Investigations Into the Synthesis and Properties of Atropisomeric N–Heterocyclic Carbenes

Total Page:16

File Type:pdf, Size:1020Kb

Investigations Into the Synthesis and Properties of Atropisomeric N–Heterocyclic Carbenes Investigations Into the Synthesis and Properties of Atropisomeric N–Heterocyclic Carbenes A Thesis Submitted for the Degree of Doctor of Philosophy in Chemistry at the University of New South Wales School of Chemistry By MILENA L. CZYZ MARCH 2012 THE UNIVERSITY OF NEW SOUTH WALES Thesis/Dissertation Sheet Surname or Family name: CZYZ First name: MILENA Other name/s: LIDIA Abbreviation for degree as given in the University calendar: PhD School: CHEMISTRY Faculty: SCIENCES Title: Investigations into the Synthesis and Properties of Atropisomeric N-Heterocyclic Carbenes Abstract 350 words maximum: This thesis describes the development of chiral N–heterocyclic carbenes (NHCs) substituted with N–binaphthyl groups. Their catalytic utility is examined in homogenous organometallic reactions and organocatalysis. Chapter 1 provides an introduction to asymmetric catalysis. The use of chiral phosphines is described, followed by the properties, design and applications of chiral NHCs. Chapter 2 discusses the synthesis of NHC precursors with biaryl substituents and chirality at the 4- and 5-positions of the imidazole. Two pathways utilising Pd–catalysed reactions were examined, however preparation of the target compound proved challenging. This resulted in the development of a new design, where chirality is moved from the backbone to the N–substituents. This approach required access to atropisomeric binapthyl amines as the key starting materials. Chapter 3 describes the synthesis of atropisomeric binaphthyl amines using the asymmetric Pinhey–Barton chemistry and the BINOL approach. Chiral oxazoline ligands were applied to the Pinhey–Barton reaction for the first time, and their interactions with aryllead triacetates investigated using 1H NMR spectroscopy. The preparation of the required binaphthyl amine was achieved by selective functionalisation of (M)–BINOL. Chapter 4 describes the transformation of the atropisomeric binaphthyl amine into imidazolium salt disubstituted with chiral binaphthyls. Complexes with transition metals were synthesised and their electronic properties and conformational stabilities examined using spectroscopic techniques. In catalysis, the new Rh(I)–NHC complexes showed good reactivities in the asymmetric hydrosilylation and hydrogen transfer reactions, however only poor enantioselecties were observed. Efforts to improve reactivity did not result in a corresponding increase in enantioselectivity, highlighting the need to minimise exocyclic C–N bond rotation. Expansion of the family of atropisomeric NHC precursors to include 1,2,4–triazolium and thiazolium salts and their application in organocatalysis is described in Chapter 5. The fluxionality of the heteroazolium salts was examined using 1H NMR spectroscopy. They showed interesting reactivities in the Stetter and Baylis–Hillman reactions, giving an insight into the effect of the steric properties of the NHC on chemoselectivity. Chapter 6 provides a summary of the work described in this thesis and suggests future developments. Full experimental procedures are included in Chapter 7. Declaration relating to disposition of project thesis/dissertation I hereby grant to the University of New South Wales or its agents the right to archive and to make available my thesis or dissertation in whole or in part in the University libraries in all forms of media, now or here after known, subject to the provisions of the Copyright Act 1968. I retain all property rights, such as patent rights. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation. I also authorise University Microfilms to use the 350 word abstract of my thesis in Dissertation Abstracts International (this is applicable to doctoral theses only). ……………………… ……………………………………..……………… ……….……………………...…….… Signature Witness Date The University recognises that there may be exceptional circumstances requiring restrictions on copying or conditions on use. Requests for restriction for a period of up to 2 years must be made in writing. Requests for a longer period of restriction may be considered in exceptional circumstances and require the approval of the Dean of Graduate Research. FOR OFFICE USE ONLY Date of completion of requirements for Award: i ORIGINALITY STATEMENT ‘I hereby declare that this submission is my own work and to the best of my knowledge it contains no materials previously published or written by another person, or substantial proportions of material which have been accepted for the award of any other degree or diploma at UNSW or any other educational institution, except where due acknowledgement is made in the thesis. Any contribution made to the research by others, with whom I have worked at UNSW or elsewhere, is explicitly acknowledged in the thesis. I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the project's design and conception or in style, presentation and linguistic expression is acknowledged.’ Signed …………………………………………….............. Date …………………………………………….............. ii COPYRIGHT STATEMENT ‘I hereby grant the University of New South Wales or its agents the right to archive and to make available my thesis or dissertation in whole or part in the University libraries in all forms of media, now or here after known, subject to the provisions of the Copyright Act 1968. I retain all proprietary rights, such as patent rights. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation. I also authorise University Microfilms to use the 350 word abstract of my thesis in Dissertation Abstract International (this is applicable to doctoral theses only). I have either used no substantial portions of copyright material in my thesis or I have obtained permission to use copyright material; where permission has not been granted I have applied/will apply for a partial restriction of the digital copy of my thesis or dissertation.' Signed ……………………………………………........................... Date ……………………………………………........................... AUTHENTICITY STATEMENT ‘I certify that the Library deposit digital copy is a direct equivalent of the final officially approved version of my thesis. No emendation of content has occurred and if there are any minor variations in formatting, they are the result of the conversion to digital format.’ Signed ……………………………………………........................... Date ……………………………………………........................... iii Acknowledgements First of all, I would like to thank my supervisor, A/Prof Jonathan Morris, for his guidance and support throughout my PhD. I appreciate all the time you have spent discussing my project, answering my questions, challenging me and coming up with new ideas. I am especially grateful for your assistance in the last 6 months. I would like to extend this thank you to my co-supervisor, A/Prof Marcus Cole, for his helpful suggestions, insights and a slightly different perspectives on this project, and for the X-ray crystal structures. I am very grateful that you found time to read and correct drafts of this thesis. Thanks to the entire Morris Group, those back in Adelaide (Jason, Erin and Scott) and here at UNSW. In particular, I would like to acknowledge Dr Jason Brusnahan for spending a lot of time helping me out when I first joined the group. Special thank you to Belinda, who's been such a wonderful friend, housemate and a travel companion. Thank you Hamish for running HRMS samples, lunchtime "chats" and (I know I will deeply regret saying this) just being yourself. Justin, for facing my grumpiness in the lab right next to me with admirable stoicism; Joana, for all the lollies and ganging up with me against Hamish; and Veronica for coffee breaks and sharing my enjoyment of geeky jokes that nobody else appreciated. Thank you to the Cole Group, especially Sam and Matt, for helping with transition to UNSW and the great tradition of Friday Night Drinks. Thank you Sam for being a great housemate, a gym buddy and for always letting me vent after a particularly vexing day in the lab. Thank you for organising the "Milena's Submission Partay!" Thank you to all the technical support officers in Adelaide and Sydney: especially Dr Donald Thomas, Dr Douglas Lawes and Adelle Amoore (UNSW NMR facility) and Lewis Adler and Dr Leanne Stephenson (BMSF). Thank you Adelaide University for the PhD scholarship and UNSW for the APA. Thank you Ben for your understanding over the past two years. I know it hasn't been easy, but you never complained and were always considerate and supportive. Last, but not least, I would like to thank all my family for their love and support. I'm always looking forward to flying back home, where I rest and recharge my batteries, and it's a great comfort to know that I can always do that. I am extremely grateful to my Mum for having that insane determination over 10 years ago, because, otherwise, I would definitely not be here now. iv Abstract This thesis describes the development of chiral N–heterocyclic carbenes (NHCs) substituted with N–binaphthyl groups. Their catalytic utility is examined in homogenous organometallic reactions and organocatalysis. Chapter 1 provides an introduction to asymmetric catalysis with a discussion of how chiral phosphines are used, followed by the properties, design and applications of chiral NHCs. Chapter 2 discusses the synthesis of NHC precursors with biaryl substituents and chirality at the 4– and 5–positions of the imidazole.
Recommended publications
  • Electroanalytical Chemistry of Some Organometallic Compounds of Tin, Lead and Germanium
    ELECTROANALYTICAL CHEMISTRY OF SOME ORGANOMETALLIC COMPOUNDS OF TIN, LEAD AND GERMANIUM by Nani Bhushan Fouzder M.Sc. (Rajshahi) A Thesis Submitted for the Degree of Doctor of Philosophy of the University of London. Chemistry Department, Imperial College of Science and Technology, London S.W.7. September, 1975. 11 ABSTRACT. The present thesis concerns the investigation into the electrochemical behaviour of some industrially important organometallic compounds of tin, lead and germanium and development of suitable electrochemical methods for the analysis of these compounds at formula- tion and at trace level. The basic principles of the electrochemical techniques used inthis investigation have been given in the first part of the 'Introduction', while the various factors which control the electrode process have been discussed in the second part of the 'Introduction' in chapter 1. The electrochemical behaviour and analytical determination of some important organotin fungicides and pesticides such as tri-n-butyltin oxide, triphenyl- tin acetate, etc., some antihelminthic compounds such as dibutyltin dilaureate and dibutyltin dimaleate and some widely used PVC-stabilizers such as di-n-Octyltin dithioglycollic acid ester (Irgastab 17 MOK), Irgastab 17M and Irgastab 15 MOR have been described in the following three chapters. For each type of compound a detailed mechanism of the electrochemical process has been proposed and established. The electrochemical behaviour of organolead compounds and of the organogermanium compounds have been described in the next three chapters. In each case, the mechanism of reduction of these compounds has been established and methods 9fc their determina- tion at ordinary and at trace level have been developed. Finally, in the eighth chapter a brief intro- duction into the highspeed liquid chromatographic technique has been given and analysis of organotin compounds by this method using a wall-jet electrode detector has been described.
    [Show full text]
  • Toxicological Profile for Lead
    LEAD 355 CHAPTER 5. POTENTIAL FOR HUMAN EXPOSURE 5.1 OVERVIEW Pb and Pb compounds have been identified in at least 1,287 and 46 sites, respectively, of the 1,867 hazardous waste sites that have been proposed for inclusion on the EPA National Priorities List (NPL) (ATSDR 2019). However, the number of sites evaluated for Pb is not known. The number of sites in each state is shown in Figures 5-1 and 5-2, respectively. Of these 1,287 sites for Pb, 1,273 are located within the United States, 2 are located in the Virgin Islands, 2 are located in Guam, and 10 are located in Puerto Rico (not shown). All the sites for Pb compounds are only in the United States. Figure 5-1. Number of NPL Sites with Lead Contamination LEAD 356 5. POTENTIAL FOR HUMAN EXPOSURE Figure 5-2. Number of NPL Sites with Lead Compound Contamination • Pb is an element found in concentrated and easily accessible Pb ore deposits that are widely distributed throughout the world. • The general population may be exposed to Pb in ambient air, foods, drinking water, soil, and dust. For adults, exposure to levels of Pb beyond background are usually associated with occupational exposures. • For children, exposure to high levels of Pb are associated with living in areas contaminated by Pb (e.g., soil or indoor dust in older homes with Pb paint). Exposure usually occurs by hand-to- mouth activities. • As an element, Pb does not degrade. However, particulate matter contaminated with Pb can move through air, water, and soil.
    [Show full text]
  • United States Patent 0 ’ CC Patented Nov
    2,859,225 United States Patent 0 ’ CC Patented Nov. 4, 1958 1 2 conversion of lead to tetraethyllead above that obtained in present commercial practice without requiring the use‘ 2,159,225 of metallic sodium, metallic lead, alkyl halogen com6 MANUFACTURE or ORGANOLEAD COMPOUNDS pounds, or lead halides. These and other objects of this invention are accom Sidney M. Blitzer and Tillmon H. Pearson, Baton Rouge, plished by reacting a lead chalko'gen, i. e., lead oxide or La., asignors to Ethyl Corporation, New York, N. Y., sul?de, with a non-lead metalloorganic compound of suf a corporation of Delaware ?cient stability under reaction conditions, where the organo portion is a hydrocarbon radical and wherein the No Drawing. Application March 25 1955 10 Serial No. 496,919 ’ metallo element is directly attached to carbon and may additionally be attached to another metallic element. In 13 Claims. (Cl. 260—437) certain embodiments of this invention it is preferred to employ a catalyst. The so-called metalloid elements are not contemplated as they do not form true metalloorganic This invention relates to a process for the manufacture compounds. Thus, this invention comprises the metatheti of organolead compounds. In particular, this invention is cal reaction between lead chalkogen and a non-lead metal directed to a novel process for the manufacture of tetra loorganic compound. 7 ethyllead from lead oxides and sul?des. In general, the metalloorganic reactants of the present The process employed in present commercial practice invention have the general formula M‘R, or M’MIR," for the manufacture of tetraethyllead has been in use for where M1 and M2 are true metals other than lead, R is a number of years and, in general, is satisfactory.
    [Show full text]
  • Genesis and Evolution in the Chemistry of Organogermanium, Organotin and Organolead Compounds
    CHAPTER 1 Genesis and evolution in the chemistry of organogermanium, organotin and organolead compounds MIKHAIL G. VORONKOV and KLAVDIYA A. ABZAEVA A. E. Favorsky Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Str., 664033 Irkutsk, Russia e-mail: [email protected] The task of science is to induce the future from the past Heinrich Herz I. INTRODUCTION ..................................... 2 II. ORGANOGERMANIUM COMPOUNDS ...................... 5 A. Re-flowering after Half a Century of Oblivion ................. 5 B. Organometallic Approaches to a CGe and GeGe Bond ......... 6 C. Nonorganometallic Approaches to a CGe Bond ............... 11 D. CGe Bond Cleavage. Organylhalogermanes ................. 13 E. Compounds having a GeH Bond ........................ 14 F. Organogermanium Chalcogen Derivatives .................... 17 G. Organogermanium Pnicogen Derivatives ..................... 26 H. Compounds having a Hypovalent and Hypervalent Germanium Atom .................................... 29 I. Biological Activity ................................... 32 III. ORGANOTIN COMPOUNDS ............................. 33 A. How it All Began ................................... 33 B. Direct Synthesis ..................................... 36 C. Organometallic Synthesis from Inorganic and Organic Tin Halides ... 39 D. Organotin Hydrides .................................. 41 E. Organylhalostannanes. The CSn Bond Cleavage .............. 43 The chemistry of organic germanium, tin and lead compounds —Vol.2 Edited by
    [Show full text]
  • Transfer Report
    LOW AND ZERO SAPS ANTIWEAR ADDITIVES FOR ENGINE OILS by Juliane F. L. Benedet A Thesis submitted to Imperial College London in fulfilment of the degree of Doctor of Philosophy and the Diploma of Imperial College. November 2012 Tribology Section Department of Mechanical Engineering Imperial College of Science, Technology and Medicine London PREFACE This thesis is a description of work carried out in the Tribology Section of the Department of Mechanical Engineering, Imperial College of Science, Technology and Medicine, London, under the supervision of Professor Hugh A. Spikes. Except where acknowledged, this material is original work and no part of it has been submitted for a degree at this or any other university. ABSTRACT Almost all modern engine lubricants use the additive zinc dialkyldithiophosphate (ZDDP) to provide antiwear and extreme pressure protection. However existing and proposed emissions regulations include constraints in the concentration of ZDDP or other sulphated ash-, phosphorus- and sulphur- (SAPS) containing additives in engine oils, as well as limits to the permissible phosphorus loss from the oil in running engines. The deleterious effects of SAPS on exhaust aftertreatment systems from ZDDP decomposition has lead to a great interest in identifying alternative low and zero SAPS antiwear additives that can partially of fully replace ZDDP in the next generation of engine oils to extend the life of exhaust after-treatment systems. The aim of the work described in this thesis is to explore under the same test conditions, the film-forming, friction and wear-reducing properties of a very wide range of low and zero SAPS antiwear additives as possible replacements for ZDDP in engine oils, and, where additive types are effective, to investigate their mechanism of action.
    [Show full text]
  • United States Patent Office Patented Nov
    2,859,228 United States Patent Office Patented Nov. 4, 1958 2 plished by reacting a lead halide wherein the halide has an atomic weight greater than 35, that is the chlorides, 2,859,228 bromides, and iodides of lead, and mixed lead halides, with an organo metallic compound of group III A of the MANUEFACTURE OF ORGANOLEAD COMPOUNDS 5 periodic table, that is boron, aluminum gallium, and in Sidney M. Blitzer and Tillmon H. Pearson, Baton Rouge, dium, wherein the group II. A metal is the sole metal La., assignors to Ethyl Corporation, New York, N.Y., in the metallo organic compound. a corporation of Delaware In accordance with this invention, it has been dis covered that to produce organolead compounds it is un No Drawing. Application March 28, 1955 O necessary, to start with a lead alloy, or in fact to em. Seria No. 497,378 ploy metallic lead at all. Among the lead halides that 7 Claims. C.260-437) can be employed in the process of this invention are lead chloride, lead bromide, leadiodide, lead bromoiodide, lead chloroiodide, and lead chlorobromide. This invention relates to a process for the manufacture 5 The process of the present invention can best be under of organolead compounds. In particular, this invention stood by considering the: chemical equation involved. In is directed to an improved process for the manufacture general, the process proceeds according to the equation of tetraethyllead. The process employed in present commercial practice for the manufacture of tetraethylead has been in use for where R is an organic radical and X is halogen having a number of years and, in general, is satisfactory.
    [Show full text]
  • "Front Matter and Index". In: Analytical Atomic Spectrometry with Flames and Plasmas
    Analytical Atomic Spectrometry with Flames and Plasmas. Jose A. C. Broekaert Copyright > 2002 Wiley-VCH Verlag GmbH & Co. KGaA ISBNs: 3-527-30146-1 (Hardback); 3-527-60062-0 (Electronic) Jose A. C. Broekaert Analytical Atomic Spectrometry with Flames and Plasmas Analytical Atomic Spectrometry with Flames and Plasmas. Jose A. C. Broekaert Copyright > 2002 Wiley-VCH Verlag GmbH & Co. KGaA ISBNs: 3-527-30146-1 (Hardback); 3-527-60062-0 (Electronic) Analytical Atomic Spectrometry with Flames and Plasmas Valeur, B. Molecular Fluorescence. Principles and Applications 2001. ISBN 3-527-29919-X Gunzler, H. and Williams, A. Handbook of Analytical Techniques 2001. ISBN 3-527-30165-8 Hubschmann, H.-J. Handbook of GC/MS 2001. ISBN 3-527-30170-4 Welz, B. and Sperling, M. Atomic Absorption Spectrometry Third, Completely Revised Edition 1998. ISBN 3-527-28571-7 Analytical Atomic Spectrometry with Flames and Plasmas. Jose A. C. Broekaert Copyright > 2002 Wiley-VCH Verlag GmbH & Co. KGaA ISBNs: 3-527-30146-1 (Hardback); 3-527-60062-0 (Electronic) Jose A. C. Broekaert Analytical Atomic Spectrometry with Flames and Plasmas Weinheim ± New York ± Chichester ± Brisbane ± Singapore ± Toronto Analytical Atomic Spectrometry with Flames and Plasmas. Jose A. C. Broekaert Copyright > 2002 Wiley-VCH Verlag GmbH & Co. KGaA ISBNs: 3-527-30146-1 (Hardback); 3-527-60062-0 (Electronic) Prof. Dr. Jose A. C. Broekaert Typesetting Asco Typesetters, Hong Kong UniversitaÈt Leipzig Printing betz-druck gmbH, D-64291 Institut fuÈr Analytische Chemie Darmstadt LinneÂstraûe 3 Bookbinding Wilhelm Osswald & Co., 67433 04103 Leipzig Neustadt Germany ISBN 3-527-30146-1 9 This book was carefully produced.
    [Show full text]
  • 1 the Metabolism of Triphenyllead
    1 THE METABOLISM OF TRIPHENYLLEAD ACETATE IN THE RAT by Barbara Morris Being a thesis submitted for the degree of Doctor of Philosophy in the University of London November, 1975 Department of Biochemistry St. Mary's Hospital Medical School London. 2 ACKNOWLEDGEMENTS I am sincerely grateful to Professor R.T. Williams for his supervision of this project. I particularly wish to thank Dr. Graham Dring for his continued interest and great patience during the period of this research. My thanks must also be extended to my colleagues of the Biochemistry Department for many useful discussions. I am indebted to Mr. F. Audas and his technical staff for their continued help. I wish to give my thanks to the staff of the M.R.C. Cyclotron Unit for the gifts of 203Pb and to Drs. Smith and Barltrop of the Paediatrics Department for their help over the counting of this isotope. I also wish to thank Dr. Drasar of the Bacteriology Department for his help with the bacteriological studies. I am indebted to the Medical Research Council and to Pure Chemicals Ltd. for their supporting grants. Finally I wish to thank my parents and husband for their fin- ancial support during my extended education and my mother and husband for their help with the typing of this thesis. 3 ABSTRACT The metabolic fate of triphenyllead acetate, a potential mollus- cicide, has been studied in the rat. Three isotopically labelled 14 forms of the compound were synthesized namely tri(U- C)phenyllead 203 acetate, tn...( 3- H)phenyllead acetate and triphenyl( Pb)lead acetate.
    [Show full text]
  • Bioremediation of Arsenic, Chromium, Lead, and Mercury
    Bioremediation of Arsenic, Chromium, Lead, and Mercury August 2004 Prepared by Adebowale Adeniji National Network of Environmental Management Studies Fellow for U.S. Environmental Protection Agency Office of Solid Waste and Emergency Response Technology Innovation Office Washington, DC www.clu-in.org 1 Bioremediation of Arsenic, Chromium, Lead, and Mercury NOTICE This document was prepared by Adebowale Adeniji, a National Network of Environmental Management studies grantee, under a fellowship from the U.S. Environmental Protection Agency. This report was not subject to EPA peer review or technical review. The EPA makes no warranties, expressed or implied, including without limitation, warranty for completeness, accuracy, or usefulness of the information, warranties as to the merchantability, or fitness for a particular purpose. Moreover, the listing of any technology, corporation, company, person, or facility in this report does not constitute endorsement, approval, or recommendation by the EPA. This report provides a basic orientation and current status of bioremediation for contaminants located in the subsurface. This report contains information gathered from a range of currently available sources, including project documents, reports, periodicals, Internet searches, and personal communication with involved parties. References for each case study are provided immediately following the case study. All sources are organized in alphabetical order at the end of the document. No attempts were made to independently confirm the resources used. It has been reproduced to help provide federal agencies, states, consulting engineering firms, private industries, and technology developers with information on the current status of this project. This paper addresses the status of the application of biological treatment to clean up hazardous metals from the earth’s subsurface (i.e., in situ bioremediation).
    [Show full text]
  • United States Patent Office
    2,897,071 United States Patent Office Patented July 28, 1959 1 2 ber of operational difficulties, including loss of antiknock effectiveness, carburetion difficulties such as the clogging of jets, filters, screens and the like resulting from the 2,897,071 formation of sludge, gum and other types of sediment, GASOLINE FUELS 5 as well as the above-described effects upon the color of Lewis F. Gilbert, Detroit, Mich., assignor to Ethy Cor the identified antiknock fluids. poration, New York, N.Y., a corporation of Delaware The prior art contains many proposals whereby one or more of these difficulties may be obviated, but these have No Drawing. Application June 30, 1953 not proved very satisfactory because of the inherent con Serial No. 365,265 0. plexity of the problem. For example, although many antioxidants have been developed which satisfactorily 4 Claims. C. 44-69) protect oxygen-sensitive fuels, oils and other, inherently unstable organic hydrocarbons against atmospheric de terioration, such antioxidants almost without exception This invention relates to the improvement of organo 5 are unsatisfactory for the protection of organolead.com lead material and in particular to adjuvants for tetra pounds and organolead-containing compositions. ethyllead and tetraethylead-containing compositions. When organolead-containing compositions are utilized Organolead compounds have long been known as anti in internal combustion engines other difficulties are fre knock agents for fuel adapted for use in spark ignition quently encountered. As indicated previously, antiknock type internal combustion engines. Thus, it has been pro 20 fluids are provided with corrective agents or scavengers posed in the prior art to use lead aryls such as tetra so as to effectively reduce the amount of metallic de phenylead and lead alkyls such as tetramethyl posits in the engine by forming volatile metallic com lead, tetraethylead, tetrapropyllead, dimethyldiethyl pounds which emanate from the engine in the exhaust lead, and the like as antiknock agents.
    [Show full text]
  • The Effect of Organometallic and Quaternary Ammonium Compounds on the Growth of Microorganisms Lowell Lawrence Wallen Iowa State College
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1954 The effect of organometallic and quaternary ammonium compounds on the growth of microorganisms Lowell Lawrence Wallen Iowa State College Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Biochemistry Commons Recommended Citation Wallen, Lowell Lawrence, "The effect of organometallic and quaternary ammonium compounds on the growth of microorganisms " (1954). Retrospective Theses and Dissertations. 14151. https://lib.dr.iastate.edu/rtd/14151 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overiaps.
    [Show full text]
  • Organolead Compounds Edmund B
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1932 Organolead compounds Edmund B. Towne Iowa State College Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Organic Chemistry Commons Recommended Citation Towne, Edmund B., "Organolead compounds" (1932). Retrospective Theses and Dissertations. 14733. https://lib.dr.iastate.edu/rtd/14733 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. BY Signature was redacted for privacy. Signature was redacted for privacy. Signature was redacted for privacy. UMI Number: DP14602 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. UMI UMI Microform DP14602 Copyright 2006 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, Ml 48106-1346 Q^XJH i'A,, r ^ T" 6:= & o ACniO??13DC3£S!l1' Th® writer -wislieB to ©xpross hia appreeiatloa to Doe tor Henry G'ilmaii irliose InTalaable advice aad, encouragement haTe ' made tliis work possible.
    [Show full text]