Experimental Surgery to Create Subgenomes of Bacillus Subtilis 168 (Recombination͞neomycin Resistance͞main Genome͞covalently Closed Circular Dna͞replication Origin)
Proc. Natl. Acad. Sci. USA Vol. 94, pp. 5378–5382, May 1997 Microbiology Experimental surgery to create subgenomes of Bacillus subtilis 168 (recombinationyneomycin resistanceymain genomeycovalently closed circular DNAyreplication origin) MITSUHIRO ITAYA* AND TERUO TANAKA† *Mitsubishi Kasei Institute of Life Sciences, 11 Minamiooya, Machida-shi, Tokyo 194, Japan; and †School of Marine Science and Technology, Tokai University, Shimizu, Shizuoka 424, Japan Communicated by John Roth, University of Utah, Salt Lake City, UT, February 25, 1997 (received for review March 1, 1996) ABSTRACT The 4,188-kb circular genome of Bacillus to term the autonomously replicating entity a subgenome of subtilis 168 was artificially dissected into two stable circular bacteria. chromosomes in vivo, one being the 3,878-kb main genome and the other the 310-kb subgenome that was recovered as co- MATERIALS AND METHODS valently closed circular DNA in CsCl-ethidium bromide ul- tracentrifugation. The minimal requirements to physically Bacterial Strains and Plasmids. B. subtilis 168 trpC2 was separate the 310-kb DNA segment out of the genome were two obtained from the Bacillus Genetic Stock Center (Columbus, interrepeat homologous sequences and an origin of DNA OH). All the BEST strains in this report are derived from this replication between them. The subgenome originated from the by integration of antibiotic resistance markers. The SfiI-NotI 1,255–1,551-kb region of the B. subtilis genome was essential physical map (14) of the B. subtilis 168 genome and the I-CeuI for the cell to survive because the subgenome was not lost from map, equivalent to the ribosomal RNA gene operon (rrn) map the cell.
[Show full text]