Borntraeger-Cramer.Com/9783443010898

Total Page:16

File Type:pdf, Size:1020Kb

Borntraeger-Cramer.Com/9783443010898 B Part 1/2 Ascomycota Syllabus of Plant Families Wolfgang Frey (Editor) 2016. X, 322 pp., 16 colour plates, 8 fi gs, hardcover, 25 x 17 cm ISBN 978-3-443-01089-8 119.– € www.borntraeger-cramer.com/9783443010898 Part 1/2 of Engler’s Syllabus of Plant Families – Ascomycota – provides a thorough treatise of the world-wide morphological and molecular diversity of the fungal phylum Ascomycota. The Ascomycota (including lichenized forms) are the most diverse group of fungi, with a fascinating range of morphological and biological variation, distributed from the arctic tundra and subantarctic vegetation formations, to tropical rainforests and semi-deserts, to freshwater and marine ecosystems. The present volume is an updated synthesis of classical anatomical-morphological characters with modern molecular data, incorporating numerous new discoveries made during the last ten years, providing a comprehensive modern survey covering all families and genera of the Ascomycota including detailed family descriptions. While the Fungi are not part of the Plant Kingdom, they are formally included within the classic Engler’s title “Syllabus der Pfl anzenfamilien/ Syllabus of Plant Families”, which comprised families of blue-green algae, algae, fungi, lichens, ferns, gymnosperms and fl owering plants. The completely restructured and revised 13th edition of Engler’s 120 Lecanoromycetes Lecanoromycetes 121 2. Order Lecanorales Nannf. Lecanorales is the largest order of lichenized fungi, incl. a wide range of morphological and Syllabus of Plant Families published in 5 parts and in English lan- ecological variation, with its members found in almost all terrestrial ecosystems, although less diverse in trop. rain forest. Its members typically have lecanoroid asci with a well-devel- oped, apical, amyloid tholus of various shapes. The order includes some of the largest fami- lies of lichenized fungi, such as Cladoniaceae, Parmeliaceae, and Ramalinaceae, which domi- guage for the fi rst time considers molecular data, which have only re- nate lichen communities in temp. and trop. montane regions, but also in ecosystems such as the South American Cerrado. Fam. Biatorellaceae M.Choisy ex Hafellner & Casares-Porcel Lichenized. Thallus crustose. cently become available in order to provide an up-to-date evolutionary Photobiont chlorococcoid. Ascomata apotheciate, biatorine, often with reduced margin. Hamathecium consisting of branched paraphyses, amyloid. Asci with weakly amyloid apical dome and strongly amyloid basal layer, strongly amyloid outer layer, cylindrical to clavate. Ascospores numerous per ascus, non-septate, ellipsoid to subglobose, hyaline, non-amyloid. and systematic overview of the plant and fungal groups treated. Conidiomata not known. Secondary chemistry: no substances. On soil or bark. 1 gen. (c. 30), cosmopol. Biatorella De Not. (c. 30). Fam. Carbonicolaceae Bendiksby & Timdal Lichenized. Thallus squamulose. Photobiont In our “molecular times” there is a vitally important and growing chlorococcoid. Ascomata apotheciate, biatorine, with reduced margin. Hamathecium con- sisting of unbranched paraphyses, amyloid. Asci semifissitunicate, with weakly amyloid api- cal tholus containing darker amyloid, tubular structure, clavate. Ascospores 8 per ascus, non-septate, ellipsoid, hyaline, non-amyloid. Conidiomata pycnidia; conidia non-septate, need to preserve the knowledge of the entire range of diversity and filiform, hyaline. Secondary chemistry: depsidones. Usually epiphytic on burnt wood or bark. 1 gen. (3), subcosmopol., in temp. regions. Carbonicola Bendiksby & Timdal (3). Fam. Catillariaceae Hafellner (incl. Placolecidaceae Hafellner) Lichenized. Thallus crus- biology of organisms for coming generations, as there is a decline in tose to squamulose. Photobiont chlorococcoid. Ascomata apotheciate, lecideine. Hamathe- cium consisting of sparingly branched paraphyses, amyloid. Asci semifissitunicate, with uni- formely amyloid apical cap, clavate. Ascospores 8–16 per ascus, non-septate or transversely “classical” morphological and taxonomical expertise, especially for septate, ellipsoid, hyaline, non-amyloid. Conidiomata pycnidia; conidia non-septate, ellip- soid to filiform, hyaline. Secondary chemistry: anthraquinones, depsides, despidones or no substances. On rocks or bark. 4–5 gen. (c. 175), cosmopol. Austrolecia Hertel (1). – Catillaria A.Massal. (c. 150). – Placolecis Trevis. (1). – ?Solenop- less popular (showy) groups of organisms. sora A.Massal. (c. 20). – Xanthopsorella Kalb & Hafellner (1). Fam. Cladoniaceae Zenker Lichenized. Thallus fruticose or foliose, often dimorphic, com- posed of an evanescent to persistent, crustose, foliose or squamulose primary thallus and a th vertical secondary thallus with ascomata. Photobiont chlorococcoid. Ascomata apotheciate, Accordingly, the 13 edition of Syllabus of Plant Families synthe- biatorine, often with reduced margin. Hamathecium consisting of branched paraphyses, amyloid. Asci semifissitunicate, with an amyloid apical dome and amyloid tube structure, cylindrical to clavate. Ascospores 8 per ascus, usually non-septate, ellipsoid to subglobose, Fig. 4-9. Lichenized Lecanoromycetes. Caliciales. Caliciaceae. 1. Pyxine coccinea. Thallus lobes. 2. Stig- hyaline, non-amyloid. Conidiomata pycnidia; conidia non-septate, usually filiform, hyaline. sizes both modern data and classical expertise, serving to educate Secondary chemistry: diverse, incl. bisanthraquinones, fatty acids, depsides, depsidones, ter- matochroma gerontoides. Apothecia. Physciaceae. 3. Heterodermia barbifera. Apothecia. Teloschistales. Letrouitiaceae. 4. Letrouitia domingensis. Apothecia. Teloschistaceae. 5. Caloplaca cerina. Apothecia. 6. penoids, usnic acid. On soil or bark. 15 gen. (c. 560), cosmopol. Fig. 4-11.1. Seirophora villosa. Thallus. 7. Teloschistes exilis. Thallus with apothecia. Leprocaulales. Leprocaulaceae. Calathaspis I.M.Lamb & W.A.Weber (1). – Carassea S.Stenroos (1). – Cetradonia J.C.Wei future experts who will maintain our knowledge of the full range of 8. Speerschneidera euploca. Thallus. (Orig., phot. R. Lücking) (Scale bar 3, 5–8: 10 mm; 1–2, 4: 1 mm) & Ahti (1). – Cladia Nyl. (incl. Heterodea Nyl., Ramalinora Lumbsch, Rambold & Elix; 25). Earth’s biodiversity. Sample page from Syllabus of Plant Families Part 1/2 The Syllabus of Plant Families is a mandatory reference for students, experts and researchers from all fi elds of biological sciences, particularly botany. Borntraeger Science Publishers Stuttgart BJohannesstr. 3A, 70176 Stuttgart, Germany. Tel. +49 (711) 351456-0 Fax. +49 (711) 351456-99 [email protected] www.borntraeger-cramer.de 1/2 Ascomycota Syllabus of Plant Families Contents Abbreviations, Symbols . IX 4.3 Pezizomycotina . .41 Pezizomycetes . .208 1 Introduction . 1 Arthoniomycetes . .41 Sordariomycetes . .224 2 Ascomycota . 2 Coniocybomycetes . .46 Hypocreomycetidae . .224 2.1 Introduction . .2 Dothideomycetes . .46 Sordariomycetidae . .238 2.2 Characterization and systematic Eurotiomycetes. .99 Xylariomycetidae . .254 arrangement . .2 Chaetothyriomycetidae. .99 Xylonomycetes. .280 3 Synopsis of classifi cation of the Eurotiomycetidae . .105 Pezizomycotina, ordincsed... .281 Ascomycota . .14 Mycocaliciomycetidae . .111 Pezizomycotina, famincsed.. .282 4 Systematic arrangement of taxa. .28 Laboulbeniomycetes . .114 Pezizomycotina, genincsed.. .285 Ascomycota . .28 Lecanoromycetes. .117 5 Taxonomic novelties . .287 4.1 Taphrinomycotina . .28 Acarosporomycetidae . .117 6 Appendix. .288 Archaeorhizomycetes . .28 Candelariomycetidae . .117 Acknowledgements . .290 Neolectomycetes . .29 Lecanoromycetidae . .118 Sources of Illustrations . .290 Pneumocystidomycetes . .30 Ostropomycetidae . .138 Index to Taxa. .291 Schizosaccharomycetes. .30 Umbilicariomycetidae . .150 Taphrinomycetes . .31 Leotiomycetes . 157 4.2 Saccharomycotina . .32 Lichinomycetes . .205 Saccharomycetes . .32 Orbiliomycetes . .206 Backlist Part 1/1 Part 3 Blue-green Algae, Myxomycetes Bryophytes and and Myxomycete-like organisms, seedless Vascular Plants Phytoparasitic protists, Heterotrophic Syllabus of Plant Families Heterokontobionta and Fungi p.p. Wolfgang Frey (Editor) Syllabus of Plant Families Wolfgang Frey (Editor) 2009. X, 419 pp., 72 fi gs, 1 tab., hardcover, 25 x 17 cm ISBN 978-3-443-01063-8 89.– € 2012. 178 pp., 55 fi gs, hardcover, 25 x 17 cm www.borntraeger-cramer.com/9783443010638 ISBN 978-3-443-01061-4 68.– € www.borntraeger-cramer.com/9783443010614 Part 4 Part 2/1 Pinopsida (Gymnosperms), Magnoliopsida (Angiosperms) p.p. Photoautotrophic eukaryotic Algae Syllabus of Plant Families Syllabus of Plant Families Wolfgang Frey (Editor) Wolfgang Frey (Editor) 2015. XI, 495 pp., 127 colour plates, 1 tab., 2015. X, 324 pp., 67 fi gs hardcover, 25 x 17 cm hardcover, 25 x 17 cm ISBN 978-3-443-01087-4 139.– € ISBN 978-3-443-01083-6 89.– € www.borntraeger-cramer.com/9783443010874 www.borntraeger-cramer.com/9783443010836 Forthcoming parts (preliminary): Part 1/3 Basidiomycota Part 2/2 Rhodobionta Part 5 Seed Plants, Spermatophytes (2) Order form I (we) order from Gebrüder Borntraeger Verlagsbuchhandlung, distributor: E. Schweizerbart’sche Verlagsbuchhandlung (Nägele u. Obermiller), Johannesstr. 3A, 70176 Stuttgart, Germany; Tel. +49 (0) 711/351456-0 Fax +49 (0) 711/351456-99, [email protected] www.borntraeger-cramer.com ____ Copies Part 1/2. Ascomycota (Syllabus of Plant Families) W. Frey (Editor). 2016 ISBN 978-3-443-01089-8 119.– € ____ Copies Part 1/1. Blue-green Algae, Myxomycetes and Myxomycete-like organisms
Recommended publications
  • Fungal Systematics: Is a New Age to Some Fungal Taxonomists, the Changes Were Seismic11
    Nature Reviews Microbiology | AOP, published online 3 January 2013; doi:10.1038/nrmicro2942 PERSPECTIVES Nomenclature for Algae, Fungi, and Plants ESSAY (ICN). To many scientists, these may seem like overdue, common-sense measures, but Fungal systematics: is a new age to some fungal taxonomists, the changes were seismic11. of enlightenment at hand? In the long run, a unitary nomenclature system for pleomorphic fungi, along with the other changes, will promote effective David S. Hibbett and John W. Taylor communication. In the short term, however, Abstract | Fungal taxonomists pursue a seemingly impossible quest: to discover the abandonment of dual nomenclature will require mycologists to work together and give names to all of the world’s mushrooms, moulds and yeasts. Taxonomists to resolve the correct names for large num‑ have a reputation for being traditionalists, but as we outline here, the community bers of fungi, including many economically has recently embraced the modernization of its nomenclatural rules by discarding important pathogens and industrial organ‑ the requirement for Latin descriptions, endorsing electronic publication and isms. Here, we consider the opportunities ending the dual system of nomenclature, which used different names for the sexual and challenges posed by the repeal of dual nomenclature and the parallels and con‑ and asexual phases of pleomorphic species. The next, and more difficult, step will trasts between nomenclatural practices for be to develop community standards for sequence-based classification. fungi and prokaryotes. We also explore the options for fungal taxonomy based on Taxonomists create the language of bio‑ efforts to classify taxa that are discovered environmental sequences and ask whether diversity, enabling communication about through metagenomics5.
    [Show full text]
  • Algae & Marine Plants of Point Reyes
    Algae & Marine Plants of Point Reyes Green Algae or Chlorophyta Genus/Species Common Name Acrosiphonia coalita Green rope, Tangled weed Blidingia minima Blidingia minima var. vexata Dwarf sea hair Bryopsis corticulans Cladophora columbiana Green tuft alga Codium fragile subsp. californicum Sea staghorn Codium setchellii Smooth spongy cushion, Green spongy cushion Trentepohlia aurea Ulva californica Ulva fenestrata Sea lettuce Ulva intestinalis Sea hair, Sea lettuce, Gutweed, Grass kelp Ulva linza Ulva taeniata Urospora sp. Brown Algae or Ochrophyta Genus/Species Common Name Alaria marginata Ribbon kelp, Winged kelp Analipus japonicus Fir branch seaweed, Sea fir Coilodesme californica Dactylosiphon bullosus Desmarestia herbacea Desmarestia latifrons Egregia menziesii Feather boa Fucus distichus Bladderwrack, Rockweed Haplogloia andersonii Anderson's gooey brown Laminaria setchellii Southern stiff-stiped kelp Laminaria sinclairii Leathesia marina Sea cauliflower Melanosiphon intestinalis Twisted sea tubes Nereocystis luetkeana Bull kelp, Bullwhip kelp, Bladder wrack, Edible kelp, Ribbon kelp Pelvetiopsis limitata Petalonia fascia False kelp Petrospongium rugosum Phaeostrophion irregulare Sand-scoured false kelp Pterygophora californica Woody-stemmed kelp, Stalked kelp, Walking kelp Ralfsia sp. Silvetia compressa Rockweed Stephanocystis osmundacea Page 1 of 4 Red Algae or Rhodophyta Genus/Species Common Name Ahnfeltia fastigiata Bushy Ahnfelt's seaweed Ahnfeltiopsis linearis Anisocladella pacifica Bangia sp. Bossiella dichotoma Bossiella
    [Show full text]
  • Phylogenetic Classification of Life
    Proc. Natl. Accad. Sci. USA Vol. 93, pp. 1071-1076, February 1996 Evolution Archaeal- eubacterial mergers in the origin of Eukarya: Phylogenetic classification of life (centriole-kinetosome DNA/Protoctista/kingdom classification/symbiogenesis/archaeprotist) LYNN MARGULIS Department of Biology, University of Massachusetts, Amherst, MA 01003-5810 Conitribluted by Lynnl Marglulis, September 15, 1995 ABSTRACT A symbiosis-based phylogeny leads to a con- these features evolved in their ancestors by inferable steps (4, sistent, useful classification system for all life. "Kingdoms" 20). rRNA gene sequences (Trichomonas, Coronympha, Giar- and "Domains" are replaced by biological names for the most dia; ref. 11) confirm these as descendants of anaerobic eu- inclusive taxa: Prokarya (bacteria) and Eukarya (symbiosis- karyotes that evolved prior to the "crown group" (12)-e.g., derived nucleated organisms). The earliest Eukarya, anaero- animals, fungi, or plants. bic mastigotes, hypothetically originated from permanent If eukaryotes began as motility symbioses between Ar- whole-cell fusion between members of Archaea (e.g., Thermo- chaea-e.g., Thermoplasma acidophilum-like and Eubacteria plasma-like organisms) and of Eubacteria (e.g., Spirochaeta- (Spirochaeta-, Spirosymplokos-, or Diplocalyx-like microbes; like organisms). Molecular biology, life-history, and fossil ref. 4) where cell-genetic integration led to the nucleus- record evidence support the reunification of bacteria as cytoskeletal system that defines eukaryotes (21)-then an Prokarya while
    [Show full text]
  • Plant Evolution an Introduction to the History of Life
    Plant Evolution An Introduction to the History of Life KARL J. NIKLAS The University of Chicago Press Chicago and London CONTENTS Preface vii Introduction 1 1 Origins and Early Events 29 2 The Invasion of Land and Air 93 3 Population Genetics, Adaptation, and Evolution 153 4 Development and Evolution 217 5 Speciation and Microevolution 271 6 Macroevolution 325 7 The Evolution of Multicellularity 377 8 Biophysics and Evolution 431 9 Ecology and Evolution 483 Glossary 537 Index 547 v Introduction The unpredictable and the predetermined unfold together to make everything the way it is. It’s how nature creates itself, on every scale, the snowflake and the snowstorm. — TOM STOPPARD, Arcadia, Act 1, Scene 4 (1993) Much has been written about evolution from the perspective of the history and biology of animals, but significantly less has been writ- ten about the evolutionary biology of plants. Zoocentricism in the biological literature is understandable to some extent because we are after all animals and not plants and because our self- interest is not entirely egotistical, since no biologist can deny the fact that animals have played significant and important roles as the actors on the stage of evolution come and go. The nearly romantic fascination with di- nosaurs and what caused their extinction is understandable, even though we should be equally fascinated with the monarchs of the Carboniferous, the tree lycopods and calamites, and with what caused their extinction (fig. 0.1). Yet, it must be understood that plants are as fascinating as animals, and that they are just as important to the study of biology in general and to understanding evolutionary theory in particular.
    [Show full text]
  • Kingdom Animalia: Phylum Summary Table
    KINGDOM ANIMALIA: PHYLUM SUMMARY TABLE Phylum PORIFERA CNIDARIA PLATYHELMINTHES (flatworms) NEMATODA (roundworms) ANNELIDA (segmented worms) Examples Sponges Sea jellies, Hydra, coral Planaria, tapeworm Trichinella, hookworm, Earthworm, polychaete worms, colonies, sea anemones nematode leech Body type Asymmetry Radial symmetry Bilateral symmetry Bilateral symmetry Bilateral symmetry (Symmetry) Ecological roles Food source Food source Food source Food source Food source home / shelter Reef- home, protect Parasitic Parasitic Parasitic symbiotic with shores Eat dead animals – Aerate soil Aerate soil bacteria Chem. – anticancer saprophyte Breakdown material Breakdown material Body organization 2 germ layers 2 layers: ecto & endo 3 layers: ectoderm, mesoderm, 3 layers: ectoderm, 3 layers: ectoderm, mesoderm, (# germ layers) Ectoderm, endoderm With mesoglea between endoderm mesoderm, endoderm endoderm Body cavity Acoelom Acoelom Acoelom Pseudocoelom Coelom Digestive system Filter feed: collar cells, Gastrovascular cavity, Mouth and gastrovascular Complete digestive Complete digestive system: food vacuoles, mouth, and cavity system: mouth & anus mouth & anus osculum nematocysts to capture food Mouth also serves as anus Special organs Special organs Reproduction Sexual: Sexual: male & female Sexual: hermaphroditic – Sexual: separate sexes = Sexual: hermaphroditic – heramaphroditic – medusa – gametes fuse cross fertilization dioecious cross fertilization gametes released in H2O Asexual: budding, Asexual: fragmentation Asexual: budding, regeneration
    [Show full text]
  • 1307 Fungi Representing 1139 Infrageneric Taxa, 317 Genera and 66 Families ⇑ Jolanta Miadlikowska A, , Frank Kauff B,1, Filip Högnabba C, Jeffrey C
    Molecular Phylogenetics and Evolution 79 (2014) 132–168 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families ⇑ Jolanta Miadlikowska a, , Frank Kauff b,1, Filip Högnabba c, Jeffrey C. Oliver d,2, Katalin Molnár a,3, Emily Fraker a,4, Ester Gaya a,5, Josef Hafellner e, Valérie Hofstetter a,6, Cécile Gueidan a,7, Mónica A.G. Otálora a,8, Brendan Hodkinson a,9, Martin Kukwa f, Robert Lücking g, Curtis Björk h, Harrie J.M. Sipman i, Ana Rosa Burgaz j, Arne Thell k, Alfredo Passo l, Leena Myllys c, Trevor Goward h, Samantha Fernández-Brime m, Geir Hestmark n, James Lendemer o, H. Thorsten Lumbsch g, Michaela Schmull p, Conrad L. Schoch q, Emmanuël Sérusiaux r, David R. Maddison s, A. Elizabeth Arnold t, François Lutzoni a,10, Soili Stenroos c,10 a Department of Biology, Duke University, Durham, NC 27708-0338, USA b FB Biologie, Molecular Phylogenetics, 13/276, TU Kaiserslautern, Postfach 3049, 67653 Kaiserslautern, Germany c Botanical Museum, Finnish Museum of Natural History, FI-00014 University of Helsinki, Finland d Department of Ecology and Evolutionary Biology, Yale University, 358 ESC, 21 Sachem Street, New Haven, CT 06511, USA e Institut für Botanik, Karl-Franzens-Universität, Holteigasse 6, A-8010 Graz, Austria f Department of Plant Taxonomy and Nature Conservation, University of Gdan´sk, ul. Wita Stwosza 59, 80-308 Gdan´sk, Poland g Science and Education, The Field Museum, 1400 S.
    [Show full text]
  • An Evolving Phylogenetically Based Taxonomy of Lichens and Allied Fungi
    Opuscula Philolichenum, 11: 4-10. 2012. *pdf available online 3January2012 via (http://sweetgum.nybg.org/philolichenum/) An evolving phylogenetically based taxonomy of lichens and allied fungi 1 BRENDAN P. HODKINSON ABSTRACT. – A taxonomic scheme for lichens and allied fungi that synthesizes scientific knowledge from a variety of sources is presented. The system put forth here is intended both (1) to provide a skeletal outline of the lichens and allied fungi that can be used as a provisional filing and databasing scheme by lichen herbarium/data managers and (2) to announce the online presence of an official taxonomy that will define the scope of the newly formed International Committee for the Nomenclature of Lichens and Allied Fungi (ICNLAF). The online version of the taxonomy presented here will continue to evolve along with our understanding of the organisms. Additionally, the subfamily Fissurinoideae Rivas Plata, Lücking and Lumbsch is elevated to the rank of family as Fissurinaceae. KEYWORDS. – higher-level taxonomy, lichen-forming fungi, lichenized fungi, phylogeny INTRODUCTION Traditionally, lichen herbaria have been arranged alphabetically, a scheme that stands in stark contrast to the phylogenetic scheme used by nearly all vascular plant herbaria. The justification typically given for this practice is that lichen taxonomy is too unstable to establish a reasonable system of classification. However, recent leaps forward in our understanding of the higher-level classification of fungi, driven primarily by the NSF-funded Assembling the Fungal Tree of Life (AFToL) project (Lutzoni et al. 2004), have caused the taxonomy of lichen-forming and allied fungi to increase significantly in stability. This is especially true within the class Lecanoromycetes, the main group of lichen-forming fungi (Miadlikowska et al.
    [Show full text]
  • Fungi-Chapter 31 Refer to the Images of Life Cycles of Rhizopus, Morchella and Mushroom in Your Text Book and Lab Manual
    Fungi-Chapter 31 Refer to the images of life cycles of Rhizopus, Morchella and Mushroom in your text book and lab manual. Chytrids Chytrids (phylum Chytridiomycota) are found in terrestrial, freshwater, and marine habitats including hydrothermal vents They can be decomposers, parasites, or mutualists Molecular evidence supports the hypothesis that chytrids diverged early in fungal evolution Chytrids are unique among fungi in having flagellated spores, called zoospores Zygomycetes The zygomycetes (phylum Zygomycota) exhibit great diversity of life histories They include fast-growing molds, parasites, and commensal symbionts The life cycle of black bread mold (Rhizopus stolonifer) is fairly typical of the phylum Its hyphae are coenocytic Asexual sporangia produce haploid spores The zygomycetes are named for their sexually produced zygosporangia Zygosporangia are the site of karyogamy and then meiosis Zygosporangia, which are resistant to freezing and drying, can survive unfavorable conditions Some zygomycetes, such as Pilobolus, can actually “aim” and shoot their sporangia toward bright light Glomeromycetes The glomeromycetes (phylum Glomeromycota) were once considered zygomycetes They are now classified in a separate clade Glomeromycetes form arbuscular mycorrhizae by growing into root cells but covered by host cell membrane. Ascomycetes Ascomycetes (phylum Ascomycota) live in marine, freshwater, and terrestrial habitats Ascomycetes produce sexual spores in saclike asci contained in fruiting bodies called ascocarps Ascomycetes are commonly
    [Show full text]
  • Lichens and Associated Fungi from Glacier Bay National Park, Alaska
    The Lichenologist (2020), 52,61–181 doi:10.1017/S0024282920000079 Standard Paper Lichens and associated fungi from Glacier Bay National Park, Alaska Toby Spribille1,2,3 , Alan M. Fryday4 , Sergio Pérez-Ortega5 , Måns Svensson6, Tor Tønsberg7, Stefan Ekman6 , Håkon Holien8,9, Philipp Resl10 , Kevin Schneider11, Edith Stabentheiner2, Holger Thüs12,13 , Jan Vondrák14,15 and Lewis Sharman16 1Department of Biological Sciences, CW405, University of Alberta, Edmonton, Alberta T6G 2R3, Canada; 2Department of Plant Sciences, Institute of Biology, University of Graz, NAWI Graz, Holteigasse 6, 8010 Graz, Austria; 3Division of Biological Sciences, University of Montana, 32 Campus Drive, Missoula, Montana 59812, USA; 4Herbarium, Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA; 5Real Jardín Botánico (CSIC), Departamento de Micología, Calle Claudio Moyano 1, E-28014 Madrid, Spain; 6Museum of Evolution, Uppsala University, Norbyvägen 16, SE-75236 Uppsala, Sweden; 7Department of Natural History, University Museum of Bergen Allégt. 41, P.O. Box 7800, N-5020 Bergen, Norway; 8Faculty of Bioscience and Aquaculture, Nord University, Box 2501, NO-7729 Steinkjer, Norway; 9NTNU University Museum, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; 10Faculty of Biology, Department I, Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; 11Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; 12Botany Department, State Museum of Natural History Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany; 13Natural History Museum, Cromwell Road, London SW7 5BD, UK; 14Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43 Průhonice, Czech Republic; 15Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-370 05 České Budějovice, Czech Republic and 16Glacier Bay National Park & Preserve, P.O.
    [Show full text]
  • The Unicellular and Colonial Organisms Prokaryotic And
    The Unicellular and Colonial Organisms Prokaryotic and Eukaryotic Cells As you know, the building blocks of life are cells. Prokaryotic cells are those cells that do NOT have a nucleus. They mostly include bacteria and archaea. These cells do not have membrane-bound organelles. Eukaryotic cells are those that have a true nucleus. That would include plant, animal, algae, and fungal cells. As you can see, to the left, eukaryotic cells are typically larger than prokaryotic cells. Today in lab, we will look at examples of both prokaryotic and eukaryotic unicellular organisms that are commonly found in pond water. When examining pond water under a microscope… The unpigmented, moving microbes will usually be protozoans. Greenish or golden-brown organisms will typically be algae. Microorganisms that are blue-green will be cyanobacteria. As you can see below, living things are divided into 3 domains based upon shared characteristics. Domain Eukarya is further divided into 4 Kingdoms. Domain Kingdom Cell type Organization Nutrition Organisms Absorb, Unicellular-small; Prokaryotic Photsyn., Archaeacteria Archaea Archaebacteria Lacking peptidoglycan Chemosyn. Unicellular-small; Absorb, Bacteria, Prokaryotic Peptidoglycan in cell Photsyn., Bacteria Eubacteria Cyanobacteria wall Chemosyn. Ingestion, Eukaryotic Unicellular or colonial Protozoa, Algae Protista Photosynthesis Fungi, yeast, Fungi Eukaryotic Multicellular Absorption Eukarya molds Plantae Eukaryotic Multicellular Photosynthesis Plants Animalia Eukaryotic Multicellular Ingestion Animals Prokaryotic Organisms – the archaea, non-photosynthetic bacteria, and cyanobacteria Archaea - Microorganisms that resemble bacteria, but are different from them in certain aspects. Archaea cell walls do not include the macromolecule peptidoglycan, which is always found in the cell walls of bacteria. Archaea usually live in extreme, often very hot or salty environments, such as hot mineral springs or deep-sea hydrothermal vents.
    [Show full text]
  • Coral Reef Algae
    Coral Reef Algae Peggy Fong and Valerie J. Paul Abstract Benthic macroalgae, or “seaweeds,” are key mem- 1 Importance of Coral Reef Algae bers of coral reef communities that provide vital ecological functions such as stabilization of reef structure, production Coral reefs are one of the most diverse and productive eco- of tropical sands, nutrient retention and recycling, primary systems on the planet, forming heterogeneous habitats that production, and trophic support. Macroalgae of an astonish- serve as important sources of primary production within ing range of diversity, abundance, and morphological form provide these equally diverse ecological functions. Marine tropical marine environments (Odum and Odum 1955; macroalgae are a functional rather than phylogenetic group Connell 1978). Coral reefs are located along the coastlines of comprised of members from two Kingdoms and at least over 100 countries and provide a variety of ecosystem goods four major Phyla. Structurally, coral reef macroalgae range and services. Reefs serve as a major food source for many from simple chains of prokaryotic cells to upright vine-like developing nations, provide barriers to high wave action that rockweeds with complex internal structures analogous to buffer coastlines and beaches from erosion, and supply an vascular plants. There is abundant evidence that the his- important revenue base for local economies through fishing torical state of coral reef algal communities was dominance and recreational activities (Odgen 1997). by encrusting and turf-forming macroalgae, yet over the Benthic algae are key members of coral reef communities last few decades upright and more fleshy macroalgae have (Fig. 1) that provide vital ecological functions such as stabili- proliferated across all areas and zones of reefs with increas- zation of reef structure, production of tropical sands, nutrient ing frequency and abundance.
    [Show full text]
  • JUDD W.S. Et. Al. (2002) Plant Systematics: a Phylogenetic Approach. Chapter 7. an Overview of Green
    UNCORRECTED PAGE PROOFS An Overview of Green Plant Phylogeny he word plant is commonly used to refer to any auto- trophic eukaryotic organism capable of converting light energy into chemical energy via the process of photosynthe- sis. More specifically, these organisms produce carbohydrates from carbon dioxide and water in the presence of chlorophyll inside of organelles called chloroplasts. Sometimes the term plant is extended to include autotrophic prokaryotic forms, especially the (eu)bacterial lineage known as the cyanobacteria (or blue- green algae). Many traditional botany textbooks even include the fungi, which differ dramatically in being heterotrophic eukaryotic organisms that enzymatically break down living or dead organic material and then absorb the simpler products. Fungi appear to be more closely related to animals, another lineage of heterotrophs characterized by eating other organisms and digesting them inter- nally. In this chapter we first briefly discuss the origin and evolution of several separately evolved plant lineages, both to acquaint you with these important branches of the tree of life and to help put the green plant lineage in broad phylogenetic perspective. We then focus attention on the evolution of green plants, emphasizing sev- eral critical transitions. Specifically, we concentrate on the origins of land plants (embryophytes), of vascular plants (tracheophytes), of 1 UNCORRECTED PAGE PROOFS 2 CHAPTER SEVEN seed plants (spermatophytes), and of flowering plants dons.” In some cases it is possible to abandon such (angiosperms). names entirely, but in others it is tempting to retain Although knowledge of fossil plants is critical to a them, either as common names for certain forms of orga- deep understanding of each of these shifts and some key nization (e.g., the “bryophytic” life cycle), or to refer to a fossils are mentioned, much of our discussion focuses on clade (e.g., applying “gymnosperms” to a hypothesized extant groups.
    [Show full text]