolfe 2 Department of Microbiology History of the Headship: 1950 – 1959 Halvor Halvorson 1960 – 1963 Kim Atwood 1963 – 1972 Leon Campbell 1972 – 1982 Ralph DeMoss 1982 – 1987 Samuel Kaplan 1987 – 1990 Jordan Konisky 1990 – 1991 Ralph Wolfe (Acting Head) 1991 – 1997 Charles Miller 1997 – 2002 John Cronan 2003 – 2004 Jeffrey Gardner (Acting Head) 2005 – Present John Cronan 3 Organization of the History of the Department In Chapters 2 to 6 the data are divided into Academic Decades, each containing the following sections: Section I, an overview of the decade; Section II, some events for each year of the decade; Section III, a summary of the research interests, honors received, publications, and invited off-campus lectures or seminars for each faculty member. These data have been obtained from the annual reports of the faculty submitted to the departmental secretary. 4 CHAPTER 1 1868 – 1959 During this time period the name of the Department was Department of Bacteriology (Anecdotes by Ralph Wolfe) A SHORT HISTORY OF THE DEPARTMENT OF BACTERIOLOGY H.
    [Show full text]
  • The Archaeal Concept and the World It Lives In: a Retrospective
    Carl R. Woese (center) with His Majesty Carl XVI Gustaf of Sweden and Queen Silvia on the occassion of his receiving the 2003 Crafoord Prize, given by the Royal Swedish Academy of Sciences. Photo credit: Royal Swedish Academy of Sciences. Photosynthesis Research 80: 361–372, 2004. 363 © 2004 Kluwer Academic Publishers. Printed in the Netherlands. Personal perspective The archaeal concept and the world it lives in: a retrospective Carl R. Woese Department of Microbiology, University of Illinois at Urbana-Champaign, B103 Chemical and Life Sciences Laboratory, 601 South Goodwin Ave, Urbana, IL 61801-3709, USA (e-mail: [email protected]; fax: +1-217-244-6697) Received 9 July 2003; accepted in revised form 30 August 2003 Key words: archaea, evolution, genomics, molecular phylogeny, phylogenetic reconstruction, ribosomal RNA Abstract The present retrospective concerns the discovery and development of the archaea, the so-called ‘third form of life’ that no one anticipated and many did not, and still do not want. In its birth pangs, which the archaea had a plenty, the concept encountered biology unmasked; for it ran up against some of the key struts in the 20th century biological edifice. Consequently, the history of the development of the archaeal concept provides an excellent window on certain of the weaknesses in the 20th century biology paradigm, weaknesses that have now led that paradigm to a conceptual dead end. On the other hand, the archaeal concept has also provided us one of the pillars on which a new holistic paradigm for biology can be built. So, it would seem of value to retrace some of the twists and turns in the history of the development of the archaeal concept.
    [Show full text]
  • Evolution of Coenzyme BI2 Synthesis Among Enteric Bacteria
    Copyright 0 1996 by the Genetics Society of America Evolution of Coenzyme BI2Synthesis Among Enteric Bacteria: Evidence for Loss and Reacquisition of a Multigene Complex Jeffrey G. Lawrence and John R. Roth Department of Biology, University of Utah, Salt Lake City, Utah 84112 Manuscript received June 16, 1995 Accepted for publication October 4, 1995 ABSTRACT We have examined the distribution of cobalamin (coenzyme BI2) synthetic ability and cobalamin- dependent metabolism among entericbacteria. Most species of enteric bacteria tested synthesize cobala- min under both aerobic and anaerobic conditions and ferment glycerol in a cobalamindependent fashion. The group of species including Escha'chia coli and Salmonella typhimurium cannot ferment glyc- erol. E. coli strains cannot synthesize cobalamin de novo, and Salmonella spp. synthesize cobalamin only under anaerobic conditions. In addition, the cobalamin synthetic genes of Salmonella spp. (cob) show a regulatory pattern different from that of other enteric taxa tested. We propose that the cobalamin synthetic genes, as well asgenes providing cobalamindependent diol dehydratase, were lostby a common ancestor of E. coli and Salmonella spp. and were reintroduced as a single fragment into the Salmonella lineage from an exogenous source. Consistent with this hypothesis, the S. typhimurium cob genes do not hybridize with the genomes of other enteric species. The Salmonella cob operon may represent a class of genes characterized by periodic loss and reacquisition by host genomes. This process may be an important aspect of bacterial population genetics and evolution. OBALAMIN (coenzyme BIZ) is a large evolution- The cobalamin biosynthetic genes have been charac- C arily ancient molecule ( GEORGOPAPADAKOUand terized in S.
    [Show full text]
  • Spontaneous Tandem Genetic Duplications in Salmonella
    Proc. Nati. Acad. Sci. USA Vol. 78, No. 5, pp. 3113-3117, May 1981 Genetics Spontaneous tandem genetic duplications in Salmonella typhimurium arise by unequal recombination between rRNA (rrn) cistrons (gene duplication/chromosomal merodiploidy/transposon) PHILIP ANDERSON* AND JOHN ROTH Department of Biology, University of Utah, Salt Lake City, Utah 84112 Communicated by Sydney Brenner, January 19, 1981 ABSTRACT A method is described to detect and measure the quences cause duplications to arise frequently in this region of frequency of spontaneous tandem genetic duplications located the chromosome. A preliminary account of this work has ap- throughout the Salmonella genome. The method is based on the peared elsewhere (3). ability of duplication-containing strains to inherit two selectable alleles of a single gene during generalized transductional crosses. MATERIALS AND METHODS One allele of the gene carries an insertion of the translocatable Media and Growth Conditions. The details of media, sup- tetracycline-resistance element TnlO; the other allele is a wild- plements, and growth conditions have been-described (4). Tet- type copy of that gene. Using this technique, we have measured racycline and kanamycin were added at 10 pug/ml and 50 ug/ the frequency oftandem duplications at 38 chromosomal sites and ml, respectively. the amount of material included in 199 independent duplications. Bacterial Strains. All strains are derivatives of Salmonella These results suggest that, in one region of the chromosome, tan- typhimurium strain LT2. A nonlysogenizing derivative of the dem duplications are particularly frequent events. Such duplica- high-transducing phage ofSchmieger (5), P22 HT105/1 int-201, tions have end points within rRNA (rrn) cistrons and probably was used in all transductions.
    [Show full text]
  • CCR for Online
    COOL CAREER ROUNDTABLES 1:00 - 1:45 Female STEM Experts in Engineering. It’s a Girl Thing! LOCATION: N 103 Whether you prefer high heels or flats, there is no need to hide your secret passion for structures, machines and how things work. Learn where these women have gone with engineering degrees. Kristine Budill, MS MIT Electrical Engineering; MS MIT Management; New York Teaching Certification, Manhattan College 2012; BS Yale, Electrical Engineering Current: Director of EE Ford Program in Architecture, Design and Engineering at School of the Holy Child Previous: aircraft engine design, testing & manufacturing; Injection Molding; Fluid Technology. Sheila Narayanan, MBA, University of Chicago; BS University of Wales, Mechanical Engineering Current: Vice President, Integrated Solutions/Future Capabilities, MasterCard Worldwide; working to use data and predictive analytics to deliver leading edge payment & information services to consumers and businesses Previous: Designing jet engines for military aircraft at Rolls Royce & GE Advanced Biological Research LOCATION: N 104 Cutting edge research that cuts across disciplines -- molecular genetics, neuroscience and microbiology. Gord Fishell, PhD University of Toronto, Neurobiology; BS University of Toronto, Physiology & Biophysics Current: NYU Neuroscience Institute, NYU Langone Medical Center, Physiology & Cell Biology; Director of Fishell Lab; research includes using mice to study and map cortical microcircuits & their genetic expressions John Roth, PhD Johns Hopkins University, Biology (Genetics);
    [Show full text]
  • Constructing Narratives of Heroism and Villainy: Case Study of Myriadls
    Baldwin and Cook-Deegan Genome Medicine 2013, 5:8 http://genomemedicine.com/content/5/1/8 OPEN DEBATE Open Access Constructing narratives of heroism and villainy: case study of Myriad’s BRACAnalysis® compared to Genentech’s Herceptin® A Lane Baldwin and Robert Cook-Deegan* Abstract Background: The development of Herceptin® is welcomed as a major advance in breast cancer treatment, while Myriad’s development of BRACAnalysis® is a widely used diagnostic. However useful and successful this product is, its presence in the public eye is tainted by predominantly negative press about gene patenting and business practices. Discussion: While retrospection invites a sharp contrast between Genentech’s triumphal narrative of scientific achievement and Myriad’s public image as a controversial monopolist, a comparative history of these companies’ products reveals two striking consistencies: patents and public discontent. Despite these similarities, time has reduced the narrative to that of hero versus villain: Genentech is lauded - at least for the final outcome of the Herceptin® story - as a corporate good citizen, Myriad as a ruthless mercenary. Since patents undergird both products yet the narratives are so different, the stories raise the question: why have patents taken the fall as the scapegoat in current biotechnology policy debate? Summary: A widely publicized lawsuit and accompanying bad press have cast Myriad as a villain in the evolving narrative of biotechnology. While the lawsuit suggests that this villainy is attributable to Myriad’s intellectual property, we suggest through a comparative case study that, at least in the Myriad case, it is not simply about the patents but also other business strategies the company chose to pursue.
    [Show full text]
  • BRCA1 and BRCA2 Genes and Their Relationship to Breast and Ovarian Cancer
    Cancer Lab BRCA Teacher Background on DNA Bioinformatics Lab BRCA1 and BRCA2 Genes and Their Relationship to Breast and Ovarian Cancer Note: The Teacher Background Section is meant to provide information for the teacher about the topic and is tied very closely to the PowerPoint slide show. For greater understanding, the teacher may want to play the slide show as he/she reads the background section. For the students, the slide show can be used in its entirety or can be edited as necessary for a given class. What Are BRCA1 and BRCA2 and Where Are the Genes Located? BRCA1 and BRCA2 genes in humans code for proteins that work to suppress tumors. The gene names come from BReast CAncer genes 1 and 2. The official names of these genes are breast cancer 1, early onset and breast cancer 2, early onset. Everyone, male and female, has these genes which normally work to repair DNA and are involved in cell growth and cell division. The BRCA1 gene codes for the BRCA1 protein which regulates the activity of other genes and is involved in embryonic development during cell division. The BRCA2 gene codes for the BRCA2 protein which is thought to help regulate cytokinesis during cell division and to regulate telomere homeostasis. By helping repair DNA, BRCA1 and BRCA2 proteins are thought to work in tandem to ensure the stability of the DNA in the cell. The BRCA1 protein combines with BRCA2 and other proteins to mend breaks in the DNA caused by natural and medical exposures to radiation and other environmental exposures and by recombination when the chromosomes exchange genetic material when replicating prior to cell division.
    [Show full text]
  • Concepts and Methods
    CONCEPTS AND PART METHODS I THE CONCEPT CHAPTER OF MICROBIAL SPECIES 1 INTRODUCTION Chapter contents What distinguishes microbiology from other disciplines of biology? This question no longer has a straightforward answer that can satisfy all biologists. The traditional answer focused Old and new challenges for assessing on the extremely small size of organisms under investigation; however, this leaves little room microbial diversity for distinction on the basis of taxonomy because practically all organisms have a microscopic Traditional concepts of species stage during their life cycles. Some organisms that are physiologically closely related to large Typological species concept macroscopic organisms spend their entire life span as microscopic organisms. Nevertheless, Morphological species concept physical size remains a dominant conceptual framework for most practicing microbiologists, Biological species concept and most of the discussion in this book is presented from this perspective. Other responses Evolutionary species concept have focused on unicellularity (as opposed to multicellularity) as the defining characteristic Other concepts of microorganisms, however, viruses are acellular, and many investigators have argued that the so-called unicellular stage of bacteria, for example, is not a naturally occurring phe- Species concepts for prokaryotes nomenon. Some investigators have advanced the cellularity argument by invoking differen- tiation as the separating principle, but many “unicellular” organisms also go through Theoretical mechanisms
    [Show full text]