Transfer Report

Total Page:16

File Type:pdf, Size:1020Kb

Transfer Report LOW AND ZERO SAPS ANTIWEAR ADDITIVES FOR ENGINE OILS by Juliane F. L. Benedet A Thesis submitted to Imperial College London in fulfilment of the degree of Doctor of Philosophy and the Diploma of Imperial College. November 2012 Tribology Section Department of Mechanical Engineering Imperial College of Science, Technology and Medicine London PREFACE This thesis is a description of work carried out in the Tribology Section of the Department of Mechanical Engineering, Imperial College of Science, Technology and Medicine, London, under the supervision of Professor Hugh A. Spikes. Except where acknowledged, this material is original work and no part of it has been submitted for a degree at this or any other university. ABSTRACT Almost all modern engine lubricants use the additive zinc dialkyldithiophosphate (ZDDP) to provide antiwear and extreme pressure protection. However existing and proposed emissions regulations include constraints in the concentration of ZDDP or other sulphated ash-, phosphorus- and sulphur- (SAPS) containing additives in engine oils, as well as limits to the permissible phosphorus loss from the oil in running engines. The deleterious effects of SAPS on exhaust aftertreatment systems from ZDDP decomposition has lead to a great interest in identifying alternative low and zero SAPS antiwear additives that can partially of fully replace ZDDP in the next generation of engine oils to extend the life of exhaust after-treatment systems. The aim of the work described in this thesis is to explore under the same test conditions, the film-forming, friction and wear-reducing properties of a very wide range of low and zero SAPS antiwear additives as possible replacements for ZDDP in engine oils, and, where additive types are effective, to investigate their mechanism of action. Some of the alternative low and zero SAPS antiwear additives investigated show wear-reducing performance comparable to the ZDDP used as a benchmark in this research. The most promising alternatives to be used as supplements/replacements for ZDDP are suggested and discussed. One characteristic of ZDDP is that it can form quite thick films on surfaces during rubbing. It is found that many different types of additive can also form thick films, though not generally as thick as ZDDP. However it has been found that there is no significant correlation between the ability of an additive to form a thick boundary film and its ability to control wear. Thick boundary film formation does, however, correlate positively with an increase in friction in contacts operating at intermediate entrainment speeds, so thick film formation should not be taken as a necessary or desirable feature of antiwear additives. It is also found that antiwear additives can give a very wide range of boundary friction coefficient values, depending on the molecular structure of the additive. There thus appears to be scope for optimising the structure of antiwear additives to provide reduced boundary friction. ACKNOWLEDGEMENTS I owe my deepest gratitude to my PhD supervisor, Professor Hugh Spikes, for his invaluable support and encouragement throughout this journey. I am also grateful to Riaz Mufti, Jonathan Green, Gordon Lamb and David Atkinson at Castrol Ltd. for the support and motivation throughout this project. I would also like to thank all colleagues from the Tribology section of the Mechanical Engineering Department at Imperial College, London, for their help, in special to Tom Reddyhoff and Chrissy Stevens. Also thanks to Rich Baker, Matt Smeeth, Clive Hamer and John Hutchinson at PCS Instruments, David Scurr at Nottingham University, Mihaela Gorgoi at the Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Lucia Zuin and Yongfeng Hu at the Canadian Light Source, Maura Crobu at ETH Zurich and Richard Chater at Imperial College London, And finally, a very special thanks goes to my husband, Ramiro, for his undying support. I could not have done this without you. TAPS. Table of Contents 5 TABLE OF CONTENTS PREFACE ............................................................................................................................................................. 2 ABSTRACT ........................................................................................................................................................... 3 ACKNOWLEDGEMENTS ......................................................................................................................................... 4 TABLE OF CONTENTS ........................................................................................................................................... 5 LIST OF FIGURES................................................................................................................................................ 10 LIST OF TABLES ................................................................................................................................................. 20 1. INTRODUCTION ............................................................................................................................................... 22 2. THE IMPACT OF SAPS ON EXHAUST AFTERTREATMENT SYSTEMS ................................................................... 26 2.1 Exhaust Aftertreatment Systems ........................................................................................................... 27 2.1.1 Three-Way Catalyst ....................................................................................................................... 28 2.1.2 NOx Storage Catalyst .................................................................................................................... 29 2.1.3 Diesel Oxidation Catalyst ............................................................................................................... 30 2.1.4 Diesel Particulate Filter .................................................................................................................. 31 2.1.5 Selective Catalytic Reduction Catalyst ........................................................................................... 32 2.2 The Impact of SAPS on Exhaust Aftertreatment Systems ..................................................................... 34 2.3 Specifications ......................................................................................................................................... 35 3. LUBRICATION ................................................................................................................................................. 37 3.1 Lubrication Regimes .............................................................................................................................. 38 3.1.1 Boundary Lubrication ..................................................................................................................... 39 3.1.2 Mixed Lubrication ........................................................................................................................... 40 3.1.3 Fluid Film Lubrication (Hydrodynamic and Elastohydrodynamic lubrication) ................................. 41 3.2 Lubricants .............................................................................................................................................. 43 3.2.1 Lubricant Formulation Challenges ................................................................................................. 44 3.3 Wear ...................................................................................................................................................... 45 3.3.1 Archard’s Wear Coefficient ............................................................................................................ 47 3.4 Antiwear Additives ................................................................................................................................. 48 3.4.1 Zinc Dialkyldithiophosphate (ZDDP) .............................................................................................. 49 3.4.2 Low and Zero SAPS Antiwear Additives ........................................................................................ 49 Table of Contents 6 4. EXPERIMENTAL TECHNIQUES .......................................................................................................................... 51 4.1 MTM-SLIM Method ................................................................................................................................ 52 4.1.1 Description ..................................................................................................................................... 52 4.1.2 Experimental Procedure ................................................................................................................ 57 4.2 AFM Method .......................................................................................................................................... 59 4.2.1 Description ..................................................................................................................................... 59 4.2.2 Experimental Procedure ................................................................................................................ 62 4.3 MTM-Reciprocating Method .................................................................................................................. 63 4.3.1 Description ....................................................................................................................................
Recommended publications
  • Electroanalytical Chemistry of Some Organometallic Compounds of Tin, Lead and Germanium
    ELECTROANALYTICAL CHEMISTRY OF SOME ORGANOMETALLIC COMPOUNDS OF TIN, LEAD AND GERMANIUM by Nani Bhushan Fouzder M.Sc. (Rajshahi) A Thesis Submitted for the Degree of Doctor of Philosophy of the University of London. Chemistry Department, Imperial College of Science and Technology, London S.W.7. September, 1975. 11 ABSTRACT. The present thesis concerns the investigation into the electrochemical behaviour of some industrially important organometallic compounds of tin, lead and germanium and development of suitable electrochemical methods for the analysis of these compounds at formula- tion and at trace level. The basic principles of the electrochemical techniques used inthis investigation have been given in the first part of the 'Introduction', while the various factors which control the electrode process have been discussed in the second part of the 'Introduction' in chapter 1. The electrochemical behaviour and analytical determination of some important organotin fungicides and pesticides such as tri-n-butyltin oxide, triphenyl- tin acetate, etc., some antihelminthic compounds such as dibutyltin dilaureate and dibutyltin dimaleate and some widely used PVC-stabilizers such as di-n-Octyltin dithioglycollic acid ester (Irgastab 17 MOK), Irgastab 17M and Irgastab 15 MOR have been described in the following three chapters. For each type of compound a detailed mechanism of the electrochemical process has been proposed and established. The electrochemical behaviour of organolead compounds and of the organogermanium compounds have been described in the next three chapters. In each case, the mechanism of reduction of these compounds has been established and methods 9fc their determina- tion at ordinary and at trace level have been developed. Finally, in the eighth chapter a brief intro- duction into the highspeed liquid chromatographic technique has been given and analysis of organotin compounds by this method using a wall-jet electrode detector has been described.
    [Show full text]
  • Lubricant Additives Lubricant Additives
    Worldwide Ltd LUBRICANT ADDITIVES LUBRICANT ADDITIVES VANDERBILT WORLDWIDE Ltd 12 Park House Alvaston Business Park, Middlewich Rd. Nantwich, Cheshire CW5 6PF, UK +44 1270 623978 [email protected] www.vanderbiltworldwide.com VANDERBILT CHEMICALS, LLC CERTIFIED TO ISO 9001:2015 10002461 NSF® Certified Registered and pending trademarks appearing in these materials are those of R.T. Vanderbilt Holding Company, Inc. or its respective wholly owned subsidiaries. For complete listings, please visit this location for trademarks, www.rtvanderbiltholding.com. NSF is a registered trademark of NSF International. UL is a registered trademark of UL LLC. TPS is a registered trademark of Arkema France Corporation Rev. 01/06/2020 DISCLAIMER Before using, read, understand and comply with the information and precautions in the Safety Data Sheets, label and other product literature. The information presented herein, while not guaranteed, was prepared by technical personnel and, to the best of our knowledge and belief, is true and accurate as of the date hereof. No warranty, representation or guarantee, express or implied, is made regarding accuracy, performance, stability, reliability or use. This information is not intended to be all-inclusive, because the manner and conditions of use, handling, storage and other factors may involve other or additional safety or performance considerations. The user is responsible for determining the suitability of any material for a specific purpose and for adopting such safety precautions as may be required. Vanderbilt Chemicals, LLC does not warrant the results to be obtained in using any material, and disclaims all liability with respect to the use, handling or further processing of any such material.
    [Show full text]
  • Toxicological Profile for Lead
    LEAD 355 CHAPTER 5. POTENTIAL FOR HUMAN EXPOSURE 5.1 OVERVIEW Pb and Pb compounds have been identified in at least 1,287 and 46 sites, respectively, of the 1,867 hazardous waste sites that have been proposed for inclusion on the EPA National Priorities List (NPL) (ATSDR 2019). However, the number of sites evaluated for Pb is not known. The number of sites in each state is shown in Figures 5-1 and 5-2, respectively. Of these 1,287 sites for Pb, 1,273 are located within the United States, 2 are located in the Virgin Islands, 2 are located in Guam, and 10 are located in Puerto Rico (not shown). All the sites for Pb compounds are only in the United States. Figure 5-1. Number of NPL Sites with Lead Contamination LEAD 356 5. POTENTIAL FOR HUMAN EXPOSURE Figure 5-2. Number of NPL Sites with Lead Compound Contamination • Pb is an element found in concentrated and easily accessible Pb ore deposits that are widely distributed throughout the world. • The general population may be exposed to Pb in ambient air, foods, drinking water, soil, and dust. For adults, exposure to levels of Pb beyond background are usually associated with occupational exposures. • For children, exposure to high levels of Pb are associated with living in areas contaminated by Pb (e.g., soil or indoor dust in older homes with Pb paint). Exposure usually occurs by hand-to- mouth activities. • As an element, Pb does not degrade. However, particulate matter contaminated with Pb can move through air, water, and soil.
    [Show full text]
  • United States Patent 0 ’ CC Patented Nov
    2,859,225 United States Patent 0 ’ CC Patented Nov. 4, 1958 1 2 conversion of lead to tetraethyllead above that obtained in present commercial practice without requiring the use‘ 2,159,225 of metallic sodium, metallic lead, alkyl halogen com6 MANUFACTURE or ORGANOLEAD COMPOUNDS pounds, or lead halides. These and other objects of this invention are accom Sidney M. Blitzer and Tillmon H. Pearson, Baton Rouge, plished by reacting a lead chalko'gen, i. e., lead oxide or La., asignors to Ethyl Corporation, New York, N. Y., sul?de, with a non-lead metalloorganic compound of suf a corporation of Delaware ?cient stability under reaction conditions, where the organo portion is a hydrocarbon radical and wherein the No Drawing. Application March 25 1955 10 Serial No. 496,919 ’ metallo element is directly attached to carbon and may additionally be attached to another metallic element. In 13 Claims. (Cl. 260—437) certain embodiments of this invention it is preferred to employ a catalyst. The so-called metalloid elements are not contemplated as they do not form true metalloorganic This invention relates to a process for the manufacture compounds. Thus, this invention comprises the metatheti of organolead compounds. In particular, this invention is cal reaction between lead chalkogen and a non-lead metal directed to a novel process for the manufacture of tetra loorganic compound. 7 ethyllead from lead oxides and sul?des. In general, the metalloorganic reactants of the present The process employed in present commercial practice invention have the general formula M‘R, or M’MIR," for the manufacture of tetraethyllead has been in use for where M1 and M2 are true metals other than lead, R is a number of years and, in general, is satisfactory.
    [Show full text]
  • Genesis and Evolution in the Chemistry of Organogermanium, Organotin and Organolead Compounds
    CHAPTER 1 Genesis and evolution in the chemistry of organogermanium, organotin and organolead compounds MIKHAIL G. VORONKOV and KLAVDIYA A. ABZAEVA A. E. Favorsky Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky Str., 664033 Irkutsk, Russia e-mail: [email protected] The task of science is to induce the future from the past Heinrich Herz I. INTRODUCTION ..................................... 2 II. ORGANOGERMANIUM COMPOUNDS ...................... 5 A. Re-flowering after Half a Century of Oblivion ................. 5 B. Organometallic Approaches to a CGe and GeGe Bond ......... 6 C. Nonorganometallic Approaches to a CGe Bond ............... 11 D. CGe Bond Cleavage. Organylhalogermanes ................. 13 E. Compounds having a GeH Bond ........................ 14 F. Organogermanium Chalcogen Derivatives .................... 17 G. Organogermanium Pnicogen Derivatives ..................... 26 H. Compounds having a Hypovalent and Hypervalent Germanium Atom .................................... 29 I. Biological Activity ................................... 32 III. ORGANOTIN COMPOUNDS ............................. 33 A. How it All Began ................................... 33 B. Direct Synthesis ..................................... 36 C. Organometallic Synthesis from Inorganic and Organic Tin Halides ... 39 D. Organotin Hydrides .................................. 41 E. Organylhalostannanes. The CSn Bond Cleavage .............. 43 The chemistry of organic germanium, tin and lead compounds —Vol.2 Edited by
    [Show full text]
  • Bagi Uta 2502M 11920.Pdf (4.726Mb)
    EFFECT OF ADDITIVE MORPHOLOGY & CHEMISTRY ON WEAR & FRICTION OF GREASES UNDER SPECTRUM LOADING by SUJAY DILIP BAGI Presented to the Faculty of the Graduate School of The University of Texas at Arlington in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE IN MATERIALS SCIENCE AND ENGINEERING THE UNIVERSITY OF TEXAS AT ARLINGTON December 2012 Copyright © by Sujay Bagi 2012 All Rights Reserved ACKNOWLEDGEMENTS I would sincerely like to express the deepest appreciation and gratitude to my advisor and committee chair, Dr. Pranesh Aswath, who has continually encouraged me the with the spirit of independent thinking and instilled a research acumen in me throughout my time as a graduate student in the Department of Materials Science & Engineering at the University of Texas at Arlington. His fabulous knowledge of subject matter and meticulous way of guidance makes him the most remarkable mentor in the department. My sincere gratitude to the committee members, Dr. Yaowu Hao and Dr. Fuqiang Liu for being so encouraging and cordial; I am indebted to many of my colleagues and friends at UTA for making this time one of the most memorable moments in my life. I would like to whole-heartedly thank Dr Xin Chen for all the help regarding the chemistry formulations and Soxhlet apparatus. I would like to express my deepest gratitude to Dr. Mihir Patel for being a great friend and a mentor; I would like to acknowledge all my colleagues in the Tribology & Bio-materials group Megen Velten, Olumide Oruwajoye, Pradip Sairam, Vibhu Sharma, Ami Shah, Olusanmi Adeniran for all the help and the support I received.
    [Show full text]
  • United States Patent Office Patented Nov
    2,859,228 United States Patent Office Patented Nov. 4, 1958 2 plished by reacting a lead halide wherein the halide has an atomic weight greater than 35, that is the chlorides, 2,859,228 bromides, and iodides of lead, and mixed lead halides, with an organo metallic compound of group III A of the MANUEFACTURE OF ORGANOLEAD COMPOUNDS 5 periodic table, that is boron, aluminum gallium, and in Sidney M. Blitzer and Tillmon H. Pearson, Baton Rouge, dium, wherein the group II. A metal is the sole metal La., assignors to Ethyl Corporation, New York, N.Y., in the metallo organic compound. a corporation of Delaware In accordance with this invention, it has been dis covered that to produce organolead compounds it is un No Drawing. Application March 28, 1955 O necessary, to start with a lead alloy, or in fact to em. Seria No. 497,378 ploy metallic lead at all. Among the lead halides that 7 Claims. C.260-437) can be employed in the process of this invention are lead chloride, lead bromide, leadiodide, lead bromoiodide, lead chloroiodide, and lead chlorobromide. This invention relates to a process for the manufacture 5 The process of the present invention can best be under of organolead compounds. In particular, this invention stood by considering the: chemical equation involved. In is directed to an improved process for the manufacture general, the process proceeds according to the equation of tetraethyllead. The process employed in present commercial practice for the manufacture of tetraethylead has been in use for where R is an organic radical and X is halogen having a number of years and, in general, is satisfactory.
    [Show full text]
  • Compatibility of Lubricant Additives with Hfc Refrigerants and Synthetic Lubricants
    DOE/CE/23810-76 COMPATIBILITY OF LUBRICANT ADDITIVES WITH HFC REFRIGERANTS AND SYNTHETIC LUBRICANTS FINAL REPORT PART 1 Richard C. Cavestri, Ph.D. Principal Investigator July, 1997 Imagination Resources, Inc. 5130 Blazer Memorial Parkway Dublin, Ohio 43017 (614) 793 1972 Prepared for The Air Conditioning and Refrigeration Technology Institute Under ARTI MCLR Project Number 660-52600: LUBRICANT ADDITIVES This project is supported, in whole or in part, by US. Department of Energy grant number DE-FG02-91CE23810: Materials Compatibility and Lubricants Research (MCLR) on CFC-Refrigerant Substitutes. Federal funding supporting this project constitutes 93.57% of allowable costs. Funding from non-government sources supporting this project consists of direct cost sharing of 6.43% of allowable costs; and in-kind contributions from the air-conditioning and refrigeration industry. DISCLAIMER The U. S. Department of Energy and the air-conditioning industry's support for the Materials Compatibility and Lubricants Research [MCLR] program does not constitute an endorsement by the U. S. Department of Energy, nor by the Air-Conditioning and Refrigeration Industry, of the views expressed herein. NOTICE This study was sponsored by the United States Government. Neither the United States Government, nor the Department of Energy, nor the Air-Conditioning and Refrigeration Technology Institute, nor any of their employees, nor any of their contractors nor subcontractors make any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed or represents that its use would not infringe privately-owned rights. COPYRIGHT NOTICE [for journal publication submission] By acceptance of this article, the publisher and/or recipient acknowledge the rights of the U.
    [Show full text]
  • United States Patent [191 [11] Patent Number: 4,557,841 Arndt [45] Date of Patent: Dec
    United States Patent [191 [11] Patent Number: 4,557,841 Arndt [45] Date of Patent: Dec. 10, 1985 [54] LUBRICANT ADDITIVE CONCENTRATE 3,849,323 11/1974 Hollinslliead .................... .. 252/56 R 4,067,817 1/1978 St d 252/56R [75] Inventorr George Arndt, Newbury Park, Calif- 4,075,393 2/1978 5133:3111 252/495 [73] Ass‘gnee'- _ Wynn o‘lcmpany’Funerton’- Cahf'- 4,130,4954,108,785 12/19788/1978 WisneakSturwold eta'l. ....... ... 252/56252/48.6 R [21] Appl. No: 671,116 4,329,298 5/1982 Brown ................................ .. 106/270 [22] Filedi NOV- 13, 1934 Primary Examiner-Jacqueline V. Howard [51] Int. 01.4 ............................................. .. C10M 1/48 Attorney’ Agent, 0’ Firm—william W- Hae?iger [52] us. c1. ............................ .. 2s2/32.7 E; 252/334; 57 AB T Cr 252/45; 252/56 R [ 1 S RA [58] Field of Search ................. .. 252/32.7 E, 45, 33.4, A crankcase motor Oil additive Concentrate comprising 252/56 R a detergent-inhibitor package, supplemental antiwear _ ' additives, a corrosion inhibitor, and jojoba oil in a pe [56] References Cited troleum base Stock‘ U.S. PATENT DOCUMENTS 3,640,860 2/1972 Miller .............................. .. 252/56 R 8 Claims, N0 Drawings 4,557,841 1 2 (5) a corrosion-inhibitor selected from the class of LUBRICANT ADDITIVE CONCENTRATE overbased sulfonates, the sodium salts being preferred; and BACKGROUND OF THE INVENTION (6) a lubricity additive, the oil extracted from the seed This invention relates to lubricants used in automo of Simmondsia chinensis, known familarly as jojoba oil. bile engines and similar equipment.
    [Show full text]
  • "Front Matter and Index". In: Analytical Atomic Spectrometry with Flames and Plasmas
    Analytical Atomic Spectrometry with Flames and Plasmas. Jose A. C. Broekaert Copyright > 2002 Wiley-VCH Verlag GmbH & Co. KGaA ISBNs: 3-527-30146-1 (Hardback); 3-527-60062-0 (Electronic) Jose A. C. Broekaert Analytical Atomic Spectrometry with Flames and Plasmas Analytical Atomic Spectrometry with Flames and Plasmas. Jose A. C. Broekaert Copyright > 2002 Wiley-VCH Verlag GmbH & Co. KGaA ISBNs: 3-527-30146-1 (Hardback); 3-527-60062-0 (Electronic) Analytical Atomic Spectrometry with Flames and Plasmas Valeur, B. Molecular Fluorescence. Principles and Applications 2001. ISBN 3-527-29919-X Gunzler, H. and Williams, A. Handbook of Analytical Techniques 2001. ISBN 3-527-30165-8 Hubschmann, H.-J. Handbook of GC/MS 2001. ISBN 3-527-30170-4 Welz, B. and Sperling, M. Atomic Absorption Spectrometry Third, Completely Revised Edition 1998. ISBN 3-527-28571-7 Analytical Atomic Spectrometry with Flames and Plasmas. Jose A. C. Broekaert Copyright > 2002 Wiley-VCH Verlag GmbH & Co. KGaA ISBNs: 3-527-30146-1 (Hardback); 3-527-60062-0 (Electronic) Jose A. C. Broekaert Analytical Atomic Spectrometry with Flames and Plasmas Weinheim ± New York ± Chichester ± Brisbane ± Singapore ± Toronto Analytical Atomic Spectrometry with Flames and Plasmas. Jose A. C. Broekaert Copyright > 2002 Wiley-VCH Verlag GmbH & Co. KGaA ISBNs: 3-527-30146-1 (Hardback); 3-527-60062-0 (Electronic) Prof. Dr. Jose A. C. Broekaert Typesetting Asco Typesetters, Hong Kong UniversitaÈt Leipzig Printing betz-druck gmbH, D-64291 Institut fuÈr Analytische Chemie Darmstadt LinneÂstraûe 3 Bookbinding Wilhelm Osswald & Co., 67433 04103 Leipzig Neustadt Germany ISBN 3-527-30146-1 9 This book was carefully produced.
    [Show full text]
  • 1 the Metabolism of Triphenyllead
    1 THE METABOLISM OF TRIPHENYLLEAD ACETATE IN THE RAT by Barbara Morris Being a thesis submitted for the degree of Doctor of Philosophy in the University of London November, 1975 Department of Biochemistry St. Mary's Hospital Medical School London. 2 ACKNOWLEDGEMENTS I am sincerely grateful to Professor R.T. Williams for his supervision of this project. I particularly wish to thank Dr. Graham Dring for his continued interest and great patience during the period of this research. My thanks must also be extended to my colleagues of the Biochemistry Department for many useful discussions. I am indebted to Mr. F. Audas and his technical staff for their continued help. I wish to give my thanks to the staff of the M.R.C. Cyclotron Unit for the gifts of 203Pb and to Drs. Smith and Barltrop of the Paediatrics Department for their help over the counting of this isotope. I also wish to thank Dr. Drasar of the Bacteriology Department for his help with the bacteriological studies. I am indebted to the Medical Research Council and to Pure Chemicals Ltd. for their supporting grants. Finally I wish to thank my parents and husband for their fin- ancial support during my extended education and my mother and husband for their help with the typing of this thesis. 3 ABSTRACT The metabolic fate of triphenyllead acetate, a potential mollus- cicide, has been studied in the rat. Three isotopically labelled 14 forms of the compound were synthesized namely tri(U- C)phenyllead 203 acetate, tn...( 3- H)phenyllead acetate and triphenyl( Pb)lead acetate.
    [Show full text]
  • Parameters Affecting the Functionality of Additives in Lubricated Contacts : Effect of Base Oil Polarity
    ISSN: 1402-1757 ISBN 978-91-7439-XXX-X Se i listan och fyll i siffror där kryssen är LICENTIATE T H E SIS Aldara Naveira Suarez Affecting in Aldara the LubricatedAdditives Naveira Functionality Parameters of Contacts Parameters affecting the functionality of additives Department of Applied Physics and Mechanical Engineering in lubricated contacts Division of Machine Elements ParametersEffect Affecting of base oil the polarity Functionality ISSN: 1402-1757 ISBN 978-91-7439-077-3 of Additives in Lubricated Contacts Luleå University of Technology 2010 Effect of Base Oil Polarity Aldara Naveira Suarez Effect of Base Oil Polarity Aldara Naveira-Suarez Parameters affecting the functionality of additives in lubricated contacts Effect of base oil polarity Aldara Naveira-Suarez SKF Engineering and Research Centre Kelvinbaan 16, Nieuwegein THE NETHERLANDS Division of Machine Elements Luleå University of Technology SE-971 87 Luleå SWEDEN February 2010 Printed by Universitetstryckeriet, Luleå 2010 ISSN: 1402-1757 ISBN 978-91-7439-077-3 Luleå www.ltu.se Chemistry ought to be not for chemists alone Miguel de Unamuno, The tragic sense of life (1913) ABSTRACT Traditionally rolling contact fatigue observed in bearing field applications was subsurface initiated. However, despite the improvement of steel properties, some factors such as downsizing in bearing design, extreme loading of the bearings as well as demanding application conditions (start up-stop cycles) have led to an increase on the cases of surface damage related to surface initiated fatigue, that comes basically from surface distress. Possible causes leading to surface initiated fatigue are: material and surface properties, marginal lubrication and lubricant chemical composition.
    [Show full text]