Toxicological Profile for Lead

Total Page:16

File Type:pdf, Size:1020Kb

Toxicological Profile for Lead LEAD 355 CHAPTER 5. POTENTIAL FOR HUMAN EXPOSURE 5.1 OVERVIEW Pb and Pb compounds have been identified in at least 1,287 and 46 sites, respectively, of the 1,867 hazardous waste sites that have been proposed for inclusion on the EPA National Priorities List (NPL) (ATSDR 2019). However, the number of sites evaluated for Pb is not known. The number of sites in each state is shown in Figures 5-1 and 5-2, respectively. Of these 1,287 sites for Pb, 1,273 are located within the United States, 2 are located in the Virgin Islands, 2 are located in Guam, and 10 are located in Puerto Rico (not shown). All the sites for Pb compounds are only in the United States. Figure 5-1. Number of NPL Sites with Lead Contamination LEAD 356 5. POTENTIAL FOR HUMAN EXPOSURE Figure 5-2. Number of NPL Sites with Lead Compound Contamination • Pb is an element found in concentrated and easily accessible Pb ore deposits that are widely distributed throughout the world. • The general population may be exposed to Pb in ambient air, foods, drinking water, soil, and dust. For adults, exposure to levels of Pb beyond background are usually associated with occupational exposures. • For children, exposure to high levels of Pb are associated with living in areas contaminated by Pb (e.g., soil or indoor dust in older homes with Pb paint). Exposure usually occurs by hand-to- mouth activities. • As an element, Pb does not degrade. However, particulate matter contaminated with Pb can move through air, water, and soil. • Atmospheric deposition is the largest source of Pb found in soils. Pb is transferred continuously between air, water, and soil by natural chemical and physical processes such as weathering, runoff, precipitation, dry deposition of dust, and stream/river flow; however, soil and sediments appear to be important sinks for Pb. • Pb adsorbs strongly to most soils, which limits the rate of leaching of Pb from soil. Soil acidity (pH) is the most important factor affecting solubility, mobility, and phytoavailability of Pb in soil. LEAD 357 5. POTENTIAL FOR HUMAN EXPOSURE Other conditions that increase Pb mobility in soils are reducing conditions (low redox potential; for example, anoxia) and high chloride content. Pb is dispersed throughout the environment primarily as the result of anthropogenic activities. In the air, Pb is in the form of particles and is removed by rain or gravitational settling. The solubility of Pb compounds in water is a function of pH, ionic strength, and the presence of humic material. Solubility is highest in acidic water. Soil and sediment are an important sink for Pb. Because Pb is strongly adsorbed to soil, very little is transported through runoff to surface water or leached to groundwater except under acidic conditions. Anthropogenic sources of Pb include the mining and smelting of ore, manufacture and use of Pb-containing products, combustion of coal and oil, and waste incineration. Many anthropogenic sources of Pb, most notably leaded gasoline, Pb-based paint, Pb solder in food cans, Pb-arsenate pesticides, and shot and sinkers, have been eliminated or are regulated. Pb compounds released to the environment may be transformed to other Pb compounds; however, Pb is an element and cannot be destroyed or degraded. Because Pb does not degrade over time, deposits of Pb in the environment by current and former uses leave their legacy as higher concentrations of Pb in the environment. These deposits can continue to be a source for potential Pb exposure (e.g., soil particles containing Pb also may be resuspended and redeposited). Plants and animals may bioconcentrate Pb, but Pb is not biomagnified in the aquatic or terrestrial food chain. The general population may be exposed to Pb in ambient air, foods, drinking water, soil, and dust. Segments of the general population at highest risk of health effects from Pb exposure are preschool-age children and pregnant women and their fetuses. Other segments of the general population with an increased exposure include individuals living near sites where Pb was produced or disposed. Some of the more important Pb exposures have occurred as a result of living in urban environments, particularly in areas near stationary emission sources (e.g., smelters); renovation of homes containing Pb-based paint; pica (the compulsive, habitual consumption of nonfood items); contact with interior Pb paint dust; occupational exposure; and secondary occupational exposure (e.g., families of workers in Pb industries). Higher exposures may also occur to residents living in close proximity to NPL sites that contain elevated levels of Pb. The primary source of Pb in the environment has historically been anthropogenic emissions to the atmosphere. In 1984, combustion of leaded gasoline was responsible for approximately 90% of all anthropogenic Pb emissions. The United States gradually phased out the use of Pb alkyls in gasoline, and by 1990, auto emissions accounted for only 33% of the annual Pb emissions (EPA 1996b). Use of Pb LEAD 358 5. POTENTIAL FOR HUMAN EXPOSURE additives in most motor fuels was totally banned after December 31, 1995 (EPA 1996a). The ban went into effect on February 2, 1996. The ban did not include off-road vehicles, including aircraft, racing cars, farm equipment, and marine engines. Pb additives are still used in fuels for piston driven airplane engines and it continues to be commercially available for other off-road uses. Atmospheric deposition is the largest source of Pb found in soils. Pb is transferred continuously between air, water, and soil by natural chemical and physical processes such as weathering, runoff, precipitation, dry deposition of dust, and stream/river flow; however, soil and sediments appear to be important sinks for Pb. Pb particles are removed from the atmosphere primarily by wet and dry deposition. The average residence time in the atmosphere is 10 days. Over this time, long-distance transport, up to thousands of kilometers, may take place. The speciation of Pb in these media varies widely depending upon such factors as temperature, pH, and the presence of humic materials. Pb is largely associated with suspended solids and sediments in aquatic systems, and it occurs in relatively immobile forms in soil. 5.2 PRODUCTION, IMPORT/EXPORT, USE, AND DISPOSAL 5.2.1 Production The most important mineable Pb ore is galena (PbS), which is commonly associated with other minerals, typically zinc ores. Anglesite (PbSO4) and cerussite (PbCO3), formed by the weathering of galena, are two other important Pb minerals. Pb is processed from ore to refined metal in four steps: ore dressing; smelting; drossing; and refining. Ore dressing involves crushing, grinding, and beneficiation (concentration) (King et al. 2014). Since 1998, U.S. production of Pb has shifted to the domestic secondary Pb industry (USGS 2014). Since 2014, primary Pb metal has not been produced in the United States (USGS 2016). The Doe Run Resources Corporation operated the last domestic primary Pb smelter-refinery facility in the United States at Herculaneum, Missouri and it was closed at the end of 2013. Pb-acid batteries are the dominant source of recoverable Pb scrap, accounting for nearly 100% of all secondary Pb (USGS 2016, 2019). Domestic mines produced 368,000 metric tons of recoverable Pb in 2014, a more than 11% increase from 2013. Nearly all of the secondary Pb produced in 2014 was by 7 companies operating 12 plants in Alabama, California, Florida, Indiana, Minnesota, Missouri, New York, Pennsylvania, Tennessee, and Texas (USGS 2016). Secondary (recycled) Pb, derived from mainly scrapped Pb-acid batteries, accounted for all of the domestic refined Pb production in 2014. Due to plant closings, U.S. production LEAD 359 5. POTENTIAL FOR HUMAN EXPOSURE of secondary refined Pb decreased in 2014 by 11% to 1.02 metric tons, from 1.5 metric tons in 2013 (USGS 2016). World mine production of Pb was 4.91 million metric tons in 2014, a decrease of 9% from 2013. The United States accounted for approximately 8% of global mine production in 2014. The United States ranked third in global mine production behind China and Australia, which accounted for 49 and 15%, respectively. World production of refined Pb (primary and secondary) was 10.6 million metric tons in 2014. China produced about 45% of global refined Pb in 2014 with the United States as the second leading world producer of refined Pb, accounting for 10% (USGS 2016). In 2017 and 2018 worldwide mine production of Pb was reported as 4.58 and 4.40 million metric tons, respectively (USGS 2019). As in previous years, China was the dominant producer accounting for nearly half of the world production. Manufacturers and importers of Pb metal and selected Pb compounds are listed in Table 5-1. These data are from EPA’s Chemical Data Access Tool (now called Chemical Data Reporting [CDR]), which provides information on chemicals submitted to the EPA under the Toxic Substance Control Act that are manufactured or imported into the United States. Manufacturing volumes for more recent years are not available in the CDR as most manufacturers have withheld these data as confidential business information; however, as in previous years, the U.S. Geological Survey (USGS) reported total Pb mined in the United States in its Minerals Commodity summaries and these data for 2015–2018 are provided in Table 5-2. According to the USGS, five Pb mines located in the state of Missouri along with five mines in Alaska, Idaho, and the state of Washington accounted for all domestic Pb mine production (USGS 2019). Table 5-1. U.S. Manufacturers of Lead Metal and Selected Lead Compounds Domestic manufacturing Company Location (pounds/year) Lead 5n Plus Inc.
Recommended publications
  • 2,4,6- Or 2,6-Alkoxyphenyl Dialkylphosphine, Tetrafluoroborate, Preparation Method and Use Thereof
    (19) & (11) EP 2 492 274 A1 (12) EUROPEAN PATENT APPLICATION published in accordance with Art. 153(4) EPC (43) Date of publication: (51) Int Cl.: 29.08.2012 Bulletin 2012/35 C07F 9/50 (2006.01) B01J 31/24 (2006.01) C07C 43/215 (2006.01) C07C 41/30 (2006.01) (2006.01) (21) Application number: 09850497.0 C07D 307/58 (22) Date of filing: 21.12.2009 (86) International application number: PCT/CN2009/001527 (87) International publication number: WO 2011/047501 (28.04.2011 Gazette 2011/17) (84) Designated Contracting States: •LV,Bo AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Zhejiang 310027 (CN) HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL • FU, Chunling PT RO SE SI SK SM TR Zhejiang 310027 (CN) (30) Priority: 22.10.2009 CN 200910154029 (74) Representative: Meyer-Dulheuer, Karl-Hermann Dr. Meyer- Dulheuer & Partner (71) Applicant: Zhejiang University Patentanwaltskanzlei Hangzhou, Zhejiang 310027 (CN) Mainzer-Landstrasse 69-71 60329 Frankfurt am Main (DE) (72) Inventors: • MA, Shengming Zhejiang 310027 (CN) (54) 2,4,6- OR 2,6-ALKOXYPHENYL DIALKYLPHOSPHINE, TETRAFLUOROBORATE, PREPARATION METHOD AND USE THEREOF (57) The current invention relates to the structure, current invention uses only one step to synthesize dialkyl synthesis of dialkyl(2,4,6- or 2,6-alkoxyphenyl)phos- (2,4,6- or 2,6-alkoxyphenyl)phosphine and its tetrafluor- phine or its tetrafluoroborate, as well as its applications oborate is stable in the air. Compared with known syn- in the palladium catalyzed carbon-chlorine bond activa- thetic routes of ligands used in activating carbon- chlorine tion for Suzuki coupling reactions and carbon-nitrogen bonds, the method of current invention is short, easy to bond formation reactions.
    [Show full text]
  • Electroanalytical Chemistry of Some Organometallic Compounds of Tin, Lead and Germanium
    ELECTROANALYTICAL CHEMISTRY OF SOME ORGANOMETALLIC COMPOUNDS OF TIN, LEAD AND GERMANIUM by Nani Bhushan Fouzder M.Sc. (Rajshahi) A Thesis Submitted for the Degree of Doctor of Philosophy of the University of London. Chemistry Department, Imperial College of Science and Technology, London S.W.7. September, 1975. 11 ABSTRACT. The present thesis concerns the investigation into the electrochemical behaviour of some industrially important organometallic compounds of tin, lead and germanium and development of suitable electrochemical methods for the analysis of these compounds at formula- tion and at trace level. The basic principles of the electrochemical techniques used inthis investigation have been given in the first part of the 'Introduction', while the various factors which control the electrode process have been discussed in the second part of the 'Introduction' in chapter 1. The electrochemical behaviour and analytical determination of some important organotin fungicides and pesticides such as tri-n-butyltin oxide, triphenyl- tin acetate, etc., some antihelminthic compounds such as dibutyltin dilaureate and dibutyltin dimaleate and some widely used PVC-stabilizers such as di-n-Octyltin dithioglycollic acid ester (Irgastab 17 MOK), Irgastab 17M and Irgastab 15 MOR have been described in the following three chapters. For each type of compound a detailed mechanism of the electrochemical process has been proposed and established. The electrochemical behaviour of organolead compounds and of the organogermanium compounds have been described in the next three chapters. In each case, the mechanism of reduction of these compounds has been established and methods 9fc their determina- tion at ordinary and at trace level have been developed. Finally, in the eighth chapter a brief intro- duction into the highspeed liquid chromatographic technique has been given and analysis of organotin compounds by this method using a wall-jet electrode detector has been described.
    [Show full text]
  • Crystal Structure of the 1M-Modification of Caesium Gallium(III) Monohy- Drogen Triphosphate, 1M-Csgahp3o10
    Z. Kristallogr. NCS 218 (2003) 169–170 169 © by Oldenbourg Wissenschaftsverlag, München Crystal structure of the 1M-modification of caesium gallium(III) monohy- drogen triphosphate, 1M-CsGaHP3O10 J.-X. MiI, H. BorrmannII, Y.-X. HuangII, J.-T. Zhao*,III and R. KniepII I Xiamen University, College of Chemistry and Chemical Engineering, Xiamen 361005, P. R. China II Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Straße 40, D-01187 Dresden, Germany III Shanghai Institute of Ceramics, Chinese Academy of Sciences, State Key Laboratory of High Performance Ceramics, and Superfine Microstructure, 1295 Dingxi Road, Shanghai 200050, P. R. China Received February 24, 2003, accepted and available on-line June 10, 2003; CSD-No. 409693 (2.525 g) and an excess of 37% HCl (molar ratio Ga : Cs =1:1). The mixture was heated to the boiling point. The resulting reac- tion product (CsGaCl4 [1]) was used as reactant for the next step, which was made with a mixture of CsGaCl4 (3.444 g), Cs(OH) · H2O (1.679 g) and 5 ml 85% H3PO4 (molar ratio 1:1:7). The start- ing materials were all of analytical grade. The mixture was heated (open system) to the boiling point and kept heating for three days to evaporate the solvent. Three modifications of CsGaHP3O10 crystals were obtained in the reaction product. The one with a shape of thin plate corresponds to the title compound and was used for the structure determination. Experimental details The positions of the H atom was determined from a difference Fourier map. Discussion In 1987, Chudinova et al.
    [Show full text]
  • Synthesis of Organofluorine Compounds and Allenylboronic Acids - Applications Including Fluorine-18 Labelling Denise N
    Denise N. Meyer Synthesis of Organofluorine Compounds and Allenylboronic Synthesis of Organofluorine Compounds and Allenylboronic Acids - Applications Including Fluorine-18 Labelling Applications Acids - Allenylboronic Synthesis of Organofluorine Compounds and Acids - Applications Including Fluorine-18 Labelling Denise N. Meyer Denise N. Meyer Raised in Lauterecken, South-West Germany, Denise studied chemistry at Johannes Gutenberg University Mainz where she obtained her Bachelor's and Master's degree. In 2017, she moved to Stockholm where she pursued her doctoral studies with Prof. Kálmán J. Szabó. ISBN 978-91-7911-490-9 Department of Organic Chemistry Doctoral Thesis in Organic Chemistry at Stockholm University, Sweden 2021 Synthesis of Organofluorine Compounds and Allenylboronic Acids - Applications Including Fluorine-18 Labelling Denise N. Meyer Academic dissertation for the Degree of Doctor of Philosophy in Organic Chemistry at Stockholm University to be publicly defended on Friday 4 June 2021 at 10.00 in Magnélisalen, Kemiska övningslaboratoriet, Svante Arrhenius väg 16 B. Abstract This work is focused on two areas: the chemistry of organofluorine and organoboron compounds. In the first chapter, a copper-catalysed synthesis of tri- and tetrasubstituted allenylboronic acids is presented. Extension of the same method leads to allenylboronic esters. The very reactive and moisture-sensitive allenylboronic acids are further applied to the reaction with aldehydes, ketones and imines to form homopropargyl alcohols and amines. In addition, an enantioselective reaction catalysed by a BINOL organocatalyst was developed to form tertiary alcohols with adjacent quaternary carbon stereocenters. The second chapter specialises in the functionalisation of 2,2-difluoro enol silyl ethers with electrophilic reagents under mild reaction conditions.
    [Show full text]
  • Tin Tetrafluoroborate Solution 50 % B2f8sn
    PRODUCT STEWARDSHIP SUMMARY Tin tetrafluoroborate solution 50 % B2F8Sn Chemical Name: Tin(II) tetrafluoroborate Tin bis(tetrafluoroborate), tin(2+) tetrafluoroboranuide, Borate(1-), Synonyms: tetrafluoro-, tin(2+) (2:1), Borate(1-), tetrafluoro-, tin(2++) (2:1) CAS Number: 13814-97-6 CAS Name: Tin bis(tetrafluoroborate) EC (EINECS) Number: 237-487-6 Last Revision Date: February 2019 • Tin(II) tetrafluoroborate solution 50% is used in electrolytic tin plating. • This mixture is predominantly composed of tin(II) tetrafluoroborate and water, with tetrafluoroboric acid composing approximately 3%. • The primary exposure to this product occurs in the industrial setting. For workers, good manufacturing and industrial hygiene practices should be followed to prevent or reduce exposure. Workplace exposure limits for tin(II) tetrafluoroborate solution 50% have been established for use in worksite safety programs. See the Safety Data Sheet (SDS) for additional information. • Tin(II) tetrafluoroborate solution 50% is a colorless, odorless liquid, completely soluble in water and stable under normal conditions although very corrosive to metals. In contact with fire, tin tetrafluoroborate solution 50% decomposes to release hazardous hydrogen fluoride, as well as boron and tin oxide fumes. • This product is harmful if swallowed and may cause severe nasal and upper respiratory tract irritation as well as serious eye irritation. Tin(II) tetrafluoroborate solution 50% may cause allergic skin reactions. The health effects of the release of free fluoride ion from fluoroborates that make up this mixture is similar to that of hydrofluoric acid. Ingestion and significant inhalation exposure can cause severe systemic effects including hypocalcemia, hypomagnesemia and hyperkalemia resulting in electrolyte imbalance and cardiac arrhythmias.
    [Show full text]
  • Controlling and Exploiting the Caesium Effect in Palladium Catalysed Coupling Reactions
    Controlling and exploiting the caesium effect in palladium catalysed coupling reactions Thomas J. Dent Submitted in accordance with the requirements for the degree of Doctor of Philosophy The University of Leeds School of Chemistry May 2019 i The candidate confirms that the work submitted is his own and that appropriate credit has been given where reference has been made to the work of others. This copy has been supplied on the understanding that it is copyright material and that no quotation from the report may be published without proper acknowledgement The right of Thomas Dent to be identified as Author of this work has been asserted by him in accordance with the Copyright, Designs and Patents Act 1988. © 2019 The University of Leeds and Thomas J. Dent ii Acknowledgements This project could not have been completed without the help of several individuals who’ve helped guide the project into the finished article. First and foremost I’d like to thank Dr. Bao Nguyen his support, useful discussions and the ability to sift through hundreds of experiments of kinetic data to put together a coherent figure. My writing has come a long way from my transfer report, so all the comments and suggestions seem to have mostly not been in vain. To Paddy, the discussions relating to the NMR studies and anything vaguely inorganic were incredibly useful, and provided me with data that supported our hypothesis with more direct evidence than just the reaction monitoring experiments. Rob, I really enjoyed my time at AZ and your support during my time there was incredibly useful so I could maximise my short secondment when I was getting more results than I knew what to do with.
    [Show full text]
  • Sodium Tetrafluoroborate
    Sodium tetrafluoroborate sc-253597 Material Safety Data Sheet Hazard Alert Code EXTREME HIGH MODERATE LOW Key: Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION PRODUCT NAME Sodium tetrafluoroborate STATEMENT OF HAZARDOUS NATURE CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200. NFPA FLAMMABILITY0 HEALTH3 HAZARD INSTABILITY0 SUPPLIER Santa Cruz Biotechnology, Inc. 2145 Delaware Avenue Santa Cruz, California 95060 800.457.3801 or 831.457.3800 EMERGENCY ChemWatch Within the US & Canada: 877-715-9305 Outside the US & Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112 SYNONYMS NaBF4, "sodium fluoroborate", "sodium borofluoride", "sodium tetrafluoroborate", "borate (1-), tetrafluoro-, sodium", "sodium tetrafluoro borate" Section 2 - HAZARDS IDENTIFICATION CHEMWATCH HAZARD RATINGS Min Max Flammability: 0 Toxicity: 3 Body Contact: 4 Min/Nil=0 Low=1 Reactivity: 0 Moderate=2 High=3 Chronic: 2 Extreme=4 CANADIAN WHMIS SYMBOLS 1 of 9 EMERGENCY OVERVIEW RISK Risk of serious damage to eyes. Irritating to respiratory system and skin. Skin contact may produce health damage*. Cumulative effects may result following exposure*. Inhalation and/or ingestion may produce serious health damage*. * (limited evidence). POTENTIAL HEALTH EFFECTS ACUTE HEALTH EFFECTS SWALLOWED ■ The material can produce severe chemical burns within the oral cavity and gastrointestinal tract following ingestion. ■ Accidental ingestion of the material may be seriously damaging to the health of the individual; animal experiments indicate that ingestion of less than 40 gram may be fatal. ■ Fluoride causes severe loss of calcium in the blood, with symptoms appearing several hours later including painful and rigid muscle contractions of the limbs. Cardiovascular collapse can occur and may cause death with increased heart rate and other heart rhythm irregularities.
    [Show full text]
  • United States Patent 0 ’ CC Patented Nov
    2,859,225 United States Patent 0 ’ CC Patented Nov. 4, 1958 1 2 conversion of lead to tetraethyllead above that obtained in present commercial practice without requiring the use‘ 2,159,225 of metallic sodium, metallic lead, alkyl halogen com6 MANUFACTURE or ORGANOLEAD COMPOUNDS pounds, or lead halides. These and other objects of this invention are accom Sidney M. Blitzer and Tillmon H. Pearson, Baton Rouge, plished by reacting a lead chalko'gen, i. e., lead oxide or La., asignors to Ethyl Corporation, New York, N. Y., sul?de, with a non-lead metalloorganic compound of suf a corporation of Delaware ?cient stability under reaction conditions, where the organo portion is a hydrocarbon radical and wherein the No Drawing. Application March 25 1955 10 Serial No. 496,919 ’ metallo element is directly attached to carbon and may additionally be attached to another metallic element. In 13 Claims. (Cl. 260—437) certain embodiments of this invention it is preferred to employ a catalyst. The so-called metalloid elements are not contemplated as they do not form true metalloorganic This invention relates to a process for the manufacture compounds. Thus, this invention comprises the metatheti of organolead compounds. In particular, this invention is cal reaction between lead chalkogen and a non-lead metal directed to a novel process for the manufacture of tetra loorganic compound. 7 ethyllead from lead oxides and sul?des. In general, the metalloorganic reactants of the present The process employed in present commercial practice invention have the general formula M‘R, or M’MIR," for the manufacture of tetraethyllead has been in use for where M1 and M2 are true metals other than lead, R is a number of years and, in general, is satisfactory.
    [Show full text]
  • Lead Fluoroborate Product Stewardship Summary February 2012
    Lead Fluoroborate Product Stewardship Summary February 2012 Pb(BF4)2 Chemical Name: Lead fluoroborate Chemical Category (if applicable): Inorganic lead compound Synonyms: Lead fluoborate; Lead borofluoride; Lead bis(tetrafluoroborate); Lead(II) tetrafluoroborate; Lead(2+) tetrafluoroborate(1-); Borate(1-), tetrafluoro-, lead (2+); Borate(1-), tetrafluoro-, lead (2+) (2:1); Lead tetrafluoroborate; Lead boron fluoride; and Lead fluoroborate solution CAS Number: 13814-96-5 CAS Name: Lead fluoroborate EC (EINECS) Number: 237-486-0 Other identifier (Please specify): GPS0057 Lead fluoroborate is used as a catalyst in production of linear polyesters, a curing agent for epoxy resins; in electroplating solutions for coating metals with lead, in manufacturing flame- retardants, for electrolytic generation of boron, and in preparations for glazing frits. Exposure can occur at either a lead fluoroborate production facility or at other manufacturing, packaging or storage facilities that handle lead fluoroborate. Persons involved in maintenance, sampling and testing activities, or in the loading and unloading of lead fluoroborate packages are at risk of exposure. The 50% solution when used in electroplating operations may generate airborne mists, but worker exposure can be controlled with the use of proper general mechanical ventilation and personal protective equipment. Good manufacturing practices and industrial hygiene practices are also implemented to prevent or reduce exposure to lead fluoroborate. Workplace exposure limits for both lead and fluoride have been established for use in worksite safety programs. The general public or consumers will not be exposed to lead fluoroborate. Please see the MSDS for additional information. Lead fluoroborate is in the form of either a crystalline powder however the Honeywell product is a 50% solution a clear, colorless liquid that is stable under normal conditions of use and storage.
    [Show full text]
  • Copper Tetrafluoroborate Solution 50 % Cu(BF4)2 / H2O 50% Solution
    PRODUCT STEWARDSHIP SUMMARY Copper tetrafluoroborate solution 50 % Cu(BF4)2 / H2O 50% solution Chemical Name: Copper(II) fluoborate Borate(1-), tetrafluoro-, copper(2+) (2:1), copper(2+) ditetrafluoroborate, copper(2+) tetrafluoroborate(1-), Copper(II) Synonyms: Tetrafluoroborate (ca. 45% in Water), copper(2+) bis(tetrafluoroboranuide) CAS Number: 38465-60-0 CAS Name: EC (EINECS) Number: 253-959-4 Last Revision Date: February 2019 • Copper tetrafluoroborate solution 50% is commonly used in industrial settings as an electroplating material as well as to print circuit boards for electronics. In organic chemistry laboratories, it is used to support the completion of synthetic reactions such as the Diels-Alder. • Given its uses, the primary exposure to this chemical occurs in the industrial setting. However, exposure can also occur to research scientists working in laboratories. Exposure can be mainly by inhalation and skin contact. Good manufacturing and industrial hygiene practices should be followed to prevent or reduce exposure. Workplace exposure limits for the components of this product have been established for use in worksite safety programs. See the Safety Data Sheet (SDS) for additional information. • Copper tetrafluoroborate solution 50% is a blue-green, odorless liquid mixture, completely soluble in water and stable under normal conditions. It is corrosive to metals. This mixture is predominantly composed of 50% copper tetrafluoroborate and 45%water, with tetrafluoroboric acid and fluoroborates composing the remaining 5%. • It is harmful if swallowed and can cause irritation of the respiratory tract if inhaled. It causes severe skin burns and eye damage. In contact with fire, copper tetrafluoroborate solution 50% decomposes to release hazardous hydrogen fluoride, as well as boron and copper oxides.
    [Show full text]
  • SOME SALTS of VERY STRONG ACIDS. by Kenneth Charles Moss. a Thesis Presented in Partial Fulfilment of the Requirements for the D
    SOME SALTS OF VERY STRONG ACIDS. By Kenneth Charles Moss. A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy of the University of London* AUGUST 1962. -1- ABSTRACT An investigation of monohydroxyfluoroborates was undertaken with reference to the sodium, potassium and tetraalkyl ammonium salts as the existence of these, compounds is in some doubt. Sodium and potassium monohydroxyfluoroborates were prepared and characterised, but the tetraalkylammonium salts could not be prepared. Several fluoroborate metal hydrates were prepared and their X-ray photographs indexed. They are found to be isomorphous with the corresponding perchlorates. It was found that silver(2) fluoride reacts with boron trifluoride to give silver(1) fluoroborate. A study oil the solubility of anhydrous first-row transition metal perchlorates, fluoroborates, trifluoroacetates, hexafluoro -phosphates, -vanadates, -silicates and -titanates in organic solvents such se benzene, toluene,ether and nitro- methane was carried out. The d-d spectra of the solutions of these salts in ether were obtained. The preparation of solid anhydrous fluoroborates, perchlorates and trifluoro- acetates from non-aqueous solvents was investigated and mum perchlorates and trifluoroacatates were obtained. Magnetic measurements were made on the solid trifluoroacetates and on solutions of the perchlorates in ether. -12- The stability of complexes of phosphorous penta- fluoride with Group V triaryls was investigated, and.it was found that only triphenylphosphine forms a stable complex. Phosphine-metal-fluorides of Pt, Pd and Ir were prepared from phosphlne-metal-hydrides and are the first complexes to be prepared with both phosphine and fluorine bonded to the same metal atom.
    [Show full text]
  • Dialkylaminodifluorosulfinium Tetrafluoroborate Salts
    Process optimization Dialkylaminodifluorosulfinium Marc-Olivier Turcotte-Savard tetrafluoroborate salts: synthesis and applications MARC-OLIVIER TURCOTTE-SAVARD1*, OLIVIER MAHÉ2, JEAN-FRANÇOIS PAQUIN2 *Corresponding author 1. OmegaChem, 480, Rue Perreault, Lévis, QC, G6W 7V6, Canada 2. Université Laval, Département de chimie, Canada Research Chair in Organic and Medicinal Chemistry, CCVC, PROTEO, 1045 avenue de la Médecine, Québec, QC, G1V 0A6, Canada various fluoride ion acceptors (PF , SeF , SbF and AsF ) along KEyWORDS 5 4 5 5 with DAST-type reagents (7 - 10). However, the reactivity of these Organofluorine chemistry; deoxyfluorination; salts has been scarcely studied until 2009. C-F bond; XtalFluor; dialkylaminodifluorosulfinium Recently, a one-pot preparation of diethylaminodifluorosulfinium tetrafluoroborate salts tetrafluoroborate has been developed. Hence, the addition of THF•BF3 adduct to crude DAST, previously formed from SF4 in ABSTRACT CH2Cl2 and N,N-diethyltrimethylsilylamine, resulted in 90% yield of diethylaminodifluorosulfinium tetrafluoroborate 1 (4). The solid The syntheses of dialkylaminodifluorosulfinium obtained was under a different polymorphic form with higher tetrafluoroborate salts are described. These reagents, melting point (89.8°C vs. 74-76°C) and lower moisture sensitivity first used for the deoxyfluorination of alcohols, compared to the first polymorph reported by Markovskii (5). were also shown to fluorinate aldehydes, ketones, carboxylic acids and glycosyl groups. Alternatively, dialkylaminodifluorosulfinium tetrafluoroborate salts were 14 recently shown to act as activating agents for hydroxyl, carbonyl and carboxyl groups in a variety of transformations leading to non-fluorinated products. Scheme 1. INTRODUCTION Similarly, addition of boron trifluoride etherate to an ice cold solution of crude morpholinosulfur trifluoride gave an excellent ith 30 to 40% of agrochemicals and 20 to 25% of yield of the corresponding tetrafluoroborate salt 2 (4).
    [Show full text]