Organolead Compounds Edmund B

Total Page:16

File Type:pdf, Size:1020Kb

Organolead Compounds Edmund B Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1932 Organolead compounds Edmund B. Towne Iowa State College Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Organic Chemistry Commons Recommended Citation Towne, Edmund B., "Organolead compounds" (1932). Retrospective Theses and Dissertations. 14733. https://lib.dr.iastate.edu/rtd/14733 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. BY Signature was redacted for privacy. Signature was redacted for privacy. Signature was redacted for privacy. UMI Number: DP14602 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. UMI UMI Microform DP14602 Copyright 2006 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, Ml 48106-1346 Q^XJH i'A,, r ^ T" 6:= & o ACniO??13DC3£S!l1' Th® writer -wislieB to ©xpross hia appreeiatloa to Doe tor Henry G'ilmaii irliose InTalaable advice aad, encouragement haTe ' made tliis work possible. TliB OF H,/JjIG>a.3 FRQi: iJlJ lilCii ORGv;EOL:;. D COlir'OUITDS. A SWUI OF TiD-: R:3I,.iTIVi] L^uilLITIES OF OHG.^IIC fliJ^IG.vLS . o INTaODUCTlON ........ 5 DISCUSSION 01? THl GL3A¥AG:3 IvrB^KOD ..... 10 DiaCUSSlOM 0? RidULTS . • 17 J. i'^Xt « « • Apparatus and Procedure ......... 20 Prepara t ion of Triplienyl-bet a-s tyry 1-163Cid . 21 Cleavage of Triphenyl-beta-styryl-laad Preparation of Triphenyl-ellyl-lead . 27 ^'ittempted Preparation of Diphenyl-allyl-le a . 29 Cleavage of Tripheayl-allyl-lead .... 31 Preparation of But0n-l-ol-4 ....... 36 Preparation of Buten-3-yl Broraide .... ^0 Preparation of Buten-3-yl-magnesium Bromide . 41 CarbonatioEL of Buten-3-yl-maeniesium Broiiide . 42 Preparation of Triphenyl-lbuton-S-ylJ-lead . 45 Cleavage of Triphenyl-(buten-S-yl)-lead . « ft 44 Preparation of Diphenyl-di-biohenyl-lead . 49 Cleavage of Diphenyl-di-biphenyl-lead . 51 iHiRLwiir . , , 55 HE INTHODUCTIOM Uii" 3uLlJBL3 GROUPS IHTQ OHGi^JOL.K.J} C0iiP0u!?Da . , 56 lOTRODUCTIOK 56 .liiXPiliUMSK-Tii 64 Some Organic Complexes of Lead Salts with Diazonium Gouipounds and \iith iaaines .............64 Discussion . ............. 64 Benzcnediazoniura Chloride-Lead Chloride Complez . 66 lieaction with Copper in Acetone 68 Reaction with Copper in /jmoniurn Hydroxide ... 68 «Mr u-ag-.e Heaction with Zinc in iicetone 69 Reaction with liino in Sodium Hydroxide .... 69 p-iolyldiazonium Chloride~3jead Chloride CoiTiplex . 71 Beaction with Copper in iaiimoriium Hydroxide » 72 Heaction with Different IJetals . 73 Benzenediazoniura Chloride-Lead Tetrachloride ... 73 Beaction ivith Copper in Acetone 74 Benzenediazonium Chloride—-Tetraphenyl-lead , , . 75 /.niline-Laad iicetate 3alt 76 Sumary ..................... 77 Some Coupling Heactions of Organoload Ilalides .... 78 Discussion 78 Tri ethyl-lead Broiaide 81 Heaction with iithyl Broraoaoetate and Zinc ... 83 Beaction with lithyl Bromoacetate and SodiuBi . 84 Reaction with Benzene and Aluminum Chloride , . 84 Heaction with Magnesiura . 85 Triethyl-tin Chloride and Magnesium ....... 88 Triphenyl-lead Chloride . ....... 89 % Heaction with iithyl Bromoacetate 89 Beaction ?/ith Ethyl Chloroacetate ....... 90 Heaction with Chlorobenzene and Sodium .... 90 'rriphenyl-lead Broraide . 91 Reaction with ^thyl Bromoacetate 9S The irreparation of Some Syraaetrical and Unsyiariietrical Organoload Compounds ................ 93 Discussion .................... 93 Tetraphenyl-lead .......... .. 99 Triphenyl-^p-anisyl-lead 101 Diethyl-lead Dibroraide 102 S...103 - 5 - A. TkiE CL:;A¥AGA 03* RADIOALS mmmilSMClO. OHGAilOLEAD w A STUDi OF fll!3 iria.lTIYE LABILIIIISS OF OHGiiHIC ^ iCALS IMTliODUGTION Many reactions have been used to determine the relative negativity or Isibllity of organic radicals. Lability or negativity series of radicals based on these various reac­ tions are not always in agreeaent an€ quite often agree only in a general way. fhis is to be expected when w© ecmsider the many factors such as experimental conditions, reagents and the intra-moleeular forces that may inflnence the results obtained by the various methods, ii method based on the preferential cleavage of radicals from nnsyimetrical organometallic compounds is perhaps the most direct and at the sma© tiiae is, in gsffieral,. the raost applicable. The results obtained by this method are apparently the same \fhether unsymaetrical inBrcury, tin or lead coiapoundB are used. However, the nature of the splitting agent has an effect for anomalous results are obtained in the case of the benzyl group when halogens are used es the splitting aigent (1). This particular anoiaaiy does not occur "^hen hydrogen chloride is used and is probably due to substitution or oxidation which il) These results are described in more de.tail with original references under "Discussion of the Cleavage Method". precedes splittiae'. (Th© cleavage of a few iiaSnRa^ and PbR#* ecaapouads •with hydrogen chloride splits off one 3 and oa« B* group when 1 and H®" are of nearly the saiae negativity.) Because of this abnormal behavior of haloe;eiis, the present study of the cleavag© of unsyimetpioal orgaaolead coxapoonds containing unsaturated radicals has been carried out using hydrogen chloride as the splitting agent. Ixeaninatioa of the results of cleavage of orcanie radicals from misyiraaetrical organoiaetallic compounds has shown thet the group or groups reiaoved first are those T/hich are generally considered the most negative or labile. Thus eroiriatic I'adicals are split off before aliphatic radicals. The position that aliphatic unsaturated radicals will occupy in the general lability series (aromatic, aliphatic, unsaturated aliphatic) is not known (2), It m'as pointed out many years ago, however, that the negativity of radicals (hydrocarbon radicals containing other elements as substituents for the most part) was directly depmdent on their degree of unsaturation (3). In a study of the preferential cleavage of some phmyl- thienyl--, phenyl-furyl- and thienyl-furyl-lead compounds, the result of which is published, elsewhere (4), it has been shown (2) Austin, J» Am., Chm. Soc,, 3514 (1931), has Bho^ai that triphenyl-allyl«lead is split bjr hydrogen bromide to give triphenyl-lead bromide. (3) Heinrich, Ber., 668 (1899). (4) Oilman and Towne, Hec. trov. chiM., 51, iiov. (1932). that tbe relative labilit:/ or neeatlTity of tiiess I'adlctils increases in the orfler? phenyl, tlaieiiyl, furyl. It was also pointed out that these facts could be correlated wltii tha increasing degree of aromatlcity ez'ni'bited by the hydrocarbons from which these radicals are derived, that is, benzene, thio- phene and furan. Since any definition or caasideration of aromaticity involves a conception of unsaturated linkages, a nuiaber of unsaturated radicals other than aroaatio have been studied. The present investigation is ooacemcd with the cleavage of SOB® ansymfaetrical lead eoEipouads contcining unsaturated aliphatic radicals in order to determine to what extent an ethylanie double bond and its po-sition with respect to the carbon-lead linkage influences the lability or negativity of a radical* For this purpose lead compounds containing the allyl-, beta-styryl- and (buten-^S-yl)-lead linkage were investigated. Tho splitting of triphonyl-allyl-lead, triphenyl-bota- styryl-^le.ad and trlphenyl-(buten-5-yl}-lead (5) with hydrogen chloride showed that allyl and bata-styryl radicals were re­ moved before phenyl ¥&ile the j>benyl radical is split off before the buten-S-yl radical. (5} The nanes of these ;aixed organolead compounds may be written laore corroctly iflthout hyphens but for the sake of clarity they are used to denote a r.ietal-cerbon linka^'e when follow­ ing the aarae of a radical., fhtis triphenyl»aliyl-lead is usually m'ritteri triphenylallyllead. This anomalous clsairage of the allyl radical v/as not entirely unexpected^ Ilie extreiae lability- of this tjpe of radical is well known, von Bratm and Kohler (6) have pointed out th© labile nature of allyl and ciniiaRijrl radicals in tlieir week linkages to aitrogen, Qxy{xea and the halogens, Pliyslo- locieally, conpomias containing these croups boliave quite differently frcra conpounds containing the penton-4-3'1 (0H3»GHGH3CiisCH3-»} fcroup. 'Bie latter are less toxic end: beliaTe like compounds ?jith aliphatic substituents while allyl and clnnamyl groups increase the toxicity of the corupoBJids, The enhanced activity or lability of groups of the allyl type is deeiionstratefl by the ready coupling of allyl brcialde evideiiced by the difficulty of the Independent preparation of allyliaaenesiuia bromide under oitiUnary coriditions
Recommended publications
  • Regulated Substance List
    INSTRUCTIONS FOR THE UNIFIED PROGRAM (UP) FORM REGULATED SUBSTANCE LIST CHEMICAL NAME CAS # TQ Listing CHEMICAL NAME CAS # TQ Listing (Lbs) Basis (Lbs) Basis Acetaldehyde 75-07-0 10,000 g Cantharidin 56-25-7 100/10,0001 * Acetone Cyanohydrin 75-86-5 1,000 Carbachol Chloride 51-83-2 500/10,0001 Acetone Thiosemicarbazide 1752-30-3 1,000/10,0001 Acetylene (Ethyne) 74-86-2 10,000 f Carbamic Acid, Methyl-,o- Acrolein (2-Propenal) 107-02-8 500 b (((2,4-Dimethyl-1,3-Dithiolan- Acrylamide 79-06-1 1,000/10,0001 2-YL) Methylene)Amino)- 26419-73-8 100/10,0001 Acrylonitrile (2- Propenenitrile) 107-13-1 10,000 b Carbofuran 1563-66-2 10/10,0001 Acrylyl Chloride Carbon Disulfide 75-15-0 10,000 b (2-Propenoyl Chloride) 814-68-6 100 b Carbon Oxysulfide Aldicarb 116-06-3 100/10,0001 (Carbon Oxide Sulfide (COS)) 463-58-1 10,000 f Aldrin 309-00-2 500/10,0001 Chlorine 7782-50-5 100 a,b Allyl Alcohol (2-Propen-1-ol) 107-18-6 1,000 b Chlorine Dioxide Allylamine (2-Propen-1-Amine) 107-11-9 500 b (Chlorine Oxide (ClO2)) 10049-04-4 1,000 c Aluminum Phosphide 20859-73-8 500 Chlorine Monoxide (Chlorine Oxide) 7791-21-1 10,000 f Aminopterin 54-62-6 500/10,0001 Chlormequat Chloride 999-81-5 100/10,0001 Amiton Oxalate 3734-97-2 100/10,0001 Chloroacetic Acid 79-11-8 100/10,0001 Ammonia, Anhydrous 2 7664-41-7 500 a,b Chloroform 67-66-3 10,000 b Ammonia, Aqueous Chloromethyl Ether (conc 20% or greater) 7664-41-7 20,000 a,b (Methane,Oxybis(chloro-) 542-88-1 100 b * Aniline 62-53-3 1,000 Chloromethyl Methyl Ether Antimycin A 1397-94-0 1,000/10,0001 (Chloromethoxymethane)
    [Show full text]
  • Solid-State Structures of the Covalent Hydrides Germane and Stannane
    Edinburgh Research Explorer Solid-state structures of the covalent hydrides germane and stannane Citation for published version: Maley, IJ, Brown, DH, Ibberson, RM & Pulham, CR 2008, 'Solid-state structures of the covalent hydrides germane and stannane', Acta Crystallographica Section B - Structural Science, vol. 64, no. Pt 3, pp. 312-7. https://doi.org/10.1107/S0108768108010379 Digital Object Identifier (DOI): 10.1107/S0108768108010379 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Acta Crystallographica Section B - Structural Science Publisher Rights Statement: Copyright © 2008 International Union of Crystallography; all rights reserved. General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 02. Oct. 2021 electronic reprint Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials ISSN 2052-5192 Solid-state structures of the covalent hydrides germane and stannane Iain J. Maley, Daniel H. Brown, Richard M. Ibberson and Colin R. Pulham Acta Cryst. (2008). B64, 312–317 Copyright c International Union of Crystallography Author(s) of this paper may load this reprint on their own web site or institutional repository provided that this cover page is retained.
    [Show full text]
  • Electroanalytical Chemistry of Some Organometallic Compounds of Tin, Lead and Germanium
    ELECTROANALYTICAL CHEMISTRY OF SOME ORGANOMETALLIC COMPOUNDS OF TIN, LEAD AND GERMANIUM by Nani Bhushan Fouzder M.Sc. (Rajshahi) A Thesis Submitted for the Degree of Doctor of Philosophy of the University of London. Chemistry Department, Imperial College of Science and Technology, London S.W.7. September, 1975. 11 ABSTRACT. The present thesis concerns the investigation into the electrochemical behaviour of some industrially important organometallic compounds of tin, lead and germanium and development of suitable electrochemical methods for the analysis of these compounds at formula- tion and at trace level. The basic principles of the electrochemical techniques used inthis investigation have been given in the first part of the 'Introduction', while the various factors which control the electrode process have been discussed in the second part of the 'Introduction' in chapter 1. The electrochemical behaviour and analytical determination of some important organotin fungicides and pesticides such as tri-n-butyltin oxide, triphenyl- tin acetate, etc., some antihelminthic compounds such as dibutyltin dilaureate and dibutyltin dimaleate and some widely used PVC-stabilizers such as di-n-Octyltin dithioglycollic acid ester (Irgastab 17 MOK), Irgastab 17M and Irgastab 15 MOR have been described in the following three chapters. For each type of compound a detailed mechanism of the electrochemical process has been proposed and established. The electrochemical behaviour of organolead compounds and of the organogermanium compounds have been described in the next three chapters. In each case, the mechanism of reduction of these compounds has been established and methods 9fc their determina- tion at ordinary and at trace level have been developed. Finally, in the eighth chapter a brief intro- duction into the highspeed liquid chromatographic technique has been given and analysis of organotin compounds by this method using a wall-jet electrode detector has been described.
    [Show full text]
  • Stannane 2629
    TRIMETHPLSTANNANE 2629 [CONTRIBUTION FROM THE CHEWCAL LABORATORY OF CLARK UNIVERSITY, I, 161 THE PREPARATION AND PROPERTIES OF TRIMETHYL- STANNANE BY CHARLESA. KRAUSAUD WILLARDTu'. GREER Recci\ed .4ugiist 11 1922 Introduction.-The hydrogen derivatives of the various elements decreasc in stability as we proceed from the elements of the halogen group to the elements of higher negative 1-alence,and as wc proceed from elements of lower to elements of higher atomic weight. A11 the elements of the halogen group give stable hydrides at ordinary temperatures. The hydrides of the higher member4 of the oxygen group have comparatively little stability, while in the case of the nitrogen group only nitrogen and phosphorus form comparatively stable normal hydrides. Of the fourth group of elements, carbon and silicon form stable hydrides, but the higher members form hydrides possessing little stability. It is only recently that the existence of hydrides o€ tin, lend and bismuth has been estab- lished.' ff one or more of the 111 drogens of a hydride is replaced by an alkyl or am1 group, the stability of the resulting compound is greatly increased over that of the hydride. Kearly all the common elements yield stable compounds of this type when all the hydrogens are substituted in this way. Tlie metallo-organic compounds of the elements of the fourth group exhibit unusual stability, corresponding somewhat to the exceptional stability of methane, the first member of the group. The tetra-alkyl tin compounds are, on the whole, very stable substances. It might be expected, therefore, that, in the case of tin if only a portion of the hydrogens mere wbstituted by alkyl groups, the resulting compound would exhibit a con- siclt~abledegree of stability.
    [Show full text]
  • High Pressure Stabilization and Emergent Forms of Pbh4
    week ending PRL 107, 037002 (2011) PHYSICAL REVIEW LETTERS 15 JULY 2011 High Pressure Stabilization and Emergent Forms of PbH4 Patryk Zaleski-Ejgierd,1 Roald Hoffmann,2 and N. W. Ashcroft1 1Laboratory of Atomic and Solid State Physics and Cornell Center for Materials Research, Clark Hall, Cornell University, Ithaca, New York 14853-2501, USA 2Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, USA (Received 17 October 2010; revised manuscript received 9 March 2011; published 11 July 2011; corrected 20 July 2011) A wide decomposition pressure range of 132 GPa is predicted for PbH4 above which it emerges in very different forms compared with its group-14 congeners. This triply Born-Oppenheimer system is a nonmolecular, three-dimensional, metallic alloy, despite a prominent layered structure. A significant number of enthalpically near-degenerate structures, with exceedingly small energy barriers for distortions, and characteristic instabilities in the phonon spectra suggest that even at very high pressures PbH4 may exhibit both metallic and liquidlike properties and sublattice or even full melting. DOI: 10.1103/PhysRevLett.107.037002 PACS numbers: 74.70.Ad, 74.62.Fj Among group-14 hydrides, the lead-hydrogen system is As starting points and guides in a structure search, we special, for it clearly combines one of the heaviest (Pb) used a number of geometries previously reported for group- elements with the lightest (H). The attendant mass ratio 14 tetrahydrides, EH4, as well as other structures in which (207:1) immediately implies a distinct separation of time lead is two- to 16-fold coordinated by hydrogen, and with scales for the ensuing dynamics, in very much the way that up to Z ¼ 4 formula units per cell.
    [Show full text]
  • Toxicological Profile for Lead
    LEAD 355 CHAPTER 5. POTENTIAL FOR HUMAN EXPOSURE 5.1 OVERVIEW Pb and Pb compounds have been identified in at least 1,287 and 46 sites, respectively, of the 1,867 hazardous waste sites that have been proposed for inclusion on the EPA National Priorities List (NPL) (ATSDR 2019). However, the number of sites evaluated for Pb is not known. The number of sites in each state is shown in Figures 5-1 and 5-2, respectively. Of these 1,287 sites for Pb, 1,273 are located within the United States, 2 are located in the Virgin Islands, 2 are located in Guam, and 10 are located in Puerto Rico (not shown). All the sites for Pb compounds are only in the United States. Figure 5-1. Number of NPL Sites with Lead Contamination LEAD 356 5. POTENTIAL FOR HUMAN EXPOSURE Figure 5-2. Number of NPL Sites with Lead Compound Contamination • Pb is an element found in concentrated and easily accessible Pb ore deposits that are widely distributed throughout the world. • The general population may be exposed to Pb in ambient air, foods, drinking water, soil, and dust. For adults, exposure to levels of Pb beyond background are usually associated with occupational exposures. • For children, exposure to high levels of Pb are associated with living in areas contaminated by Pb (e.g., soil or indoor dust in older homes with Pb paint). Exposure usually occurs by hand-to- mouth activities. • As an element, Pb does not degrade. However, particulate matter contaminated with Pb can move through air, water, and soil.
    [Show full text]
  • Select Reactions of Organoboranes and Organostannanes
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 8-2012 Select Reactions of Organoboranes and Organostannanes David W. Blevins [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Organic Chemistry Commons Recommended Citation Blevins, David W., "Select Reactions of Organoboranes and Organostannanes. " PhD diss., University of Tennessee, 2012. https://trace.tennessee.edu/utk_graddiss/1412 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by David W. Blevins entitled "Select Reactions of Organoboranes and Organostannanes." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Chemistry. George W. Kabalka, Major Professor We have read this dissertation and recommend its acceptance: Shane Foister, Craig Barnes, Kimberly Gwinn Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Select Reactions of Organoboranes and Organostannanes A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville David W. Blevins August 2012 DEDICATION I dedicate this work to Lisa, Preston, and Clarissa Blevins. ii ACKNOWLEDGEMENTS I would like to thank Dr.
    [Show full text]
  • Hydrides at High Pressures; an Evaluation of "Chemical Precompression" on the Way to Metallic Hydrogen
    Hydrides at High Pressures; An Evaluation of "Chemical Precompression" on the way to Metallic Hydrogen by Paulina Gonzalez Morelos This thesis/dissertation document has been electronically approved by the following individuals: Hoffmann,Roald (Chairperson) Lee,Stephen (Minor Member) Chan,Garnet (Minor Member) HYDRIDES AT HIGH PRESSURES; AN EVALUATION OF “CHEMICAL PRECOMPRESSION” ON THE WAY TO METALLIC HYDROGEN A Dissertation Presented to the Faculty of the Graduate School of Cornell University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Paulina Gonzalez Morelos August 2010 c 2010 Paulina Gonzalez Morelos ALL RIGHTS RESERVED HYDRIDES AT HIGH PRESSURES; AN EVALUATION OF “CHEMICAL PRECOMPRESSION” ON THE WAY TO METALLIC HYDROGEN Paulina Gonzalez Morelos, Ph.D. Cornell University 2010 In this dissertation, we present a theoretical study of compounds rich in hydro- gen, focusing on their crystal structure and potential metallization as pressure is applied. Chapter 1 is an introduction to metallic hydrogen; it reviews previous stud- ies and suggests a new way of analyzing the geometric changes that ensue as pressure is applied. Chapter 2 describes the search for structures for SnH4, us- ing chemical intuition and random search algorithms. Chapter 3 deals with the general problem of segregation which arises as SnH4, a thermodynamically metastable (positive heat of formation from Sn and 2H2) but kinetically persis- tent compound, is compressed. Chapter 3 is a complement to Chapter 2, as layered structures arise naturally in the low pressure regime, prompting us to explore the subject. Chapter 4 begins an ambitious project which strives to understand the elec- tronic structure and properties of metallic hydrides of the form MHx, where M= Si, Sn and W, and x = 4, 6, 8, 10, 12.
    [Show full text]
  • United States Patent 0 ’ CC Patented Nov
    2,859,225 United States Patent 0 ’ CC Patented Nov. 4, 1958 1 2 conversion of lead to tetraethyllead above that obtained in present commercial practice without requiring the use‘ 2,159,225 of metallic sodium, metallic lead, alkyl halogen com6 MANUFACTURE or ORGANOLEAD COMPOUNDS pounds, or lead halides. These and other objects of this invention are accom Sidney M. Blitzer and Tillmon H. Pearson, Baton Rouge, plished by reacting a lead chalko'gen, i. e., lead oxide or La., asignors to Ethyl Corporation, New York, N. Y., sul?de, with a non-lead metalloorganic compound of suf a corporation of Delaware ?cient stability under reaction conditions, where the organo portion is a hydrocarbon radical and wherein the No Drawing. Application March 25 1955 10 Serial No. 496,919 ’ metallo element is directly attached to carbon and may additionally be attached to another metallic element. In 13 Claims. (Cl. 260—437) certain embodiments of this invention it is preferred to employ a catalyst. The so-called metalloid elements are not contemplated as they do not form true metalloorganic This invention relates to a process for the manufacture compounds. Thus, this invention comprises the metatheti of organolead compounds. In particular, this invention is cal reaction between lead chalkogen and a non-lead metal directed to a novel process for the manufacture of tetra loorganic compound. 7 ethyllead from lead oxides and sul?des. In general, the metalloorganic reactants of the present The process employed in present commercial practice invention have the general formula M‘R, or M’MIR," for the manufacture of tetraethyllead has been in use for where M1 and M2 are true metals other than lead, R is a number of years and, in general, is satisfactory.
    [Show full text]
  • This Table Gives the Standard State Chemical Thermodynamic Properties of About 2500 Individual Substances in the Crystalline, Liquid, and Gaseous States
    STANDARD THERMODYNAMIC PROPERTIES OF CHEMICAL SUBSTANCES This table gives the standard state chemical thermodynamic properties of about 2500 individual substances in the crystalline, liquid, and gaseous states. Substances are listed by molecular formula in a modified Hill order; all substances not containing carbon appear first, followed by those that contain carbon. The properties tabulated are: DfH° Standard molar enthalpy (heat) of formation at 298.15 K in kJ/mol DfG° Standard molar Gibbs energy of formation at 298.15 K in kJ/mol S° Standard molar entropy at 298.15 K in J/mol K Cp Molar heat capacity at constant pressure at 298.15 K in J/mol K The standard state pressure is 100 kPa (1 bar). The standard states are defined for different phases by: • The standard state of a pure gaseous substance is that of the substance as a (hypothetical) ideal gas at the standard state pressure. • The standard state of a pure liquid substance is that of the liquid under the standard state pressure. • The standard state of a pure crystalline substance is that of the crystalline substance under the standard state pressure. An entry of 0.0 for DfH° for an element indicates the reference state of that element. See References 1 and 2 for further information on reference states. A blank means no value is available. The data are derived from the sources listed in the references, from other papers appearing in the Journal of Physical and Chemical Reference Data, and from the primary research literature. We are indebted to M. V. Korobov for providing data on fullerene compounds.
    [Show full text]
  • 1 Draft Chemicals (Management and Safety)
    Draft Chemicals (Management and Safety) Rules, 20xx In exercise of the powers conferred by Sections 3, 6 and 25 of the Environment (Protection) Act, 1986 (29 of 1986), and in supersession of the Manufacture, Storage and Import of Hazardous Chemical Rules, 1989 and the Chemical Accidents (Emergency Planning. Preparedness and Response) Rules, 1996, except things done or omitted to be done before such supersession, the Central Government hereby makes the following Rules relating to the management and safety of chemicals, namely: 1. Short Title and Commencement (1) These Rules may be called the Chemicals (Management and Safety) Rules, 20xx. (2) These Rules shall come into force on the date of their publication in the Official Gazette. Chapter I Definitions, Objectives and Scope 2. Definitions (1) In these Rules, unless the context otherwise requires (a) “Act” means the Environment (Protection) Act, 1986 (29 of 1986) as amended from time to time; (b) “Article” means any object whose function is determined by its shape, surface or design to a greater degree than its chemical composition; (c) “Authorised Representative” means a natural or juristic person in India who is authorised by a foreign Manufacturer under Rule 6(2); (d) “Chemical Accident” means an accident involving a sudden or unintended occurrence while handling any Hazardous Chemical, resulting in exposure (continuous, intermittent or repeated) to the Hazardous Chemical causing death or injury to any person or damage to any property, but does not include an accident by reason only
    [Show full text]
  • Genesis and Evolution in the Chemistry of Organogermanium, Organotin and Organolead Compounds
    CHAPTER 1 Genesis and evolution in the chemistry of organogermanium, organotin and organolead compounds MIKHAIL G. VORONKOV and KLAVDIYA A. ABZAEVA A. E. Favorsky Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Str., 664033 Irkutsk, Russia e-mail: [email protected] The task of science is to induce the future from the past Heinrich Herz I. INTRODUCTION ..................................... 2 II. ORGANOGERMANIUM COMPOUNDS ...................... 5 A. Re-flowering after Half a Century of Oblivion ................. 5 B. Organometallic Approaches to a CGe and GeGe Bond ......... 6 C. Nonorganometallic Approaches to a CGe Bond ............... 11 D. CGe Bond Cleavage. Organylhalogermanes ................. 13 E. Compounds having a GeH Bond ........................ 14 F. Organogermanium Chalcogen Derivatives .................... 17 G. Organogermanium Pnicogen Derivatives ..................... 26 H. Compounds having a Hypovalent and Hypervalent Germanium Atom .................................... 29 I. Biological Activity ................................... 32 III. ORGANOTIN COMPOUNDS ............................. 33 A. How it All Began ................................... 33 B. Direct Synthesis ..................................... 36 C. Organometallic Synthesis from Inorganic and Organic Tin Halides ... 39 D. Organotin Hydrides .................................. 41 E. Organylhalostannanes. The CSn Bond Cleavage .............. 43 The chemistry of organic germanium, tin and lead compounds —Vol.2 Edited by
    [Show full text]