United States Patent 0 ’ CC Patented Nov

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent 0 ’ CC Patented Nov 2,859,225 United States Patent 0 ’ CC Patented Nov. 4, 1958 1 2 conversion of lead to tetraethyllead above that obtained in present commercial practice without requiring the use‘ 2,159,225 of metallic sodium, metallic lead, alkyl halogen com6 MANUFACTURE or ORGANOLEAD COMPOUNDS pounds, or lead halides. These and other objects of this invention are accom Sidney M. Blitzer and Tillmon H. Pearson, Baton Rouge, plished by reacting a lead chalko'gen, i. e., lead oxide or La., asignors to Ethyl Corporation, New York, N. Y., sul?de, with a non-lead metalloorganic compound of suf a corporation of Delaware ?cient stability under reaction conditions, where the organo portion is a hydrocarbon radical and wherein the No Drawing. Application March 25 1955 10 Serial No. 496,919 ’ metallo element is directly attached to carbon and may additionally be attached to another metallic element. In 13 Claims. (Cl. 260—437) certain embodiments of this invention it is preferred to employ a catalyst. The so-called metalloid elements are not contemplated as they do not form true metalloorganic This invention relates to a process for the manufacture compounds. Thus, this invention comprises the metatheti of organolead compounds. In particular, this invention is cal reaction between lead chalkogen and a non-lead metal directed to a novel process for the manufacture of tetra loorganic compound. 7 ethyllead from lead oxides and sul?des. In general, the metalloorganic reactants of the present The process employed in present commercial practice invention have the general formula M‘R, or M’MIR," for the manufacture of tetraethyllead has been in use for where M1 and M2 are true metals other than lead, R is a number of years and, in general, is satisfactory. How an organic radical, and in particular a hydrocarbon radi ever, it has certain disadvantages which are overcome by cal, and y is an integer from 1 to 4, inclusive. It is not practicing our invention. It proceeds by reacting a sodium intended that the above formulas limit the reactants in lead alloy, of composition controlled to correspond sub the choice of the groups R, as non-lead metalloorganic stantially to NaPb, with ethyl chloride according to the compounds containing a plurality of hydrocarbon radicals, following equation R, can be successfully employed in this invention. In the preferred embodiment of this process the organic radicals are hydrocarbons and particularly are non-aro With the highest yields obtained thereby, only about matic or aromatic radicals. Among the non-aromatic 22 percent of the lead present in the NaPb alloy is con 30 radicals we can employ alkyl or hydrocarbon substituted‘ verted to tetraethyllead. Under conditions of best opera alkyl radicals. In general, we prefer the lower alkyl radi tion of this process, no one heretofore, as far as we are cals having up to about eight carbon atoms. Among the aware, has been able to increase this yield of tetraethyllead aromatic radicals which can be employed in the above by even a few percent, due to the inherent limitation in reaction are included phenyl and hydrocarbon substituted yield as is apparent from the consideration of the above phenyl radicals having up to 10 carbon atoms are satis equation. It should be noted that in this reaction at least factory. Thus, the compounds MR, and M’Mlk, may 75 percent of the lead originally employed is not alkyl be considered alkylating or arylating agents with respect ated. Thus, in this reaction, large quantities of lead must to the lead in the inorganic lead compound. be recovered and reprocessed to NaPb alloy in order to Depending upon the valence of the non-lead metallo make it economical. A further disadvantage of such a element employed, the process of this invention can be large quantity of unreacted lead is that valuable reaction better understood by referring to the following three space in the reaction vessel is occupied by materials which general equations: are essentially inert for the manufacture of tetraethyllead under present conditions and mode of operation. Other processes for the production of organolead com 45 pounds, and in particular tetraethyllead, have been de vised to consume the lead produced in the above equa~ tion. While such processes are satisfactory from the In the equations above, the symbols have the same standpoint of lead consumption, they suffer an additional meaning as hereinbefore de?ned and Y is a chalkogen, drawback in common with the present commercial proc i. e., oxygen or sulfur. In Equation III, n is 0 or 1. Simi ess in that they require organo halide as the ethylating lar equations apply for other metallic elements. agent. One such process is that described in U. S. Patent Among the preferred non-lead metals to be employed 2,535,190 wherein lead as, for example that produced in in the process of this invention are the alkali metals; i. e., the commercial process, is treated with metallic mag lithium, sodium, and potassium; the alkaline earth metals, nesium and ethyl, chloride in the presence of a catalyst, i. e., beryllium, magnesium, calcium, strontium, and preferably an alkyl ether. Thus, in this process as well barium; the group II—B metals, zinc and cadmium; the as the present commercial process, the tetraethyllead group III-A metals, alluminum, gallium, and indium; and manufacturing operation is restricted by the necessary combinations thereof. In such combination, each metal balance between the metallic sodium required and the is only attached to the other metal and to carbon. A pre organic chlorine in the ethyl chloride. A classical method 60 rferred embodiment is the combination of bi-metal metal for the manufacture of tetraethyllead which likewise re loorganic compounds comprising monovalent and tri quires strict balance between metallic magnesium and valent metallo elements. ' organic halide, and has the additional drawback of requir Illustrative of the alkylating or arylating agents which ing highly hazardous ether is the reaction of the so-called can be employed are methyl sodium, methyl potassium, Grignard reagent, for instance ethyl magnesium chloride 65 methyl lithium, dimethyl magnesium, dimethyl calcium, with lead chloride. dimethyl zinc, dimethyl cadmium, trimethyl aluminum,‘ It is therefore an object of this invention to provide a sodium zinc tetramethyl, magnesium aluminum tetra process for the manufacture of organolead compounds methyl, potassium aluminum tetramethyl, ethyl sodium, which overcomes the above objections to the present com ethyl potassium, ethyl lithium, diethyl magnesium, di mercial process and those processes which have been pro 70 ethyl calcium, diethyl zinc, diethyl cadmium, triethyl posed more recently as an improvement there over. Par aluminum, sodium boro tetraethyl, lithium aluminum ticularly, it is an object of the invention to increase the tetraethyl, potassium aluminum tetraethyl, propyl sodi 2,859,225 , 3 4.. um, propyl potassium, propyl lithium, dipropyl magnesi- ’ tetraethyllead can be produced without the co-presence ‘ ut'n, dipropyl calcium, dipropylv ‘zinc, dipropyl cadmium, of ethyl chloride or diethyl ether in the closed vessel. tripropyl aluminum, sodium gallium tetrapropyl, lithium This greatly facilitates ‘control of the reaction and pre aluminum tetrapropyl, aluminum boro tetraethyl, octyl vents the existence of an otherwise hazardous opera sodium, octylpotassium, octyl lithium, dioctyl magnesi tion. After completion of the reaction, the organolead um, dioctyl calcium, dioctyl zinc, dioctyl cadmium, sodi compound produced is in solution in the carrier liquid um aluminum tetraoctyl, potassium aluminum tetraoctyl, and the other products, namely the non-lead oxide, or phenyl sodium, phenyl potassium, phenyl lithium, di sul?de and metallic lead can be removed by ?ltration phenyl magnesium, titanium tetraethyl, diphenyl zinc, di and the organolead compound removed from the car phenyl cadmium, triphenyl aluminum, lithium aluminum 10 rier by distillation. An alternate and successful method tetraphenyl, tolyl sodium, tolyl potassium, tolyl lithium, of recovery comprises discharging the autoclave contents ditolyl calcium, ditolyl zinc, zirconium tetramethyl, tritol into a vessel containing water and recovering the organo yl aluminum, lithium aluminum tetratolyl, potassium lead by steam distillation therefrom. aluminum tetratolyl, naphthyl sodium, naphthyl potas The operation described above can be varied and it is sium, naphthyl lithium, dinaphthyl magnesium, sodium not intended that this invention be limited to the speci?c aluminum tetranaphthyl, lithium aluminum tett'anaph sequence of addition of the reactants. For example, the thyl, and the like. suspension of the non-lead organo metallic compound In addition to the normal alkyl derivatives indicated can be added to the reactor ?rst and then the ?nely di heretofore, branched chain isomers ‘can be employed. vided lead oxide or sul?de added thereto with agitation. Likewise a mixture of two or more compounds MR, 20 . Other modi?cations will be evident. and M’MIR, can be employed, and if- employed along While the above operations were discussed in connec with a redistribution catalyst there is produced a mix tion with a batch operation, they can be successfully ture of organolead compounds containing a multiplicity adapted to a continuous process. In addition to applying-r» #1 of hydrocarbon radicals. Likewise, when the groups R the above operation to a continuous process, other modi are dissimilar, mixed organolead compounds result. ?cations of a continuous process can be made, such as | Among the preferred lead salts employed in this in ?rst mixing together all the reaction materials and then i vention are galena, litharge, massicotite, and chemically passing them continuously through a suitable reaction prepared. lead oxide and sul?de. zone. 7 1 By the process of this invention, as much as 50 per It has been indicated that the process of the present centof the lead in the foregoing lead salts is directly 30 invention is conducted in the presence of an inert car converted to organolead or in particular, in a commercial rier liquid.
Recommended publications
  • Electroanalytical Chemistry of Some Organometallic Compounds of Tin, Lead and Germanium
    ELECTROANALYTICAL CHEMISTRY OF SOME ORGANOMETALLIC COMPOUNDS OF TIN, LEAD AND GERMANIUM by Nani Bhushan Fouzder M.Sc. (Rajshahi) A Thesis Submitted for the Degree of Doctor of Philosophy of the University of London. Chemistry Department, Imperial College of Science and Technology, London S.W.7. September, 1975. 11 ABSTRACT. The present thesis concerns the investigation into the electrochemical behaviour of some industrially important organometallic compounds of tin, lead and germanium and development of suitable electrochemical methods for the analysis of these compounds at formula- tion and at trace level. The basic principles of the electrochemical techniques used inthis investigation have been given in the first part of the 'Introduction', while the various factors which control the electrode process have been discussed in the second part of the 'Introduction' in chapter 1. The electrochemical behaviour and analytical determination of some important organotin fungicides and pesticides such as tri-n-butyltin oxide, triphenyl- tin acetate, etc., some antihelminthic compounds such as dibutyltin dilaureate and dibutyltin dimaleate and some widely used PVC-stabilizers such as di-n-Octyltin dithioglycollic acid ester (Irgastab 17 MOK), Irgastab 17M and Irgastab 15 MOR have been described in the following three chapters. For each type of compound a detailed mechanism of the electrochemical process has been proposed and established. The electrochemical behaviour of organolead compounds and of the organogermanium compounds have been described in the next three chapters. In each case, the mechanism of reduction of these compounds has been established and methods 9fc their determina- tion at ordinary and at trace level have been developed. Finally, in the eighth chapter a brief intro- duction into the highspeed liquid chromatographic technique has been given and analysis of organotin compounds by this method using a wall-jet electrode detector has been described.
    [Show full text]
  • Toxicological Profile for Lead
    LEAD 355 CHAPTER 5. POTENTIAL FOR HUMAN EXPOSURE 5.1 OVERVIEW Pb and Pb compounds have been identified in at least 1,287 and 46 sites, respectively, of the 1,867 hazardous waste sites that have been proposed for inclusion on the EPA National Priorities List (NPL) (ATSDR 2019). However, the number of sites evaluated for Pb is not known. The number of sites in each state is shown in Figures 5-1 and 5-2, respectively. Of these 1,287 sites for Pb, 1,273 are located within the United States, 2 are located in the Virgin Islands, 2 are located in Guam, and 10 are located in Puerto Rico (not shown). All the sites for Pb compounds are only in the United States. Figure 5-1. Number of NPL Sites with Lead Contamination LEAD 356 5. POTENTIAL FOR HUMAN EXPOSURE Figure 5-2. Number of NPL Sites with Lead Compound Contamination • Pb is an element found in concentrated and easily accessible Pb ore deposits that are widely distributed throughout the world. • The general population may be exposed to Pb in ambient air, foods, drinking water, soil, and dust. For adults, exposure to levels of Pb beyond background are usually associated with occupational exposures. • For children, exposure to high levels of Pb are associated with living in areas contaminated by Pb (e.g., soil or indoor dust in older homes with Pb paint). Exposure usually occurs by hand-to- mouth activities. • As an element, Pb does not degrade. However, particulate matter contaminated with Pb can move through air, water, and soil.
    [Show full text]
  • Genesis and Evolution in the Chemistry of Organogermanium, Organotin and Organolead Compounds
    CHAPTER 1 Genesis and evolution in the chemistry of organogermanium, organotin and organolead compounds MIKHAIL G. VORONKOV and KLAVDIYA A. ABZAEVA A. E. Favorsky Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Str., 664033 Irkutsk, Russia e-mail: [email protected] The task of science is to induce the future from the past Heinrich Herz I. INTRODUCTION ..................................... 2 II. ORGANOGERMANIUM COMPOUNDS ...................... 5 A. Re-flowering after Half a Century of Oblivion ................. 5 B. Organometallic Approaches to a CGe and GeGe Bond ......... 6 C. Nonorganometallic Approaches to a CGe Bond ............... 11 D. CGe Bond Cleavage. Organylhalogermanes ................. 13 E. Compounds having a GeH Bond ........................ 14 F. Organogermanium Chalcogen Derivatives .................... 17 G. Organogermanium Pnicogen Derivatives ..................... 26 H. Compounds having a Hypovalent and Hypervalent Germanium Atom .................................... 29 I. Biological Activity ................................... 32 III. ORGANOTIN COMPOUNDS ............................. 33 A. How it All Began ................................... 33 B. Direct Synthesis ..................................... 36 C. Organometallic Synthesis from Inorganic and Organic Tin Halides ... 39 D. Organotin Hydrides .................................. 41 E. Organylhalostannanes. The CSn Bond Cleavage .............. 43 The chemistry of organic germanium, tin and lead compounds —Vol.2 Edited by
    [Show full text]
  • Transfer Report
    LOW AND ZERO SAPS ANTIWEAR ADDITIVES FOR ENGINE OILS by Juliane F. L. Benedet A Thesis submitted to Imperial College London in fulfilment of the degree of Doctor of Philosophy and the Diploma of Imperial College. November 2012 Tribology Section Department of Mechanical Engineering Imperial College of Science, Technology and Medicine London PREFACE This thesis is a description of work carried out in the Tribology Section of the Department of Mechanical Engineering, Imperial College of Science, Technology and Medicine, London, under the supervision of Professor Hugh A. Spikes. Except where acknowledged, this material is original work and no part of it has been submitted for a degree at this or any other university. ABSTRACT Almost all modern engine lubricants use the additive zinc dialkyldithiophosphate (ZDDP) to provide antiwear and extreme pressure protection. However existing and proposed emissions regulations include constraints in the concentration of ZDDP or other sulphated ash-, phosphorus- and sulphur- (SAPS) containing additives in engine oils, as well as limits to the permissible phosphorus loss from the oil in running engines. The deleterious effects of SAPS on exhaust aftertreatment systems from ZDDP decomposition has lead to a great interest in identifying alternative low and zero SAPS antiwear additives that can partially of fully replace ZDDP in the next generation of engine oils to extend the life of exhaust after-treatment systems. The aim of the work described in this thesis is to explore under the same test conditions, the film-forming, friction and wear-reducing properties of a very wide range of low and zero SAPS antiwear additives as possible replacements for ZDDP in engine oils, and, where additive types are effective, to investigate their mechanism of action.
    [Show full text]
  • United States Patent Office Patented Nov
    2,859,228 United States Patent Office Patented Nov. 4, 1958 2 plished by reacting a lead halide wherein the halide has an atomic weight greater than 35, that is the chlorides, 2,859,228 bromides, and iodides of lead, and mixed lead halides, with an organo metallic compound of group III A of the MANUEFACTURE OF ORGANOLEAD COMPOUNDS 5 periodic table, that is boron, aluminum gallium, and in Sidney M. Blitzer and Tillmon H. Pearson, Baton Rouge, dium, wherein the group II. A metal is the sole metal La., assignors to Ethyl Corporation, New York, N.Y., in the metallo organic compound. a corporation of Delaware In accordance with this invention, it has been dis covered that to produce organolead compounds it is un No Drawing. Application March 28, 1955 O necessary, to start with a lead alloy, or in fact to em. Seria No. 497,378 ploy metallic lead at all. Among the lead halides that 7 Claims. C.260-437) can be employed in the process of this invention are lead chloride, lead bromide, leadiodide, lead bromoiodide, lead chloroiodide, and lead chlorobromide. This invention relates to a process for the manufacture 5 The process of the present invention can best be under of organolead compounds. In particular, this invention stood by considering the: chemical equation involved. In is directed to an improved process for the manufacture general, the process proceeds according to the equation of tetraethyllead. The process employed in present commercial practice for the manufacture of tetraethylead has been in use for where R is an organic radical and X is halogen having a number of years and, in general, is satisfactory.
    [Show full text]
  • "Front Matter and Index". In: Analytical Atomic Spectrometry with Flames and Plasmas
    Analytical Atomic Spectrometry with Flames and Plasmas. Jose A. C. Broekaert Copyright > 2002 Wiley-VCH Verlag GmbH & Co. KGaA ISBNs: 3-527-30146-1 (Hardback); 3-527-60062-0 (Electronic) Jose A. C. Broekaert Analytical Atomic Spectrometry with Flames and Plasmas Analytical Atomic Spectrometry with Flames and Plasmas. Jose A. C. Broekaert Copyright > 2002 Wiley-VCH Verlag GmbH & Co. KGaA ISBNs: 3-527-30146-1 (Hardback); 3-527-60062-0 (Electronic) Analytical Atomic Spectrometry with Flames and Plasmas Valeur, B. Molecular Fluorescence. Principles and Applications 2001. ISBN 3-527-29919-X Gunzler, H. and Williams, A. Handbook of Analytical Techniques 2001. ISBN 3-527-30165-8 Hubschmann, H.-J. Handbook of GC/MS 2001. ISBN 3-527-30170-4 Welz, B. and Sperling, M. Atomic Absorption Spectrometry Third, Completely Revised Edition 1998. ISBN 3-527-28571-7 Analytical Atomic Spectrometry with Flames and Plasmas. Jose A. C. Broekaert Copyright > 2002 Wiley-VCH Verlag GmbH & Co. KGaA ISBNs: 3-527-30146-1 (Hardback); 3-527-60062-0 (Electronic) Jose A. C. Broekaert Analytical Atomic Spectrometry with Flames and Plasmas Weinheim ± New York ± Chichester ± Brisbane ± Singapore ± Toronto Analytical Atomic Spectrometry with Flames and Plasmas. Jose A. C. Broekaert Copyright > 2002 Wiley-VCH Verlag GmbH & Co. KGaA ISBNs: 3-527-30146-1 (Hardback); 3-527-60062-0 (Electronic) Prof. Dr. Jose A. C. Broekaert Typesetting Asco Typesetters, Hong Kong UniversitaÈt Leipzig Printing betz-druck gmbH, D-64291 Institut fuÈr Analytische Chemie Darmstadt LinneÂstraûe 3 Bookbinding Wilhelm Osswald & Co., 67433 04103 Leipzig Neustadt Germany ISBN 3-527-30146-1 9 This book was carefully produced.
    [Show full text]
  • 1 the Metabolism of Triphenyllead
    1 THE METABOLISM OF TRIPHENYLLEAD ACETATE IN THE RAT by Barbara Morris Being a thesis submitted for the degree of Doctor of Philosophy in the University of London November, 1975 Department of Biochemistry St. Mary's Hospital Medical School London. 2 ACKNOWLEDGEMENTS I am sincerely grateful to Professor R.T. Williams for his supervision of this project. I particularly wish to thank Dr. Graham Dring for his continued interest and great patience during the period of this research. My thanks must also be extended to my colleagues of the Biochemistry Department for many useful discussions. I am indebted to Mr. F. Audas and his technical staff for their continued help. I wish to give my thanks to the staff of the M.R.C. Cyclotron Unit for the gifts of 203Pb and to Drs. Smith and Barltrop of the Paediatrics Department for their help over the counting of this isotope. I also wish to thank Dr. Drasar of the Bacteriology Department for his help with the bacteriological studies. I am indebted to the Medical Research Council and to Pure Chemicals Ltd. for their supporting grants. Finally I wish to thank my parents and husband for their fin- ancial support during my extended education and my mother and husband for their help with the typing of this thesis. 3 ABSTRACT The metabolic fate of triphenyllead acetate, a potential mollus- cicide, has been studied in the rat. Three isotopically labelled 14 forms of the compound were synthesized namely tri(U- C)phenyllead 203 acetate, tn...( 3- H)phenyllead acetate and triphenyl( Pb)lead acetate.
    [Show full text]
  • Bioremediation of Arsenic, Chromium, Lead, and Mercury
    Bioremediation of Arsenic, Chromium, Lead, and Mercury August 2004 Prepared by Adebowale Adeniji National Network of Environmental Management Studies Fellow for U.S. Environmental Protection Agency Office of Solid Waste and Emergency Response Technology Innovation Office Washington, DC www.clu-in.org 1 Bioremediation of Arsenic, Chromium, Lead, and Mercury NOTICE This document was prepared by Adebowale Adeniji, a National Network of Environmental Management studies grantee, under a fellowship from the U.S. Environmental Protection Agency. This report was not subject to EPA peer review or technical review. The EPA makes no warranties, expressed or implied, including without limitation, warranty for completeness, accuracy, or usefulness of the information, warranties as to the merchantability, or fitness for a particular purpose. Moreover, the listing of any technology, corporation, company, person, or facility in this report does not constitute endorsement, approval, or recommendation by the EPA. This report provides a basic orientation and current status of bioremediation for contaminants located in the subsurface. This report contains information gathered from a range of currently available sources, including project documents, reports, periodicals, Internet searches, and personal communication with involved parties. References for each case study are provided immediately following the case study. All sources are organized in alphabetical order at the end of the document. No attempts were made to independently confirm the resources used. It has been reproduced to help provide federal agencies, states, consulting engineering firms, private industries, and technology developers with information on the current status of this project. This paper addresses the status of the application of biological treatment to clean up hazardous metals from the earth’s subsurface (i.e., in situ bioremediation).
    [Show full text]
  • United States Patent Office
    2,897,071 United States Patent Office Patented July 28, 1959 1 2 ber of operational difficulties, including loss of antiknock effectiveness, carburetion difficulties such as the clogging of jets, filters, screens and the like resulting from the 2,897,071 formation of sludge, gum and other types of sediment, GASOLINE FUELS 5 as well as the above-described effects upon the color of Lewis F. Gilbert, Detroit, Mich., assignor to Ethy Cor the identified antiknock fluids. poration, New York, N.Y., a corporation of Delaware The prior art contains many proposals whereby one or more of these difficulties may be obviated, but these have No Drawing. Application June 30, 1953 not proved very satisfactory because of the inherent con Serial No. 365,265 0. plexity of the problem. For example, although many antioxidants have been developed which satisfactorily 4 Claims. C. 44-69) protect oxygen-sensitive fuels, oils and other, inherently unstable organic hydrocarbons against atmospheric de terioration, such antioxidants almost without exception This invention relates to the improvement of organo 5 are unsatisfactory for the protection of organolead.com lead material and in particular to adjuvants for tetra pounds and organolead-containing compositions. ethyllead and tetraethylead-containing compositions. When organolead-containing compositions are utilized Organolead compounds have long been known as anti in internal combustion engines other difficulties are fre knock agents for fuel adapted for use in spark ignition quently encountered. As indicated previously, antiknock type internal combustion engines. Thus, it has been pro 20 fluids are provided with corrective agents or scavengers posed in the prior art to use lead aryls such as tetra so as to effectively reduce the amount of metallic de phenylead and lead alkyls such as tetramethyl posits in the engine by forming volatile metallic com lead, tetraethylead, tetrapropyllead, dimethyldiethyl pounds which emanate from the engine in the exhaust lead, and the like as antiknock agents.
    [Show full text]
  • The Effect of Organometallic and Quaternary Ammonium Compounds on the Growth of Microorganisms Lowell Lawrence Wallen Iowa State College
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1954 The effect of organometallic and quaternary ammonium compounds on the growth of microorganisms Lowell Lawrence Wallen Iowa State College Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Biochemistry Commons Recommended Citation Wallen, Lowell Lawrence, "The effect of organometallic and quaternary ammonium compounds on the growth of microorganisms " (1954). Retrospective Theses and Dissertations. 14151. https://lib.dr.iastate.edu/rtd/14151 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overiaps.
    [Show full text]
  • Organolead Compounds Edmund B
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1932 Organolead compounds Edmund B. Towne Iowa State College Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Organic Chemistry Commons Recommended Citation Towne, Edmund B., "Organolead compounds" (1932). Retrospective Theses and Dissertations. 14733. https://lib.dr.iastate.edu/rtd/14733 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. BY Signature was redacted for privacy. Signature was redacted for privacy. Signature was redacted for privacy. UMI Number: DP14602 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. UMI UMI Microform DP14602 Copyright 2006 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, Ml 48106-1346 Q^XJH i'A,, r ^ T" 6:= & o ACniO??13DC3£S!l1' Th® writer -wislieB to ©xpross hia appreeiatloa to Doe tor Henry G'ilmaii irliose InTalaable advice aad, encouragement haTe ' made tliis work possible.
    [Show full text]
  • Erythrocyte Hemolysis by Organic Tin and Lead Compounds H
    Erythrocyte Hemolysis by Organic Tin and Lead Compounds H. Kleszczyńska, J. Hładyszowski, H. Pruchnik and S. Przestalski Department of Physics and Biophysics, Agricultural University, Norwida 25, 50-375 Wroclaw, Poland Z. Naturforsch. 52c, 6 5 -6 9 (1997); received August 9/October 7, 1996 Organoleads, Organotins, Erythrocyte Membrane, Hemolysis, Electric Potential The effect of trialkyllead and trialkyltin on pig erythrocyte hemolysis has been studied and compared. The results of experiments showed that the hemolytic activity of organoleads increases with their hydrophobicity and follows the sequence: triethyllead chloride < tri-n- propyllead chloride < tributyllead chloride. And similarly in the case of organotins: triethyltin chloride < tri-n-propyltin chloride < tributyltin chloride. Comparison of the hemolytic activity of organoleads and organotins indicates that the lead compounds exhibit higher hemolytic activity. The methods of quantum chemistry allowed to determine the maximum electric potential of the ions R3Pb+ and R3Sn+, and suggest a relationship between the potential and toxicity. Introductions etc. (Crowe, 1987). Organolead compounds, The practical importance of studies on the in­ mainly tetraethyllead compounds have been used teraction between organic compounds of tin and in large quantities as antiknock petrol additives, lead and living organisms follows from the fact triphenyllead salts have been introduced, among that the compounds accumulate in our environ­ others, as pesticides having a similar biocidal ment and the biosphere and exert a marked effect action as tin compound and others (Zimmermann on living cells and higher organisms (e.g. Krug, et al., 1988). Organotin and organolead compound 1992; Kumar et al., 1993; Falcioni et al., 1996). Con­ are toxic to humans, animals, plants and cells taminations of living organisms with organic com­ (Röderer, 1986; Radecki et al., 1989; Eng et al., pounds of tin and lead depend on the local con­ 1991; Aldridge and Cremer, 1995).
    [Show full text]