Digital Electronics 1 (ET181) Laboratory Manual (Where Theory Meets Practice)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Transistor Circuit Guidebook Byron Wels TAB BOOKSBLUE RIDGE SUMMIT, PA
TAB BOOKS No. 470 34.95 By Byron Wels TransistorCircuit GuidebookByronWels TABBLUE RIDGE BOOKS SUMMIT,PA. 17214 Preface beforemeIa supposepioneer (along the my withintransistor firstthe many field.experiencewith wasother Weknown. World were using WarUnlike solid-stateIIsolid-state GIs) today's asdevices somewhat experimen- receivers marks of FIRST EDITION devicester,ownFirst, withsemiconductors! youwith a choice swipedwhichor tank. ofto a sealed,Here'sexperiment, pairThen ofhow encapsulated, you earphones we carefullywe did had it: from totookand construct the veryonenearest exoticof our the THIRDSECONDFIRST PRINTING-SEPTEMBER PRINTING-AUGUST PRINTING-JANUARY 1972 1970 1968 plane,wasyouAnphonesantenna. emptywound strung jeep,apart After toiletfull outand ofclippingas paper wire,unwoundhigh closelyrollandthe servedascatchthe far spaced.wire offas as itfrom a thewouldsafetyThe thecoil remaining-pin,magnetreach-for form, you inside.which stuckwire the Copyright © 1968by TAB BOOKS coatedNext,it into youneeded,a hunkribbons of -ofwooda razor -steel, soblade.the but point Oh,aItblued was noneprojected placedblade of the -quenchat so fancy right the pointplastic-bluedangles.of -, Reproduction or publicationPrinted inof the ofAmerica the United content States in any manner, with- themindfoundphoneground pin you,the was couldserved right not wired contact lacquerspotas toa onground blade, it. theblued.blade'sAconnector, pin,bayonet bluing,and stuck antennaand you hilt thecould coil.-deep other actuallyIfin ear- youthe isoutherein. assumed express -
Episode 5.02 – NAND Logic
Episode 5.02 – NAND Logic Welcome to the Geek Author series on Computer Organization and Design Fundamentals. I’m David Tarnoff, and in this series, we are working our way through the topics of Computer Organization, Computer Architecture, Digital Design, and Embedded System Design. If you’re interested in the inner workings of a computer, then you’re in the right place. The only background you’ll need for this series is an understanding of integer math, and if possible, a little experience with a programming language such as Java. And one more thing. Our topics involve a bit of figuring, so it might help to keep a pencil and paper handy. In our last episode, we covered three attributes of the sum-of-product expression including its general format and the benefits derived from it, a method to generate a truth table from a given sum-of- products expression, and lastly, a simple procedure we can use to create the proper sum-of-products expression from a given truth table. In this episode, we’re going to look at a fourth attribute. While this last trait may appear to be no more than an interesting exercise in Boolean algebra, it turns out that it offers several benefits when we implement our SOP expressions with digital circuitry. In Episode 4.08 – DeMorgan’s Theorem, we showed how an inverter can be distributed across the inputs of an AND or an OR gate by flipping the operation. In other words, we can distribute an inverter from the output of an AND gate across all the gate’s inputs as long as we change the gate operation to an OR. -
Electronic Circuit Design and Component Selecjon
Electronic circuit design and component selec2on Nan-Wei Gong MIT Media Lab MAS.S63: Design for DIY Manufacturing Goal for today’s lecture • How to pick up components for your project • Rule of thumb for PCB design • SuggesMons for PCB layout and manufacturing • Soldering and de-soldering basics • Small - medium quanMty electronics project producMon • Homework : Design a PCB for your project with a BOM (bill of materials) and esMmate the cost for making 10 | 50 |100 (PCB manufacturing + assembly + components) Design Process Component Test Circuit Selec2on PCB Design Component PCB Placement Manufacturing Design Process Module Test Circuit Selec2on PCB Design Component PCB Placement Manufacturing Design Process • Test circuit – bread boarding/ buy development tools (breakout boards) / simulaon • Component Selecon– spec / size / availability (inventory! Need 10% more parts for pick and place machine) • PCB Design– power/ground, signal traces, trace width, test points / extra via, pads / mount holes, big before small • PCB Manufacturing – price-Mme trade-off/ • Place Components – first step (check power/ground) -- work flow Test Circuit Construc2on Breadboard + through hole components + Breakout boards Breakout boards, surcoards + hookup wires Surcoard : surface-mount to through hole Dual in-line (DIP) packaging hap://www.beldynsys.com/cc521.htm Source : hap://en.wikipedia.org/wiki/File:Breadboard_counter.jpg Development Boards – good reference for circuit design and component selec2on SomeMmes, it can be cheaper to pair your design with a development -
Integrated Circuits
CHAPTER67 Learning Objectives ➣ What is an Integrated Circuit ? ➣ Advantages of ICs INTEGRATED ➣ Drawbacks of ICs ➣ Scale of Integration CIRCUITS ➣ Classification of ICs by Structure ➣ Comparison between Different ICs ➣ Classification of ICs by Function ➣ Linear Integrated Circuits (LICs) ➣ Manufacturer’s Designation of LICs ➣ Digital Integrated Circuits ➣ IC Terminology ➣ Semiconductors Used in Fabrication of ICs and Devices ➣ How ICs are Made? ➣ Material Preparation ➣ Crystal Growing and Wafer Preparation ➣ Wafer Fabrication ➣ Oxidation ➣ Etching ➣ Diffusion ➣ Ion Implantation ➣ Photomask Generation ➣ Photolithography ➣ Epitaxy Jack Kilby would justly be considered one of ➣ Metallization and Intercon- the greatest electrical engineers of all time nections for one invention; the monolithic integrated ➣ Testing, Bonding and circuit, or microchip. He went on to develop Packaging the first industrial, commercial and military ➣ Semiconductor Devices and applications for this integrated circuits- Integrated Circuit Formation including the first pocket calculator ➣ Popular Applications of ICs (pocketronic) and computer that used them 2472 Electrical Technology 67.1. Introduction Electronic circuitry has undergone tremendous changes since the invention of a triode by Lee De Forest in 1907. In those days, the active components (like triode) and passive components (like resistors, inductors and capacitors etc.) of the circuits were separate and distinct units connected by soldered leads. With the invention of the transistor in 1948 by W.H. Brattain and I. Bardeen, the electronic circuits became considerably reduced in size. It was due to the fact that a transistor was not only cheaper, more reliable and less power consuming but was also much smaller in size than an electron tube. To take advantage of small transistor size, the passive components too were greatly reduced in size thereby making the entire circuit very small. -
35402 Electronic Circuit R TG
Electricity and Electronics Electronic Circuit Repair Introduction The purpose of this video is to help you quickly learn the most common methods used to trou- bleshoot electronic circuits. Electronic troubleshooting skills are needed to diagnose and repair several types of devices. These devices include stereos, cameras, VCRs, and much more. As mentioned, the program will explain how to diagnose and repair different types of electronic com- ponents and circuits. Viewers will also learn how to use the specialized tools and instruments needed to test these particular types of circuits and components. If students plan to enter any type of electronics field, viewing this program will prove to be beneficial. The program is organized into major sections or topics. Each section covers one major segment of the subject. Graphic breaks are given between each section so that you can stop the video for class discussion, demonstrations, to answer questions, or to ask questions. This allows you to watch only a portion of the program each day, or to present it in its entirety. This program is part of the ten-part series Electricity and Electronics, which includes the following titles: • Electrical Principles • Electrical Circuits: Ohm's Law • Electrical Components Part I: Resistors/Batteries/Switches • Electrical Components Part II: Capacitors/Fuses/Flashers/Coils • Electrical Components Part III: Transformers/Relays/Motors • Electronic Components Part I: Semiconductors/Transistors/Diodes • Electronic Components Part II: Operation—Transistors/Diodes • Electronic Components Part III: Thyristors/Piezo Crystals/Solar Cells/Fiber Optics • Electrical Troubleshooting • Electronic Circuit Repair To order additional titles please see Additional Resources at www.filmsmediagroup.com at the end of this guide. -
ECSE-4760 Real-Time Applications in Control & Communications
Rensselaer Polytechnic Institute ECSE-4760 Real-Time Applications in Control & Communications EXPERIMENTS IN DIGITAL LOGIC DESIGN Number of Sessions – 4 INTRODUCTION Over the past few decades the digital world has come into its own. Even though engineering has gone into specialization, it is necessary to understand digital circuits to be able to communicate with others. This experiment attempts to teach a simple method of designing digital circuits. Due to the quick pace of the lab, it is highly recommended that you read one of the references. This will enable you to proceed quickly through the preliminary problems so you will have more time for the design problems. The following is an outline of the experiment. Following each section will be a set of questions that should be answered to show an understanding of the material presented. Any difficulties should be referred to a reference or your instructor. You should use the DesignWorks (LogicWorks or any other you may have) logic circuit simulator on the Macintosh after most sections to cement together all the preceding sections. BACKGROUND THEORY Boolean Algebra Switching Algebra Combinational Logic Minimization Flip-Flops and Registers Counters Synthesis of Synchronous Circuits EXPERIMENTAL PROCEDURE Questions and Problems Simulator Operation & FPGA Implementation REFERENCES It is required that you show all circuits, as built, in your write-up. Please include equations too. The first part of the procedure section contains all the questions and problems to be answered and the second part describes the use of DesignWorks. Note: all references to DesignWorks (on Macintosh computers) throughout this procedure may be replaced with LogicWorks on the lab Windows PCs. -
Capacitors and Inductors
DC Principles Study Unit Capacitors and Inductors By Robert Cecci In this text, you’ll learn about how capacitors and inductors operate in DC circuits. As an industrial electrician or elec- tronics technician, you’ll be likely to encounter capacitors and inductors in your everyday work. Capacitors and induc- tors are used in many types of industrial power supplies, Preview Preview motor drive systems, and on most industrial electronics printed circuit boards. When you complete this study unit, you’ll be able to • Explain how a capacitor holds a charge • Describe common types of capacitors • Identify capacitor ratings • Calculate the total capacitance of a circuit containing capacitors connected in series or in parallel • Calculate the time constant of a resistance-capacitance (RC) circuit • Explain how inductors are constructed and describe their rating system • Describe how an inductor can regulate the flow of cur- rent in a DC circuit • Calculate the total inductance of a circuit containing inductors connected in series or parallel • Calculate the time constant of a resistance-inductance (RL) circuit Electronics Workbench is a registered trademark, property of Interactive Image Technologies Ltd. and used with permission. You’ll see the symbol shown above at several locations throughout this study unit. This symbol is the logo of Electronics Workbench, a computer-simulated electronics laboratory. The appearance of this symbol in the text mar- gin signals that there’s an Electronics Workbench lab experiment associated with that section of the text. If your program includes Elec tronics Workbench as a part of your iii learning experience, you’ll receive an experiment lab book that describes your Electronics Workbench assignments. -
Digital Logic Design
Digital Logic Design Chapter 3 Gate-Level Minimization Nasser M. Sabah Outline of Chapter 3 2 Introduction The Map Method Four-Variable Map Five-Variable Map Product of Sums Simplification NAND & NOR Implementation Other Two-Level Implementations Exclusive-OR Function Introduction 3 Gate-level minimization refers to the design task of finding an optimal gate-level implementation of Boolean functions describing a digital circuit. The Map Method 4 The complexity of the digital logic gates The complexity of the algebraic expression Logic minimization Algebraic approaches: lack specific rules The Karnaugh map A simple straight forward procedure A pictorial form of a truth table A diagram made up of squares Each square represents one minterm of the function that is to be minimized. Review of Boolean Function 5 Boolean function Sum of minterms Sum of products (or product of sum) in the simplest form A minimum number of terms A minimum number of literals The simplified expression may not be unique Two-Variable Map 6 A two-variable map Four minterms x' = row 0; x = row 1 y' = column 0; y = column 1 A truth table in square diagram Figure 3.1 Two-variable Map xy m3 xym 1 m 2 m 3 xyxy'' xy Representation of functions in the map Three-Variable Map 7 A three-variable map Eight minterms The Gray code sequence Any two adjacent squares in the map differ by only on variable. Primed in one square and unprimed in the other. e.g., m5 and m7 can be simplified. m57 m xy'(') z xyz xz y y xz Three-variable Map Three-Variable -
ECE 546 Lecture -20 Power Distribution Networks
ECE 546 Lecture ‐20 Power Distribution Networks Spring 2020 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois [email protected] ECE 546 – Jose Schutt‐Aine 1 IC on Package ECE 546 – Jose Schutt‐Aine 2 IC on Package ECE 546 – Jose Schutt‐Aine 3 Power-Supply Noise - Power-supply-level fluctuations - Delta-I noise - Simultaneous switching noise (SSN) - Ground bounce VOH Ideal Actual VOL Vout Vout Time 4 ECE 546 – Jose Schutt‐Aine 4 Voltage Fluctuations • Voltage fluctuations can cause the following Reduction in voltage across power supply terminals. May prevent devices from switching Increase in voltage across power supply terminalsreliability problems Leakage of the voltage fluctuation into transistors Timing errors, power supply noise, delta‐I noise, simultaneous switching noise (SSN) ECE 546 – Jose Schutt‐Aine 5 Power-Supply-Level Fluctuations • Total capacitive load associated with an IC increases as minimum feature size shrinks • Average current needed to charge capacitance increases • Rate of change of current (dI/dt) also increases • Total chip current may change by large amounts within short periods of time • Fluctuation at the power supply level due to self inductance in distribution lines ECE 546 – Jose Schutt‐Aine 6 Reducing Power-Supply-Level Fluctuations Minimize dI/dt noise • Decoupling capacitors • Multiple power & ground pins • Taylored driver turn-on characteristics Decoupling capacitors • Large capacitor charges up during steady state • Assumes role of power supply during current switching • Leads -
Lab 1: Study of Gates & Flip-Flops
Lab 1: Study of Gates & Flip-flops Aim To familiarize with circuit implementations using ICs and test the behavior of different logic gates and Flip-flops. Hardware Requirement a. Equipments - Digital IC Trainer Kit b. Discrete Components - 74LS00 Quad 2-Input NAND gate 74LS02 Quad 2-Input NOR gate 74LS04 Hex 1-Input NOT gate 74LS08 Quad 2-Input AND gate 74LS10 Triple 3-Input NAND gate 74LS11 Triple 3-Input AND gate 74LS32 Quad 2-Input OR gate 74LS86 Quad 2-Input XOR 74LS73 JK-Flip flop 74LS74 D Flip flop Background Digital logic devices are the circuits that electronically perform logic operations on binary variables. The binary information is represented by high and low voltage levels, which the device processes electronically. The devices that perform the simplest of the logic operations (such as AND, OR, NAND, etc.) are called gates. For example, an AND gate electronically computes the AND of the voltage encoded binary signals appearing at its inputs and presents the voltage encoded result at its output. The digital logic circuits used in this laboratory are contained in integrated circuit (IC) packages, with generally 14 or 16 pins for electrical connections. Each IC is labeled (usually with an 74LSxx number) to identify the logic it performs. The logic diagrams and pin connections for these IC’s are described in the TTL Data Book by Texas Instruments1. The transistor-transistor logic(TTL) IC’s used in this laboratory require a 5.0 volt power supply for operation. TTL inputs require a voltage greater than 2 volts to represent a binary 1 and a voltage less than 0.8 volts to represent a binary 0. -
Realization of Morphing Logic Gates in a Repressilator with Quorum Sensing Feedback
Realization of Morphing Logic Gates in a Repressilator with Quorum Sensing Feedback Vidit Agarwal, Shivpal Singh Kang and Sudeshna Sinha Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, SAS Nagar, Sector 81, Manauli PO 140 306, Punjab, India Abstract We demonstrate how a genetic ring oscillator network with quorum sensing feedback can operate as a robust logic gate. Specifically we show how a range of logic functions, namely AND/NAND, OR/NOR and XOR/XNOR, can be realized by the system, thus yielding a versatile unit that can morph between different logic operations. We further demonstrate the capacity of this system to yield complementary logic operations in parallel. Our results then indicate the computing potential of this biological system, and may lead to bio-inspired computing devices. arXiv:1310.8267v1 [physics.bio-ph] 30 Oct 2013 1 I. INTRODUCTION The operation of any computing device is necessarily a physical process, and this funda- mentally determines the possibilities and limitations of the computing machine. A common thread in the history of computers is the exploitation and manipulation of different natural phenomena to obtain newer forms of computing paradigms [1]. For instance, chaos comput- ing [2], neurobiologically inspired computing, quantum computing[3], and DNA computing[4] all aim to utilize, at the basic level, some of the computational capabilities inherent in natural systems. In particular, larger understanding of biological systems has triggered the interest- ing question: what new directions do bio-systems offer for understanding and implementing computations? The broad idea then, is to create machines that benefit from natural phenomena and utilize patterns inherent in systems to encode inputs and subsequently obtain a desired output. -
Introduction to ASIC Design
’14EC770 : ASIC DESIGN’ An Introduction Application - Specific Integrated Circuit Dr.K.Kalyani AP, ECE, TCE. 1 VLSI COMPANIES IN INDIA • Motorola India – IC design center • Texas Instruments – IC design center in Bangalore • VLSI India – ASIC design and FPGA services • VLSI Software – Design of electronic design automation tools • Microchip Technology – Offers VLSI CMOS semiconductor components for embedded systems • Delsoft – Electronic design automation, digital video technology and VLSI design services • Horizon Semiconductors – ASIC, VLSI and IC design training • Bit Mapper – Design, development & training • Calorex Institute of Technology – Courses in VLSI chip design, DSP and Verilog HDL • ControlNet India – VLSI design, network monitoring products and services • E Infochips – ASIC chip design, embedded systems and software development • EDAIndia – Resource on VLSI design centres and tutorials • Cypress Semiconductor – US semiconductor major Cypress has set up a VLSI development center in Bangalore • VDAT 2000 – Info on VLSI design and test workshops 2 VLSI COMPANIES IN INDIA • Sandeepani – VLSI design training courses • Sanyo LSI Technology – Semiconductor design centre of Sanyo Electronics • Semiconductor Complex – Manufacturer of microelectronics equipment like VLSIs & VLSI based systems & sub systems • Sequence Design – Provider of electronic design automation tools • Trident Techlabs – Power systems analysis software and electrical machine design services • VEDA IIT – Offers courses & training in VLSI design & development • Zensonet Technologies – VLSI IC design firm eg3.com – Useful links for the design engineer • Analog Devices India Product Development Center – Designs DSPs in Bangalore • CG-CoreEl Programmable Solutions – Design services in telecommunications, networking and DSP 3 Physical Design, CAD Tools. • SiCore Systems Pvt. Ltd. 161, Greams Road, ... • Silicon Automation Systems (India) Pvt. Ltd. ( SASI) ... • Tata Elxsi Ltd.