Rhodophyta 1-2 General Characteristics Phylum (Division)

Total Page:16

File Type:pdf, Size:1020Kb

Rhodophyta 1-2 General Characteristics Phylum (Division) Dr.Ayad M.J. Lecture ‐8‐ Algae 2016 Rhodophyta 1-2 General characteristics phylum (division) of the kingdom Protista consisting of the photosynthetic organisms commonly known as red algae. Most of the world's seaweeds belong to this group. Members of the division have a characteristic clear red or purplish color imparted by accessory pigments called phycobilins, unique to the red algae and the cyanobacteria. The chloroplasts of red algae are believed to be derived from cyanobacteria that formed an ancient symbiotic relationship with the algae. Red algae have a number of general characteristics that in combination distinguish them from other eukaryotic groups: 1-Absence of flagella and centrioles. 2-Floridean starch as a storage product and the storage of starch in the cytoplasm 3-Phycoerythrin, phycocyanin, and allophycocyanin as accessory pigments 4-Unstacked thylakoids in plastids 5-No chloroplast endoplasmic reticulum 1 Dr.Ayad M.J. Lecture ‐8‐ Algae 2016 1‐3 Structure Cells of the Rhodophyta possess chloroplasts that, in addition to the phycobilins, contain chlorophyll a, carotenes, and xanthophylls. At great ocean depths, where the wavelength of light available for photosynthesis is very different from that in shallow water, the phycobilins become more active than the chlorophylls in absorbing light; this fact may explain the ability of red algae to exist at depths of up to 879 ft (268 m). The carbohydrate reserves of red algae are in the form of floridean starch, a specialized glucose polymer of different structure than the starch of plants. The red algae, unicellular to multicellular (up to 1 m) mostly free-living but some parasitic or symbiotic, with chloroplasts containing phycobilins. Cell walls made of cellulose with mucopolysaccharides penetrated in many red algae by pores partially blocked by proteins (complex referred to as pit connections). Usually with separated phases of vegetative growth and sexual reproduction. Common and widespread, ecologically important, economically important (source of agar). No flagella. Ultrastructural identity: Mitochondria with flat cristae, sometimes associated with forming faces of dictyosomes. Thylakoids single, with phycobilisomes, plastids with peripheral thylakoid. During mitosis, nuclear envelope mostly remains intact but some microtubules of spindle extend from noncentriolar polar bodies through polar gaps in the nuclear envelope. Synapomorphy: No clear-cut feature available; possibly pit connections Composition: About 4,000 species. 2 Dr.Ayad M.J. Lecture ‐8‐ Algae 2016 Figure 1:Left is a General structure of Rhodophyta and right is Different forms of tetrasporangia commonly found in Rhodophyta. ( a ) Tetrahedral ( b ) Cruciate type ( c ) and ( d ) Zonnate 1‐4 Life cycle and reproduction They display alternation of generations; in addition to gametophyte generation, many have two sporophyte generations, the carposporophyte-producing carpospores, which germinate into a tetrasporophyte – this produces spore tetrads, which dissociate and germinate into gametophytes. The gametophyte is typically (but not always) identical to the tetrasporophyte. Carpospores may also germinate directly into thalloid gametophytes, or the carposporophytes may produce a tetraspore without going through a (free- living) tetrasporophyte phase. Tetrasporangia may be arranged in a row (zonate), in a cross (cruciate), or in a tetrad. The carposporophyte may be enclosed within the gametophyte, which may cover it with branches to form a cystocarp. These case studies may be helpful to understand some of the life histories algae may display: In a simple case, such as Rhodochorton investiens: 3 Dr.Ayad M.J. Lecture ‐8‐ Algae 2016 In the Carposporophyte: a spermatium merges with a trichogyne (a long hair on the female sexual organ), which then divides to form carposporangia – which produce carpospores. Carpospores germinate into gametophytes, which produce sporophytes. Both of these are very similar; they produce monospores from monosporangia "just below a cross wall in a filament" and their spores are "liberated through apex of sporangial cell." The spores of a sporophyte produce either tetrasporophytes. Monospores produced by this phase germinate immediately, with no resting phase, to form an identical copy of parent. Tetrasporophytes may also produce a carpospore, which germinates to form another tetrasporophyte.[verification needed] The gametophyte may replicate using monospores, but produces sperm in spermatangia, and "eggs"(?) in carpogonium. A rather different example is Porphyra gardneri: Figure2: Life cycle of Rhodophyta 4 Dr.Ayad M.J. Lecture ‐8‐ Algae 2016 1‐5 Classification 1‐6‐1 Class Bangiophyceae Members of the Bangiophyceae have a simple alternation of heteromorphic generations in which the sporophyte is a small, prostrate filament called a conchocelis that releases meispores called conchospores. The sporophyte is the stage that has pit connections. The gametophyte can be variable in this group and range from filamentous to foliose. Figure 2: Batrachospermum 1‐6‐2 Class Floridiophyceae The Floridiophyceae contains most of the taxa in the phylum. These plants tend to be complex, either filamentous or pseudoparenchymatous and tend to be seaweeds of warmer waters. The polysaccharides common in the cell walls of many in this group are the sources of agar, agarose, and carrageenin, common food additives. Chondrus crispus is the red most commonly harvested on the coast of the eastern US as a source of agar. Corallina is a taxon that impregnates its cell walls with calcium carbonate forming filaments that appear armored and segmented. 5 Dr.Ayad M.J. Lecture ‐8‐ Algae 2016 Figure 3: Polysiphonia 1‐7 Important terms 1-carposporophyte (2n): diploid stage that forms from fertilization and produces asexual carpospores 2-tetrasporophyte (2n): diploid stage that forms from carpospores, and produces haploid tetraspores through meiosis 3-gametophyte (1n): haploid stage that forms from tetraspores, and produces gametes 4-spermatia: non-motile sperm 5-trichogyne: female stalk that catches spermatia Figure 4: Polysiphonia life cycle 6 Dr.Ayad M.J. Lecture ‐8‐ Algae 2016 Phaeophyta (Brown Algae) The Phaeophyta or brown algae are mostly marine algae. Phaeophyta are characterized by the pigment fucoxanthin that gives them the brown colour. The cell wall in Phaeophyta is two layered; inner layer consists of cellulose and outer layer mainly of algin and fucoidan. The brown seaweeds serve as important source of the industrial hydrocolloid alginate as well as food in countries like Japan, Korea and China. 1- General characteristics (a) Occurrence: Mostly marine. (b) Pigments: Fucoxanthin is dominant, Chlorophyll a, c and carotene. (c) Pyrenoids: Stalked pyrenoids present outside the chloroplast envelope.. (d) Reserve food material: Laminarin, mannitol and fats. (e) Cell wall: Cellulose, alginic acid and fucinic acid. (f) Structure: Microscopic to branched, filamentous macroscopic parenchymatous plants. (g) Flagella: Zoospores flagellated, flagella unequal, one is tinsel type. (h) Reproduction: Sexual reproduction (isogamous, anisogamous and oogamous). 2-Structure Most of brown algae are lithophytes , which require stable hard substrata for attachment, and a number of the fi lamentous, smaller species are epiphytes. Unicellular, colonolial and unbranched fi laments are absent in 7 Dr.Ayad M.J. Lecture ‐8‐ Algae 2016 pheophyceae. The freshwater phaeophyta species are simply filamentous and smaller in size unlike their marine counterparts which have complex gigantic and bulky thalli Their size ranging from small fi lamentous forms like Ectocarpus and Hinskia , which are few millimetres to massive intertidal weeds such as Ascophyllum and Fucus , to subtidal large kelps and the largest seaweed known Macrocystis pyrifera, They have higher morphological and anatomical differentiation compared to the other algae The size range vary greatly, from crustose form which may be 1–2 mm, macroscopic fi lmentous tufts 2–10 mm, subtidal kelp forests that might be as tall as 20–60 m. Figure 5: General Morphology of Brown Algae 8 Dr.Ayad M.J. Lecture ‐8‐ Algae 2016 The cell walls of brown algae are generally gelatinous and consist of two layers. Cellulose makes up the skeleton backbone but is present in small quantiites i.e. 1–8 % of dry weight. The chloroplasts of brown algae are usually discoid and surrounded by an envelope. The outer membranes of the chloroplast endoplasmic reticulum are continuous or discontinuous depending on the species. Microfibrils of DNA occurring in the plastid may be linear or circular attached to the thylakoid membranes. The pigments are located in plastids lacking pyrenoid; their presence may also vary according to algal stage. Presence of Physodes (fucosan granules) is one of the characteristic features of brown algae. In the meristmatic, photosynthetic and reproductive cells, cytoplasm a large number of colourless vesicles with highly refractive acidic fl uid staining red with vanillin and hydrochloric acid are present 3-Reproduction Brown alga reproduces by vegetative, asexual and sexual methods of reproduction: 1- Vegetative Reproduction Several species of brown algae show vegetative reproduction via fragmentation. In members of sphaecelariales propagules are found 2-Asexual Reproduction All brown algae reproduce asexually with exceptions of Tilopetridales, Dictyotales and Fucales. In ectocarpales and spherocarpales asexual reproduction occurs via bifl agellate zoospores that develops in to reproductive
Recommended publications
  • Phylogenetic Classification of Life
    Proc. Natl. Accad. Sci. USA Vol. 93, pp. 1071-1076, February 1996 Evolution Archaeal- eubacterial mergers in the origin of Eukarya: Phylogenetic classification of life (centriole-kinetosome DNA/Protoctista/kingdom classification/symbiogenesis/archaeprotist) LYNN MARGULIS Department of Biology, University of Massachusetts, Amherst, MA 01003-5810 Conitribluted by Lynnl Marglulis, September 15, 1995 ABSTRACT A symbiosis-based phylogeny leads to a con- these features evolved in their ancestors by inferable steps (4, sistent, useful classification system for all life. "Kingdoms" 20). rRNA gene sequences (Trichomonas, Coronympha, Giar- and "Domains" are replaced by biological names for the most dia; ref. 11) confirm these as descendants of anaerobic eu- inclusive taxa: Prokarya (bacteria) and Eukarya (symbiosis- karyotes that evolved prior to the "crown group" (12)-e.g., derived nucleated organisms). The earliest Eukarya, anaero- animals, fungi, or plants. bic mastigotes, hypothetically originated from permanent If eukaryotes began as motility symbioses between Ar- whole-cell fusion between members of Archaea (e.g., Thermo- chaea-e.g., Thermoplasma acidophilum-like and Eubacteria plasma-like organisms) and of Eubacteria (e.g., Spirochaeta- (Spirochaeta-, Spirosymplokos-, or Diplocalyx-like microbes; like organisms). Molecular biology, life-history, and fossil ref. 4) where cell-genetic integration led to the nucleus- record evidence support the reunification of bacteria as cytoskeletal system that defines eukaryotes (21)-then an Prokarya while
    [Show full text]
  • Plant Evolution an Introduction to the History of Life
    Plant Evolution An Introduction to the History of Life KARL J. NIKLAS The University of Chicago Press Chicago and London CONTENTS Preface vii Introduction 1 1 Origins and Early Events 29 2 The Invasion of Land and Air 93 3 Population Genetics, Adaptation, and Evolution 153 4 Development and Evolution 217 5 Speciation and Microevolution 271 6 Macroevolution 325 7 The Evolution of Multicellularity 377 8 Biophysics and Evolution 431 9 Ecology and Evolution 483 Glossary 537 Index 547 v Introduction The unpredictable and the predetermined unfold together to make everything the way it is. It’s how nature creates itself, on every scale, the snowflake and the snowstorm. — TOM STOPPARD, Arcadia, Act 1, Scene 4 (1993) Much has been written about evolution from the perspective of the history and biology of animals, but significantly less has been writ- ten about the evolutionary biology of plants. Zoocentricism in the biological literature is understandable to some extent because we are after all animals and not plants and because our self- interest is not entirely egotistical, since no biologist can deny the fact that animals have played significant and important roles as the actors on the stage of evolution come and go. The nearly romantic fascination with di- nosaurs and what caused their extinction is understandable, even though we should be equally fascinated with the monarchs of the Carboniferous, the tree lycopods and calamites, and with what caused their extinction (fig. 0.1). Yet, it must be understood that plants are as fascinating as animals, and that they are just as important to the study of biology in general and to understanding evolutionary theory in particular.
    [Show full text]
  • Kingdom Animalia: Phylum Summary Table
    KINGDOM ANIMALIA: PHYLUM SUMMARY TABLE Phylum PORIFERA CNIDARIA PLATYHELMINTHES (flatworms) NEMATODA (roundworms) ANNELIDA (segmented worms) Examples Sponges Sea jellies, Hydra, coral Planaria, tapeworm Trichinella, hookworm, Earthworm, polychaete worms, colonies, sea anemones nematode leech Body type Asymmetry Radial symmetry Bilateral symmetry Bilateral symmetry Bilateral symmetry (Symmetry) Ecological roles Food source Food source Food source Food source Food source home / shelter Reef- home, protect Parasitic Parasitic Parasitic symbiotic with shores Eat dead animals – Aerate soil Aerate soil bacteria Chem. – anticancer saprophyte Breakdown material Breakdown material Body organization 2 germ layers 2 layers: ecto & endo 3 layers: ectoderm, mesoderm, 3 layers: ectoderm, 3 layers: ectoderm, mesoderm, (# germ layers) Ectoderm, endoderm With mesoglea between endoderm mesoderm, endoderm endoderm Body cavity Acoelom Acoelom Acoelom Pseudocoelom Coelom Digestive system Filter feed: collar cells, Gastrovascular cavity, Mouth and gastrovascular Complete digestive Complete digestive system: food vacuoles, mouth, and cavity system: mouth & anus mouth & anus osculum nematocysts to capture food Mouth also serves as anus Special organs Special organs Reproduction Sexual: Sexual: male & female Sexual: hermaphroditic – Sexual: separate sexes = Sexual: hermaphroditic – heramaphroditic – medusa – gametes fuse cross fertilization dioecious cross fertilization gametes released in H2O Asexual: budding, Asexual: fragmentation Asexual: budding, regeneration
    [Show full text]
  • Fungi-Chapter 31 Refer to the Images of Life Cycles of Rhizopus, Morchella and Mushroom in Your Text Book and Lab Manual
    Fungi-Chapter 31 Refer to the images of life cycles of Rhizopus, Morchella and Mushroom in your text book and lab manual. Chytrids Chytrids (phylum Chytridiomycota) are found in terrestrial, freshwater, and marine habitats including hydrothermal vents They can be decomposers, parasites, or mutualists Molecular evidence supports the hypothesis that chytrids diverged early in fungal evolution Chytrids are unique among fungi in having flagellated spores, called zoospores Zygomycetes The zygomycetes (phylum Zygomycota) exhibit great diversity of life histories They include fast-growing molds, parasites, and commensal symbionts The life cycle of black bread mold (Rhizopus stolonifer) is fairly typical of the phylum Its hyphae are coenocytic Asexual sporangia produce haploid spores The zygomycetes are named for their sexually produced zygosporangia Zygosporangia are the site of karyogamy and then meiosis Zygosporangia, which are resistant to freezing and drying, can survive unfavorable conditions Some zygomycetes, such as Pilobolus, can actually “aim” and shoot their sporangia toward bright light Glomeromycetes The glomeromycetes (phylum Glomeromycota) were once considered zygomycetes They are now classified in a separate clade Glomeromycetes form arbuscular mycorrhizae by growing into root cells but covered by host cell membrane. Ascomycetes Ascomycetes (phylum Ascomycota) live in marine, freshwater, and terrestrial habitats Ascomycetes produce sexual spores in saclike asci contained in fruiting bodies called ascocarps Ascomycetes are commonly
    [Show full text]
  • Biology of Fungi, Lecture 2: the Diversity of Fungi and Fungus-Like Organisms
    Biology of Fungi, Lecture 2: The Diversity of Fungi and Fungus-Like Organisms Terms You Should Understand u ‘Fungus’ (pl., fungi) is a taxonomic term and does not refer to morphology u ‘Mold’ is a morphological term referring to a filamentous (multicellular) condition u ‘Mildew’ is a term that refers to a particular type of mold u ‘Yeast’ is a morphological term referring to a unicellular condition Special Lecture Notes on Fungal Taxonomy u Fungal taxonomy is constantly in flux u Not one taxonomic scheme will be agreed upon by all mycologists u Classical fungal taxonomy was based primarily upon morphological features u Contemporary fungal taxonomy is based upon phylogenetic relationships Fungi in a Broad Sense u Mycologists have traditionally studied a diverse number of organisms, many not true fungi, but fungal-like in their appearance, physiology, or life style u At one point, these fungal-like microbes included the Actinomycetes, due to their filamentous growth patterns, but today are known as Gram-positive bacteria u The types of organisms mycologists have traditionally studied are now divided based upon phylogenetic relationships u These relationships are: Q Kingdom Fungi - true fungi Q Kingdom Straminipila - “water molds” Q Kingdom Mycetozoa - “slime molds” u Kingdom Fungi (Mycota) Q Phylum: Chytridiomycota Q Phylum: Zygomycota Q Phylum: Glomeromycota Q Phylum: Ascomycota Q Phylum: Basidiomycota Q Form-Phylum: Deuteromycota (Fungi Imperfecti) Page 1 of 16 Biology of Fungi Lecture 2: Diversity of Fungi u Kingdom Straminiplia (Chromista)
    [Show full text]
  • Animal Phylum Poster Porifera
    Phylum PORIFERA CNIDARIA PLATYHELMINTHES ANNELIDA MOLLUSCA ECHINODERMATA ARTHROPODA CHORDATA Hexactinellida -- glass (siliceous) Anthozoa -- corals and sea Turbellaria -- free-living or symbiotic Polychaetes -- segmented Gastopods -- snails and slugs Asteroidea -- starfish Trilobitomorpha -- tribolites (extinct) Urochordata -- tunicates Groups sponges anemones flatworms (Dugusia) bristleworms Bivalves -- clams, scallops, mussels Echinoidea -- sea urchins, sand Chelicerata Cephalochordata -- lancelets (organisms studied in detail in Demospongia -- spongin or Hydrazoa -- hydras, some corals Trematoda -- flukes (parasitic) Oligochaetes -- earthworms (Lumbricus) Cephalopods -- squid, octopus, dollars Arachnida -- spiders, scorpions Mixini -- hagfish siliceous sponges Xiphosura -- horseshoe crabs Bio1AL are underlined) Cubozoa -- box jellyfish, sea wasps Cestoda -- tapeworms (parasitic) Hirudinea -- leeches nautilus Holothuroidea -- sea cucumbers Petromyzontida -- lamprey Mandibulata Calcarea -- calcareous sponges Scyphozoa -- jellyfish, sea nettles Monogenea -- parasitic flatworms Polyplacophora -- chitons Ophiuroidea -- brittle stars Chondrichtyes -- sharks, skates Crustacea -- crustaceans (shrimp, crayfish Scleropongiae -- coralline or Crinoidea -- sea lily, feather stars Actinipterygia -- ray-finned fish tropical reef sponges Hexapoda -- insects (cockroach, fruit fly) Sarcopterygia -- lobed-finned fish Myriapoda Amphibia (frog, newt) Chilopoda -- centipedes Diplopoda -- millipedes Reptilia (snake, turtle) Aves (chicken, hummingbird) Mammalia
    [Show full text]
  • Darwin's “Tree of Life”
    Icons of Evolution? Why Much of What Jonathan Wells Writes about Evolution is Wrong Alan D. Gishlick, National Center for Science Education DARWIN’S “TREE OF LIFE” mon descent. Finally, he demands that text- books treat universal common ancestry as PHYLOGENETIC TREES unproven and refrain from illustrating that n biology, a phylogenetic tree, or phyloge- “theory” with misleading phylogenies. ny, is used to show the genealogic relation- Therefore, according to Wells, textbooks Iships of living things. A phylogeny is not should state that there is no evidence for com- so much evidence for evolution as much as it mon descent and that the most recent research is a codification of data about evolutionary his- refutes the concept entirely. Wells is complete- tory. According to biological evolution, organ- ly wrong on all counts, and his argument is isms share common ancestors; a phylogeny entirely based on misdirection and confusion. shows how organisms are related. The tree of He mixes up these various topics in order to life shows the path evolution took to get to the confuse the reader into thinking that when current diversity of life. It also shows that we combined, they show an endemic failure of can ascertain the genealogy of disparate living evolutionary theory. In effect, Wells plays the organisms. This is evidence for evolution only equivalent of an intellectual shell game, put- in that we can construct such trees at all. If ting so many topics into play that the “ball” of evolution had not happened or common ances- evolution gets lost. try were false, we would not be able to discov- THE CAMBRIAN EXPLOSION er hierarchical branching genealogies for ells claims that the Cambrian organisms (although textbooks do not general- Explosion “presents a serious chal- ly explain this well).
    [Show full text]
  • New Phylogenomic Analysis of the Enigmatic Phylum Telonemia Further Resolves the Eukaryote Tree of Life
    bioRxiv preprint doi: https://doi.org/10.1101/403329; this version posted August 30, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. New phylogenomic analysis of the enigmatic phylum Telonemia further resolves the eukaryote tree of life Jürgen F. H. Strassert1, Mahwash Jamy1, Alexander P. Mylnikov2, Denis V. Tikhonenkov2, Fabien Burki1,* 1Department of Organismal Biology, Program in Systematic Biology, Uppsala University, Uppsala, Sweden 2Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Yaroslavl Region, Russia *Corresponding author: E-mail: [email protected] Keywords: TSAR, Telonemia, phylogenomics, eukaryotes, tree of life, protists bioRxiv preprint doi: https://doi.org/10.1101/403329; this version posted August 30, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract The broad-scale tree of eukaryotes is constantly improving, but the evolutionary origin of several major groups remains unknown. Resolving the phylogenetic position of these ‘orphan’ groups is important, especially those that originated early in evolution, because they represent missing evolutionary links between established groups. Telonemia is one such orphan taxon for which little is known. The group is composed of molecularly diverse biflagellated protists, often prevalent although not abundant in aquatic environments.
    [Show full text]
  • I Biology I Lecture Outline 9 Kingdom Protista
    I Biology I Lecture Outline 9 Kingdom Protista References (Textbook - pages 373-392, Lab Manual - pages 95-115) Major Characteristics Algae 1. Cbaracteristics 2. Classification 3. Division Cblorophyta 4. Division Chrysophyta 5. Division Phaeopbyta 6. Division Rhodopbyta Protozoans 1. Characteristics 2. Classification 3. Class FlageUata 4. Class Sarcodina 5. Class Ciliata 6. Class Sporozoa I Biology I Lecture Notes 9 Kingdom Protista References (Textbook - pages 373-392, Lab Manual- pages 95-115) Major Characteristics I. Protists possess eukaryotic cells with well defined nuclei and organelles 2. Most are unicellular, however there are multi-cellularforms 3. They are diverse in their structure 4. They vary in size from microscope algae to kelp that can be over 100feet in length 5. They are diverse (like bacteria) in the way they meet their nutritional needs A . Some are photosynthetic like land plants - are autotrophic B. Some ingest theirfood like animals - heterotrophic by ingestion C. Some absorb theirfood like bacteria andfungi - heterotrophic by absorption D. One species - Euglena - is mixotrophic meaning that it is capable ofboth autotrophic and heterotrophic life styles. 6. Reproduction in Protists A. is usually asexual by mitosis B. sexual reproduction involves meiosis and spore formation and usualJy occurs only when environmental conditions are hostile C. spores are resistant and can withstand adverse conditions 7. Some protozoans form cysts - a type ofresting stage 8. Photosynthetic protists (mostly algae) are part ofplankton. Plankton are those organisms suspended infresh and marine waters that serve asfood for -- heterotrophic animals and other protists 9. There are diverse opinions on how to classify members ofthe Kingdom Protista.
    [Show full text]
  • The Wide World of Plants
    11 The Wide World of Plants With so many different plants in the world, it’s tough to keep them all straight. But there are certain features we can see in plants that allow us to put them into helpful categories. Recommended Reading Plants: Flower Plants, Ferns, Mosses, and Other Plants, by Shar Levine and Leslie John- stone (Note: The intro to chapters 4 and 5 refer to the earth being over 100 million years old.) The Tree Book: For Kids and their Grown Ups,by Gina Ingoglia, p. 26-89 (Note: Fantastic resource for identifying trees during this week’s activity.) Nature Walk — Exploring ACTIVITY Plants Now that you know a little bit more about the different divisions of plants, take some time to get outdoors and explore plants this week! SUPPLY LIST INSTRUCTIONS • Copies of Exploring 1. Walk around outside and try to find examples of plants that are in the Plants: Observation four different divisions of plants we discussed in plants: Journal page Phylum Bryophyta, the mosses • Pencil Phylum Pterophyta, the ferns Phylum Coniferophyta, the cone-bearing plants Phylum Anthophyta, the flowering plants 2. Try to find at least one to two different examples of each category of plant you can sketch on the Exploring Plants: Observation Journal page. 3. See if you can identify the species of the plant — use a book or online resource to help you out! Reminder! Be sure to continue caring for and monitoring your bean plant. How is it doing? Take the time to sketch what it looks like and record its height.
    [Show full text]
  • A Bingo-Type Game About Classification of Ocean Animals
    A bingo-type game about classification of ocean animals Target age group: 8-14 Number of players: any Time needed: 15-45 minutes (very flexible) Materials needed: copies of pattern pages, scissors, glue sticks, pennies or candies for tokens to mark squares, and picture cards or clues Preparation: Copy the pattern pages onto regular paper. Each player will need one map page and one strip of squares. (The page with the squares gives you enough strips for 5 players.) Cut apart the squares and glue them randomly to the squares on the map. Each player’s board should be unique. Provide each player with 15-20 tokens. How to play: This game is a variation on Bingo, but instead of getting 4 in a row up and down or across, you get all 4 squares in an ocean filled. For example, if you fill all four squares in theAtlantic Ocean, that’s a Bingo. You can set the rules for winning. You may want to keep the game going a bit even after someone gets Bingo, and allow “runners up.” As a final round, I set the rules to say that after one ocean was filled, that one was officially taken. Eventually it got down to only one ocean left as a possible Bingo. I was playing with a fairly large group, and this added a bit of fun at the end. Clues: I used digital pictures stored in a folder on my computer. I set up my projector and showed them on a large screen in a semi-darkened classroom.
    [Show full text]
  • Kingdom Protista
    Draguesku Protists 0214 Kingdom Protista Protists NAME: _____________________ 1 Draguesku Protists 0214 DIVERSITY OF PROTISTS “Junk Drawer” of the kingdoms very diverse (lots of different organisms are included in this kingdom) range in size [unicellular to multicellular] variety of reproductive and nutritional strategies Can be heterotroph or Autotroph 1. Animal like Ex: Protozoans 2. Plant like 3. Fungus like 2 Draguesku Protists 0214 ANIMAL LIKE PROTISTS (AKA: PROTOZOANS) Resemble animals Unicellular HOW DO WE SEPARATE THEM INTO PHYLA???? It is based on how the organism MOVES 4 Phyla (plural for phylum) Based on movement 3 Draguesku Protists 0214 1. PSEUDOPODS PHYLUM SARCODINA EXAMPLE: AMOEBAS NUCLEUS FOOD VACUOLE CELL MEMBRANE PSEUDOPOD (FALSE FOOT) CONTRACTILE VACUOLE Collects and expels H2O (excess) out of the Cytoplasm and out of the cell Amoeba engulfing an organism WWW.PHSCHOOL.COM WEB CODE: CEP 1031 To see the amoeba move. 4 Draguesku Protists 0214 2. Cilia (Phylum Ciliophora) Gullet Example: Paramecium pellicle Cilia used for locomotion Contractile vacuole expels excess H2O Macronucleus (large) Metabolic processes Micronucleus (small) Reproduction 5 Draguesku Protists 0214 Reproduction of Paramecium Asexual BINARY FISSION Sexual CONJUGATION Paramecia join together and exchange genetic material 3. Flagella (Phylum Zoomastigina) Can have MORE than one flagella Example: Trichomymphia Termites have a flagellate (Trichonymphia) in their gut to digest wood 6 Draguesku Protists 0214 This is an example of: SYMBIOSIS Relationship in which at least one species benefits Another kind of relationship: Mutualism Relationship in which BOTH partners benefit Giardia (another example of a flagellate) Parasite Found in fresh water causes “hikers disease” 7 Draguesku Protists 0214 4.
    [Show full text]