Seasonal Variations in the Dynamics of Microbial Plankton Communities: First Estimates from Experiments in the Gulf of Trieste, Northern Adriatic Sea

Total Page:16

File Type:pdf, Size:1020Kb

Seasonal Variations in the Dynamics of Microbial Plankton Communities: First Estimates from Experiments in the Gulf of Trieste, Northern Adriatic Sea MARINE ECOLOGY PROGRESS SERIES Vol. 247: 1–16, 2003 Published February 4 Mar Ecol Prog Ser Seasonal variations in the dynamics of microbial plankton communities: first estimates from experiments in the Gulf of Trieste, Northern Adriatic Sea Serena Fonda Umani1, 2,*, Alfred Beran1 1Laboratorio di Biologia Marina, Via Piccard 54, 34010 Trieste S. Croce, Italy 2Dipartimento di Biologia, Università di Trieste, Via Weiss 2, 34127 Trieste, Italy ABSTRACT: Heterotrophic plankton grazing was studied in the Gulf of Trieste (Northern Adriatic Sea) from November 1998 to August 1999 using the dilution method. Four sets of experiments were carried out quarterly in order to assess the impact on communities of both phototrophic and heterotrophic prey. Four different trophic models were observed: during the autumn microzooplankton fed on small dinoflagellates, and phototrophic (PNAN) and heterotrophic nanoflagellates (HNAN), but not on the abundant bulk of diatoms. The entire initial HNAN standing stock was removed; we therefore did not observe any mortality of bacteria, whose biomass was the highest in the whole period. In late winter, the intense diatom bloom of Lauderia annulata remained almost untouched as the microzooplankton fed only on a less abundant small sized diatom (Chaetoceros). Microzooplankton also fed on HNAN, halving the mortality of bacteria induced by HNAN grazing only. In late spring, microzooplankton grazed effectively on a large array of prey (small diatoms, PNAN and HNAN). Reduction of bacterial mortality, exerted by microzooplankton through grazing on HNAN, was less evident, possibly due to direct microzooplankton grazing on bacteria. During the summer, we observed an intense grazing on bacteria by microzooplankton, which shifted from the usual nano-sized prey organisms, due to their extreme paucity, to bacteria. In conclusion, microzooplankton grazing was highly selective and vari- able due to the prey composition and to the predator community structure, which were investigated at the species to genus level. Microzooplankton was unable to control a bloom of large-sized diatoms, but showed a high level of control on most of the PNAN fractions. The result of this selection contributed significantly to the shaping of the phytoplankton community structure. Microzooplankton controlled HNAN biomass even more efficiently with relevant indirect effects on bacterial mortality. KEY WORDS: Microzooplankton herbivory · Microzooplankton bacterivory · HNAN bacterivory · Microbial food web · Seasonal trophic models Resale or republication not permitted without written consent of the publisher INTRODUCTION microzooplankton and HNAN has been studied in the Gulf of Trieste (e.g. Fonda Umani et al. 1995); however, The Northern Adriatic and the Gulf of Trieste have the mortality induced by grazing on phototrophic and been intensely investigated since the 19th century (e.g. heterotrophic plankton components has only been Fonda Umani 1996). However, before this project, inferred by distribution analyses (e.g. Del Negro et al. there were no studies on the grazing impact of either 2001). Direct determination of the relative grazing microzooplankton (20 to 200 µm protozoa of various rates of microzooplankton and HNAN, and quantifica- taxa, and small metazoa larvae and nauplii) or hetero- tion of specific prey mortality rates is critical for under- trophic nanoplankton (HNAN; 2 to 20 µm nanoflagel- standing the patterns of energy and material flows lates and ciliates). The occurrence and distribution of through the pelagic food web. Microzooplankton and *Email: [email protected] © Inter-Research 2003 · www.int-res.com 2 Mar Ecol Prog Ser 247: 1–16, 2003 HNAN are able to select food and display rapid re- toring chl a concentration following dilution, several sponses to changes in food availability. Therefore, they researchers estimated taxon- or pigment-specific mor- play significant roles in structuring plankton com- tality rates using pigment analysis by HPLC (e.g. munities (e.g. Paranjape 1990, Fahnenstiel et al. 1995, Strom & Welschmeyer 1991, McManus & Ederington- Froneman & Perissinotto 1996, Verity et al. 1996, James Cantrell 1992, Verity et al. 1993, Waterhouse & & Hall 1998, Lessard & Murrell 1998). Studies in other Welschmeyer 1995, Latasa et al. 1997, Schlüter 1998) marine environments have shown that through their and flow cytometry (e.g. Landry et al. 1995, Recker- grazing impact, microzooplankton and HNAN can mann & Veldhuis 1997, Kuipers & Witte 1999, Stelfox- control phytoplankton production (e.g. Gifford 1988, Widdicombe et al. 2000). We conducted microscopical Verity et al. 1993, Burkill et al. 1995, Cotano et al. 1998) counts of microzooplankton and phytoplankton (e.g. and dynamics (e.g. Landry et al. 1993, Strom & Strom McManus 1995, Verity et al. 1996, Nejstgaard et al. 1996, Latasa et al. 1997, Ruiz et al. 1998, Stelfox- 1997, Fonda Umani & Zanon 2000), and enumeration Widdicombe et al. 2000) as well as play a significant of phototrophic and heterotrophic nano- and pico- role in nutrient regeneration (Goldman et al. 1987). plankton by epifluorescence microscopy (e.g. Camp- Our knowledge of protozoan grazing in controlling bell & Carpenter 1986, Verity et al. 1993, Ayukai 1996, energy fluxes from producers to higher trophic levels James & Hall 1998). has steadily increased over the last 2 decades, leading The study was carried out under a 3 yr monitoring to a new perception of the marine food webs that project (INTERREG 2, Italy and Slovenia) from July has dramatically changed from the classic grazing 1998 to June 2001 in the Gulf of Trieste (Northern food chain to a more complex multivorous food web Adriatic Sea), conducted on a biweekly to monthly (Pomeroy 1974, Azam et al. 1983, Rassoulzadegan basis. The sampling grid comprised 30 stations; in 3 of 1993, Legendre & Rassoulzadegan 1995), where the these, we analysed most of the biotic components in microbial loop plays a pivotal role. In most of the the water column (e.g. pico-, nano-, microphyto- and oceanic environments, major fluxes of organic matter microzooplankton compositions). The dilution experi- move via dissolved organic matter to bacteria and the ments were performed in the most coastal ‘biological’ microbial loop. A significant part of this energy can station. Based on the monitoring results and the histor- be channelled to higher trophic levels via protozoan ical data set, we selected 4 distinct periods which grazing on bacteria. correspond to 4 different environmental conditions: Many studies have considered the sum of the graz- the moment of the first annual diatom bloom which ing impact of microzooplankton and HNAN (e.g. appeared in February (e.g. Fonda Umani 1992), the Caron et al. 1991, Murrell & Hollibaugh 1998), but only shift from diatoms to nanoflagellates in the phyto- few measured the relative effects of HNAN and mi- plankton composition in May (e.g. Malej et al. 1995), crozooplankton in combined experiments (Kuuppo- the lowest yearly phytoplankton biomass in August Leinikki 1990, Reckermann & Veldhuis 1997) or the (e.g. Mozetic et al. 1998) and the autumn diatom bloom predator communities composition (e.g. Gifford 1988, (e.g. Malej et al. 1995). Paranjape 1990, Verity et al. 1993, Froneman & Peris- In the 4 periods, we performed separate parallel sinotto 1996, Froneman et al. 1996, Strom & Strom dilution experiments with natural assemblages to 1996, James & Hall 1998, Dolan et al. 2000). assess the grazing impact of both microzooplankton The main goals of our study were: (1) to quantify the and HNAN. Therefore, we were able to consider carbon fluxes through the microbial community; (2) to microzooplankton and HNAN separately as potential identify any prey selectivity exerted by heterotrophic grazers, as well as microphytoplankton, and photo- communities; and (3) to analyse the relationships be- trophic (PNAN) and heterotrophic (HNAN) nano- tween the microzooplankton and HNAN grazing im- plankton as potential prey. This also enabled us to pact on picoplankton prey. Therefore, we attempted to distinguish between microzooplankton and HNAN analyse both predator and prey communities at genus grazing induced mortality of bacteria. to species level, and determined both specific growth and grazing rates of the predators represented by microzooplankton and HNAN, as well as specific MATERIALS AND METHODS growth and mortality rates of the prey represented by bacteria, nanoplankton and microphytoplankton. Study area. The Gulf of Trieste is a semi-enclosed A number of approaches have been used to measure shallow system (maximum depth 25 m), in the north- the grazing impact of both micro- and nano-predators ernmost eastern part of the Northern Adriatic Sea on a wide range of prey, but most used the dilution (Fig. 1). It stretches from the Isonzo (Soca) River, the method (Landry & Hasset 1982, reviewed by Dolan et most important source of fresh waters to Punta Salvore al. 2000). In addition to the classical approach of moni- (Istrian peninsula). It is mostly controlled by pulsing Fonda Umani & Beran: Seasonal variations in microbial plankton communities dynamics 3 The surface layer (from 0 to 5 m), usually flows clockwise towards Trieste (Stravisi 1983). The primary production, which is around 50 g C m–2 yr–1 (Faganeli & Malej 1981, Fonda Umani 1991), is supported by >10 µm producers in late winter and by the <10µm size class in the rest of the year (Malej et al. 1995). The composition and annual dynamics of pico-, nano-, microphyto-, microzoo- and net-
Recommended publications
  • History of Scuba Diving About 500 BC: (Informa on Originally From
    History of Scuba Diving nature", that would have taken advantage of this technique to sink ships and even commit murders. Some drawings, however, showed different kinds of snorkels and an air tank (to be carried on the breast) that presumably should have no external connecons. Other drawings showed a complete immersion kit, with a plunger suit which included a sort of About 500 BC: (Informaon originally from mask with a box for air. The project was so Herodotus): During a naval campaign the detailed that it included a urine collector, too. Greek Scyllis was taken aboard ship as prisoner by the Persian King Xerxes I. When Scyllis learned that Xerxes was to aack a Greek flolla, he seized a knife and jumped overboard. The Persians could not find him in the water and presumed he had drowned. Scyllis surfaced at night and made his way among all the ships in Xerxes's fleet, cung each ship loose from its moorings; he used a hollow reed as snorkel to remain unobserved. Then he swam nine miles (15 kilometers) to rejoin the Greeks off Cape Artemisium. 15th century: Leonardo da Vinci made the first known menon of air tanks in Italy: he 1772: Sieur Freminet tried to build a scuba wrote in his Atlanc Codex (Biblioteca device out of a barrel, but died from lack of Ambrosiana, Milan) that systems were used oxygen aer 20 minutes, as he merely at that me to arficially breathe under recycled the exhaled air untreated. water, but he did not explain them in detail due to what he described as "bad human 1776: David Brushnell invented the Turtle, first submarine to aack another ship.
    [Show full text]
  • Dives of the Bathyscaph Trieste, 1958-1963: Transcriptions of Sixty-One Dictabelt Recordings in the Robert Sinclair Dietz Papers, 1905-1994
    Dives of the Bathyscaph Trieste, 1958-1963: Transcriptions of sixty-one dictabelt recordings in the Robert Sinclair Dietz Papers, 1905-1994 from Manuscript Collection MC28 Archives of the Scripps Institution of Oceanography University of California, San Diego La Jolla, California 92093-0219: September 2000 This transcription was made possible with support from the U.S. Naval Undersea Museum 2 TABLE OF CONTENTS INTRODUCTION ...........................................................................................................................4 CASSETTE TAPE 1 (Dietz Dictabelts #1-5) .................................................................................6 #1-5: The Big Dive to 37,800. Piccard dictating, n.d. CASSETTE TAPE 2 (Dietz Dictabelts #6-10) ..............................................................................21 #6: Comments on the Big Dive by Dr. R. Dietz to complete Piccard's description, n.d. #7: On Big Dive, J.P. #2, 4 Mar., n.d. #8: Dive to 37,000 ft., #1, 14 Jan 60 #9-10: Tape just before Big Dive from NGD first part has pieces from Rex and Drew, Jan. 1960 CASSETTE TAPE 3 (Dietz Dictabelts #11-14) ............................................................................30 #11-14: Dietz, n.d. CASSETTE TAPE 4 (Dietz Dictabelts #15-18) ............................................................................39 #15-16: Dive #61 J. Piccard and Dr. A. Rechnitzer, depth of 18,000 ft., Piccard dictating, n.d. #17-18: Dive #64, 24,000 ft., Piccard, n.d. CASSETTE TAPE 5 (Dietz Dictabelts #19-22) ............................................................................48 #19-20: Dive Log, n.d. #21: Dr. Dietz on the bathysonde, n.d. #22: from J. Piccard, 14 July 1960 CASSETTE TAPE 6 (Dietz Dictabelts #23-25) ............................................................................57 #23-25: Italian Dive, Dietz, Mar 8, n.d. CASSETTE TAPE 7 (Dietz Dictabelts #26-29) ............................................................................64 #26-28: Italian Dive, Dietz, n.d.
    [Show full text]
  • Altitude on Cartographic Materials and Its Correction According to New Measurement Techniques
    remote sensing Article Altitude on Cartographic Materials and Its Correction According to New Measurement Techniques Kamil Maciuk 1,* , Michał Apollo 2 , Joanna Mostowska 3 , Tomáš Lepeška 4 , Mojca Poklar 5 , Tomasz Noszczyk 6 , Pawel Kroh 7 , Artur Krawczyk 8 , Łukasz Borowski 9 and Polona Pavlovˇciˇc-Prešeren 10 1 Department of Integrated Geodesy and Cartography, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland 2 Department of Tourism and Regional Studies, Institute of Geography, Pedagogical University of Cracow, ul. Podchor ˛azych˙ 2, 30-084 Krakow, Poland; [email protected] 3 Faculty of Geography and Regional Studies, University of Warsaw, ul. Krakowskie Przedmie´scie30, 00-927 Warszaw, Poland; [email protected] 4 Department of Applied Ecology, Faculty of Ecology and Environmental Sciences, Technical University in Zvolen, ul. T. G. Masaryka 24, 960 01 Zvolen, Slovakia; [email protected] 5 Faculty of Humanities, University of Primorska, Titov trg 5, 6000 Koper, Slovenia; [email protected] 6 Department of Land Management and Landscape Architecture, Faculty of Environmental Engineering and Land Surveying, University of Agriculture in Krakow, ul. Balicka 253 C, 30-198 Kraków, Poland; [email protected] 7 Faculty of Geography and Biology, Pedagogical University of Cracow, ul. Podchor ˛azych˙ 2, 30-084 Kraków, Poland; [email protected] 8 Department of Mine Areas Protection, Geoinformatics and Mine Surveying, AGH University of Science and Technology, Al. Mickiewicza
    [Show full text]
  • BOULDERS on ASTEROIDS DIDYMOS and DIMORPHOS: FUTURE DART-Liciacube OBSERVATIONS
    52nd Lunar and Planetary Science Conference 2021 (LPI Contrib. No. 2548) 1116.pdf BOULDERS ON ASTEROIDS DIDYMOS AND DIMORPHOS: FUTURE DART-LICIACube OBSERVATIONS M. Pajola1, A. Lucchetti1, S. Ivanovski2, G. Poggiali3,4, S. Ieva5, D. Perna5, E. Dotto5, V. Della Corte6, G. Cremonese1, M. Amoroso7, S. Pirrotta7, E. Mazzotta Epifani5, A. Cheng8, N. Chabot8, A. Rivkin8, O. Barnouin8, C. Ernst8, R.T. Daly8, M. Hirabayashi9, E. Asphaug10, S.R. Schwartz10, J.M. Trigo-Rodriguez11, E.G. Fahnestock12, P. Michel13, I. Bertini14, J.R. Brucato3, A. Capannolo15, B. Cotugno16, V. Di Tana16, I. Gai17, G. Impresario7, M. Lavagna15, A. Meneghin3, F. Miglioretti16, D. Modenini17, P. Palumbo14,6, A. Rossi18, E. Simioni1, S. Simonetti16, P. Tortora17, M. Zannoni17, G. Zanotti15, A. Zinzi19,7. 1INAF-Astronomical Observatory of Padova, Vic. Osservatorio 5, 35122 Padova, Italy ([email protected]); 2INAF Osservatorio Astronomico di Trieste, Trieste, Italy; 3INAF Osservatorio Astrofisico di Arcetri, Firenze, Italy; 4Università di Firenze, Dipartimento di Fisica e Astronomia, Sesto Fiorentino (Firenze), Italy; 5INAF Osservatorio Astronomico di Roma, Monte Porzio Catone (Roma), Italy; 6INAF Istituto di Astrofisica e Planetologia Spaziali, Roma, Italy; 7Agenzia Spaziale Italiana, via del Politecnico, 00133 Roma, Italy; 8Johns Hopkins University Applied Physics Laboratory, Laurel, MD-USA; 9Auburn University, Auburn, AL-USA; 10Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ-USA; 11Institute of Space Sciences (IEEC-CSIC), Dept. of Astrophysics,
    [Show full text]
  • The Waterfront of Trieste
    City of Trieste - ITALY “Not only cruising” 2011 July URBACTII Plan Action Local - of Trieste City Trieste: aerial view of the city IndEX Introduction ............................................................................................................................................................................................................. 2 1.1 Synopsis........................................................................................................................................................................................................................................ 3 1.2 The URBACT II Programme ......................................................................................................................................................................................................... 4 The city of Trieste .................................................................................................................................................................................................... 6 Trieste as port city in a nutshell .......................................................................................................................................................................................................... 7 Local economy .................................................................................................................................................................................................................................... 8 Infrastructural system
    [Show full text]
  • Bathyscaphe Trieste by Dennis Bryant
    Royal Belgian Institute of Marine Engineers Bathyscaphe Trieste by Dennis Bryant A revolutionary diving craft, leading the way for future generations. The first ultra‐deep diving manned vessel was conceived, designed, and constructed by August Piccard, a Swiss physicist in 1947. He called the craft a bathyscaph, coined by combining the Greek words bathos, meaning deep, and scaphos, meaning ship. In 1952, he began construction of a more advanced version. Because it was built largely in the city of Trieste, he named it TRIESTE when it was launched on August 1, 1953. It consisted of a small pressure sphere about seven feet in diameter attached to the underside of roughly rectangular float chamber that was 59 feet long and eleven feet wide. The whole thing looked distinctly unseaworthy. That is because the craft was never designed to transit on the surface of the water. Rather, its sole purpose was dive deep and return to the surface. The float chamber was filled with 22,000 gallons of gasoline. This flammable liquid was selected for two reasons: first, it was lighter than water; and second, it was nearly incompressible, even at extreme pressure. The float chamber also was fitted with two ballast silos filled with 18,000 pounds of magnetic iron pellets. These pellets were to be released when the two‐ man crew wanted to ascend to the surface. Having no means of propulsion when on the surface, the Trieste had to be brought to a point almost directly above its target and then allowed to descend. The craft made various dives in the Mediterranean before it was purchased by the US Navy in 1958 for the sum or $250,000.
    [Show full text]
  • Observations on the Feeding of Drymonema Dalmatinum in the Gulf of Trieste
    diversity Interesting Images Observations on the Feeding of Drymonema dalmatinum in the Gulf of Trieste Saul Ciriaco 1, Lisa Faresi 2 and Marco Segarich 3,* 1 WWF Miramare MPA, Via Beirut 2-4, 34151 Trieste, Italy; [email protected] 2 Agenzia Regionale per la Protezione dell’Ambiente della Regione Friuli Venezia Giulia, Via Cairoli 14, 33057 Palmanova, Italy; [email protected] 3 Shoreline Soc. Coop, Area Science Park, Loc. Padriciano 99, 34149 Trieste, Italy * Correspondence: [email protected] Keywords: Drymonema dalmatinum; Gulf of Trieste; jellyfish; feeding behaviour; Rhizostoma pulmo; Miramare Marine Protected Area The largest scyphozoan jellyfish of the Mediterranean Sea, Drymonema dalmatinum was first described by Haeckel [1] from material collected off the Dalmatian coast of the Adriatic Sea. According to Malej [2], there is no information on Drymonema in the Adriatic from 1937 till 1984, when a diver photographed one individual in the small eastern Adriatic Bay of Žrnovnica. Since the year 2000, the number and frequency of sightings have increased slightly throughout the Adriatic Sea, but the species must still be considered rare in the region. There are few documented sightings in the literature on the Mediterranean Sea in the Citation: Ciriaco, S.; Faresi, L.; last 10 years. According to Malej et al. [2], in the Adriatic Sea, there was one sighting in Segarich, M. Observations on the 2010 (Murter, HR) and two sightings in 2014 (Kotor bay, MNE; Gulf of Trieste, ITA). In the Feeding of Drymonema dalmatinum in Mediterranean, there was a well-documented sighting in the Sea of Marmara in 2020 [3], the Gulf of Trieste.
    [Show full text]
  • 16.2 the WORLD of PERPETUAL DARKNESS the Lack of Food
    Final PDF to printer 376 Part Three Structure and Function of Marine Ecosystems O2 abyssopelagic zone lies from 4,000 to 6,000 m (13,000 to 20,000 ft). The hadopelagic, or hadal pelagic, zone consists of the waters of the ocean trenches, from below 6,000 m to Amount of dissolved oxygen just above the sea floor, as deep as 11,000 m (36,000 ft). Low High Each of the depth zones supports a distinct community of animals, but they also have much in common. Here we hotosynthesi CO P s Organic 2 stress the similarities, rather than the differences, among the + matter H O + Epipelagic depth zones of the deep sea. 2 n O Respiratio 2 The conditions of life in the deep pelagic environment Decomposition change very little. Not only is it always dark, it is always 200 m cold: The temperature remains nearly constant, typically at 1 to 2 °C (35 °F). Salinity and other chemical properties of the water are also remarkably uniform. Oxygen minimum zone CO Organic 2 matter The deep sea also includes the ocean bottom beyond + H O Respiration + the continental shelf. Bottom-living organisms are covered 2 O Decomposition 2 Mesopelagic separately (see “The Deep-Ocean Floor,” below). The deep sea includes the bathypelagic, from 1,000 to 4,000 m; the abyssopelagic, 4,000 to 6,000 m; and the hadopelagic, 6,000 m to 1,000 m the bottom of trenches. The physical environment in these zones is quite constant. The deep sea also includes the deep-sea floor.
    [Show full text]
  • Technological Review of Deep Ocean Manned Submersibles ARCHIVES by MAS SACHUSETTS Instrifif of TECHNOLOGY Alex Kikeri Vaskov JUN 2 8 2012
    Technological Review of Deep Ocean Manned Submersibles ARCHIVES by MAS SACHUSETTS INSTrifIF OF TECHNOLOGY Alex Kikeri Vaskov JUN 2 8 2012 Submitted to the LIBRARIES Department of Mechanical Engineering in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science in Mechanical Engineering at the Massachusetts Institute of Technology June 2012 © 2012 Massachusetts Institute of Technology. All rights reserved. Signature of Author:. A- I Department of Mechanical Engineering / May 11, 2012 Certified by: Pierre F. J.Lermusiaux Associate Professor 9 f'Mechanical and Ocean Engineering Thesis Supervisor Accepted by - John H. Lienhard V Samuel C.Collins echanical Engineering Undergraduate Officer 2 Technological Review of Deep Ocean Manned Submersibles by Alex Vaskov Submitted to the Department of Mechanical Engineering on 5/11/2012 in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science in Mechanical Engineering ABSTRACT James Cameron's dive to the Challenger Deep in the Deepsea Challenger in March of 2012 marked the first time man had returned to the Mariana Trench since the Bathyscaphe Trieste's 1960 dive. Currently little is known about the geological processes and ecosystems of the deep ocean. The Deepsea Challenger is equipped with a plethora of instrumentation to collect scientific data and samples. The development of the Deepsea Challenger has sparked a renewed interest in manned exploration of the deep ocean. Due to the immense pressure at full ocean depth, a variety of advanced systems and materials are used on Cameron's dive craft. This paper provides an overview of the many novel features of the Deepsea Challenger as well as related features of past vehicles that have reached the Challenger Deep.
    [Show full text]
  • High-Speed Europe, a Sustainable Link Between Citizens
    High-speed Europe A SUSTAINABLE LINK BETWEEN CITIZENS This brochure is based largely on ‘European high-speed rail – An easy way to connect’, a study into the development and future prospects of the high-speed trans-European rail network. This study, which was commissioned by the European Commission, was completed in March 2009 by MVV Consulting and Tractebel Engineering. Europe Direct is a service to help you find answers to your questions about the European Union. Freephone number (*): 00 800 6 7 8 9 10 11 (*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed. More information on the European Union is available on the Internet (http://europa.eu). Cataloguing data can be found at the end of this publication. Luxembourg: Publications Office of the European Union, 2010 ISBN 978-92-79-13620-7 doi: 10.2768/17821 © European Union, 2010 Reproduction is authorised provided the source is acknowledged. Cover photo: © Eurostar Group Ltd Photos courtesy of: Adif, Eurostar Group Ltd, Ferrovie dello stato, iStockphoto, Reporters, Shutterstock, European Union Printed in Belgium PRINTED ON WHITE CHLORINE-FREE PAPER PREFACE The European Union is committed to making the transport of goods and the mobility of people more secure, more efficient and more environmentally friendly, with priority given to social and territorial cohesion, as well as to economic dynamism. Looking ahead to the near future, I envisage a transport system that closely meets the needs of its users, that is fast and intelligent but that minimises its environmental impact. The use of high-speed trains shows how this vision for the future can be made a reality today, thanks to the combined efforts of the Member States, partners from the industry and the financial support from the Union.
    [Show full text]
  • The Impact of Relative Sea Level Rise on the Northern Adriatic Sea Coast, Italy
    Management of Natural Resources, Sustainable Development and Ecological Hazards II 137 The impact of relative sea level rise on the Northern Adriatic Sea coast, Italy L. Carbognin1, P. Teatini2,1 & L. Tosi1 1Institute of Marine Sciences, National Research Council, Venice, Italy 2Department of Mathematical Methods and Models or Scientific Applications, University of Padua, Italy Abstract The lowlying coast of the Northern Adriatic Sea, between the Venetian territory to the north and the Ravenna area to the south, is very sensitive to land and sea elevation changes. Subsidence assessments show that geological land subsidence has and continues to occur unevenly at different rates (from less than 1 to more than 5 mm/yr), ascribable primarily to sediment compaction and secondly to deformation of substratum. Anthropogenic subsidence, mainly due to ground- fluid removal, has severely occurred in the second half of 1900 reaching values of some centimetres in the Venice area and a few meters southward. Starting in the 1970s, however, with the halt of groundwater withdrawals, anthropogenic subsidence has been strongly reduced or stopped. The availability of tide gauge data in Trieste, Venice, and Ravenna, along the Northern Adriatic coast, allows accurate assessment and meaningful observations of sea level changes. The analysis of data recorded from 1890 to 2007 shows negative trends of relative sea level equal to 1.2 mm/yr in Trieste, 2.5mm/year in Venice, and 8.5 mm/yr in Ravenna. Since Trieste is known to be stable, the rate of 1.2 mm/yr is attributable to the eustatic rise only. The comparison between Trieste and the other two cities shows that the trend at Venice and Ravenna is significantly influenced by land subsidence that is responsible for about the 57% and 85%, respectively, of the recorded relative sea/ground elevation changes.
    [Show full text]
  • The Return of the Lama
    Historical Diver, Volume 9, Issue 1 [Number 26], 2001 Item Type monograph Publisher Historical Diving Society U.S.A. Download date 09/10/2021 02:39:45 Link to Item http://hdl.handle.net/1834/30868 The Official Publication of The Historical Diving Societies of South East Asia & Pacific, Canada, Germany, Mexico and the U.S.A. Volume 9 Issue 1 Winter 2001 The Return of the Lama • Hugh Bradner's Wet Suit • Kenny Knott • Lowell Thomas Awards • • Antibes Diving History Seminar • Divair Regulator • E.R. Cross Files • • Anderson's Tales • ADCI, NOGI and DEMA Awards • Bud Swain • HISTORICAL DIVING SOCIETY USA A PUBLIC BENEFIT NONPROFIT CORPORATION 340 S KELLOGG AVE STE E, GOLETACA 93117, U.S.A. PHONE: 805-692-0072 FAX: 805-692-0042 e-mail: [email protected] or HTTP:I/www.hds.org/ ADVISORY BOARD FOUNDING BENEFACTORS Dr. Sylvia Earle Prof. Hans Hass Art Bachrach, Ph.D. Leslie Leaney Dr. Peter B. Bennett Lotte Hass Antonio Badias-Alonso Robert & Caroline Leaney Dick Bonin Dick Long Roger Bankston Andy Lentz Ernest H. Brooks II J. Thomas Millington, M.D. Ernie Brooks II A.L. "Scrap" Lundy Scott Carpenter Bob & Bill Meistrell Ken & Susan Brown Jim Mabry Wayne Brusate Andrew R. Mrozinski Jean-Michel Cousteau Bev Morgan P.K. Chandran Dr. Phil Nuytten E.R. Cross (1913-2000) Phil Nuytten Steve Chaparro Ronald E. Owen Henri Delauze Sir John Rawlins John Rice Churchill Torrance Parker Andre Galerne Andreas B. Rechnitzer, Ph.D. Raymond I. Dawson, Jr. Alese & Morton Pechter Lad Handelman Robert Stenuit Jesse & Brenda Dean Bob Ratcliffe Les Ashton Smith Diving Systems International Lee Selisky Skip & Jane Dunham Robert D.
    [Show full text]