Italian Space Industry 2018

Total Page:16

File Type:pdf, Size:1020Kb

Italian Space Industry 2018 ITALIAN SPACE INDUSTRY Products - Services - Applications - Technologies CATALOGUE 2018 in collaboration with: Foreword This Catalogue collects the company profiles of the enterprises operating in the Space Sector in Italy, with its products, services, applications and technologies. The initiative was edited jointly by ASI and ICE, in collaboration with the National Industrial Associations AIAD, AIPAS and ASAS. The data contained in this Catalogue were provided directly by the companies, under their responsibility. This initiative complements the ASI tool D.V. (Distretto Virtuale web 2.0 interactive portal) Photo Credits: NASA CATALOGUE 2018| 3 Introduction Italy’s long tradition in Space, well as in services and applications. space industrial capabilities in Italy. dating back to the beginning of the Overall the italian space industrial Although it is not an exhaustive 20th century, has determined the system covers the entire value representation of the entire Space development and consolidation of chain, from the upstream (satellite Italian industry (in particular a well structured and competitive infrastructures and launching for the SMEs), it is an extensive industrial system. systems) to the downstrean sector representation, thus enabling (services and applications). international stakeholders to identify The national Space Industry includes potential Italian industrial partners in all the application domains and Italian space industry is open to space activities. space enabling technologies, with the world: there are cooperation excellent and traditional capabilities initiatives and commercial at system level and in payload relationships with a very large design and integration. At the number of countries in all continents. ASI, Agenzia Spaziale Italiana same time there is a well structured This Catalogue, issued for the first Roberto Battiston 00133 Rome (Italy) community of Small and Medium time, intends to provide on a yearly President of the Via del Politecnico snc Companies (SMEs) holding forefront basis a general overview of the Italian Space Agency (ASI) +39 0685671 capabilities at subsystem level as www.asi.it Photo Credits: ESA 4 | CATALOGUE 2018 Introduction Aerospace is a sector of excellence essential part of the new satellites or catalogue, that aims to give the of the Italian industry, with a vested space missions. reader a comprehensive vision of our interest in innovation. companies’ activities, specialization Moreover, the Italian Aerospace and achievements, a working tool in The Italian Space sector is iconic Industry holds third place in Europe the process of starting a dialogue. amongst Italian industry, as it reflects in turnover after Germany and well some of its key features, such as France, for a total of 2 billions Euros, I trust it will give to many a clearer the ability to perform at the highest most of which is exported. picture of the capacity and potential level in cutting edge technologies of our industry, and may open International cooperation and and quality, and to compete with new opportunities for industrial, integration in multinational major global players. commercial or technical cooperation. ICE - Agenzia per la promozione projects is key to the success of our all’estero e l’internazionalizzazione In fact, Italy has always been a player companies, and for this reason we delle imprese italiane in the space industry: it was the 3rd carry out a large number of activities, 00144 Rome (Italy) | via Liszt, 21 country to ever launch a satellite, mostly in collaboration with the Michele Scannavini [email protected] and today Italian technology and Italian Space Agency (ASI). President of ICE www.ice.gov.it components are very often an Among the activities is this Italian Trade Agency Photo Credits: ESA CATALOGUE 2018| 5 Introduction AIAD, AIPAS and ASAS are very glad Moreover, Italy is characterized by The national ranking is the result of to participate and to contribute for an advanced technology, a wide the continuity of investments which the success of this National space range of available applications (civil, have been a priority since many companies catalogue. military and dual-use) and a fruitful years by the Italian Government, it interaction between research and materialized through the policies The Italian space industry plays a industry. and the programs of the Italian leading role in the Italian economy Space Agency (national programs, and stands out as one of the high- The Italian leadership leverages ESA programs) and the initiatives tech industries able to produce on the unique capabilities (skills of other national organizations and innovations generating positive and infrastructure) developed by institutions. ripple effects in other industrial the different actors of the sector sectors. (research institutes, universities and In Italy the Space sector has a AIAD, Italian Industries Federation industry) and on a broad spectrum significant number of both large Space is one of the few high-tech for Aerospace, Defence and Security of enabling technologies, ranging companies and small and medium- sectors in which Italy holds a global 00184 Rome (Italy) | Via Nazionale 54 from the manufacture of systems sized enterprises (SMEs). They leadership position. Italy belongs [email protected] (satellites, launchers, inhabited are represented by three different to the exclusive club of spacefaring +39 064880247 infrastructure, etc.) to the operational nations in the world that have a national organizations: www.aiad.it management of space centres, to complete supply chain and a full the provision of services in different range of expertise in the field. AIPAS, Association of areas of civil society (security, Italian Space Companies environmental monitoring, transport, 00186 Rome (Italy) | Via del Tempio 1 telecommunications, science, critical [email protected] infrastructure monitoring, etc.). +39 066869222 www.aipas.it ASAS, Association for Space-based ICT Technologies, Applications and Photo Credits: ESA Services 00187 Rome (Italy) | Via Barberini 3 [email protected] +39 06421401 www.asaspazio.it 6 | CATALOGUE 2018 Credits ASI - Silvia Ciccarelli and Rosa Maria Lucia Parrella Information gathering process and content management ASI - Walter O. Piperno and Danilo Rubini Supervision of technical contents Daniela Indennidate Graphic design, editing and publishing ICE - Agenzia Ufficio di Coordinamento Servizi di Promozione del Made in Italy, Vincenzo Lioi, Giovanni Beccu, Dalila Parisi, Silvia Sebastiani Del Grande Graphic design, editing and publishing Photo Credits: ASI CATALOGUE 2018| 7 Acknowledgements We wish to thank all the italian companies that have accepted to be present in this Catalogue. We also wish to thank ITA- ITALIAN TRADE AGENCY (ICE), AIAD, AIPAS and ASAS, for their support to carry out this project. Photo Credits: ESA 8 | CATALOGUE 2018 Photo Credits: ESA Astronaut Samantha Cristoforetti CATALOGUE 2018| 9 Contents Foreword ....................................................................................................................................................3 Introduction ................................................................................................................................................4 ASI................................................................................................................................................................ 4 ICE ............................................................................................................................................................... 5 AIAD-AIPAS-ASAS ..................................................................................................................................... 6 Credits ......................................................................................................................................................... 7 Acknowledgements .................................................................................................................................. 8 Matrix of Application Domains and Enabling Technologies ............................................................13 Alphabetical description of Companies SMEs ..........................................................................................................................................................20 Large Companies ....................................................................................................................................92 Alphabetical list of companies APPLICATION DOMAINS AND ENABLING TECHNOLOGIES APPLICATION DOMAINS ENABLING TECHNOLOGIES SYSTEM CAPABILITY SME LARGE COMPANY TO 50 KG TO ORATION, ORATION, TED APPLICATIONS AND TED APPLICATIONS TERIALS, STRUCTURES, THERMO- STRUCTURES, TERIALS, COMPANY NAME UNCH VEHICLE MISSION AYLOAD DESIGN AYLOAD EARTH OBSERVATION SYSTEM OBSERVATION EARTH SYSTEMS NAVIGATION SATELLITE SYSTEMS TELECOMMUNICATIONS TRANSPORTATION, | SPACE SYSTEMS AND RE-ENTRY LAUNCH HUMAN EXPL MANNED CAPSULE STATION, SPACE INTEGRA SECURITY SERVICES, SCIENCE THE UNIVERSE, OBSERVING EXPLORATION AND ROBOTIC MA MECHANISM MECHANICAL, OPTICS, PHOTONICS, ELECTRONICS, AND CRYOGENIC SENSORS INTEGRATED ELECTYRO COMPONENTS AND SIGNAL DATA INFORMATICS, PROCESSING FOR TECHNOLOGIES TRANSPORT SPACE NANO-MICRO UP 50-500 KG SMALL MEDIUM 500-2000 KG LARGE MORE THAN 2000 KG P AND INTEGRATION LA DESIGN AND INTEGRATION ACS AEROSEKUR AEROSPAZIO AGT ALI ALMA SISTEMI ALPHA CONSULT
Recommended publications
  • Issues Paper on Exploring Space Technologies for Sustainable Development and the Benefits of International Research Collaboration in This Context
    United Nations Commission on Science and Technology for Development Inter-sessional Panel 2019-2020 7-8 November 2019 Geneva, Switzerland Issues Paper on Exploring space technologies for sustainable development and the benefits of international research collaboration in this context Draft Not to be cited Prepared by UNCTAD Secretariat1 18 October 2019 1 Contributions from the Governments of Austria, Belgium, Botswana, Brazil, Canada, Japan, Mexico, South Africa, Turkey, the United Kingdom, United States of America, as well as from the Economic and Social Commission for Asia and the Pacific, the Food and Agriculture Organization, the International Telecommunication Union, the United Nations Office for Disaster Risk Reduction and the World Food Programme are gratefully acknowledged. Contents Table of figures ....................................................................................................................................... 3 Table of boxes ......................................................................................................................................... 3 I. Introduction .................................................................................................................................... 4 II. Space technologies for the Sustainable Development Goals ......................................................... 5 1. Food security and agriculture ..................................................................................................... 5 2. Health applications ....................................................................................................................
    [Show full text]
  • Gauss Approach to the Lean-Satellite Methodology
    INTERNATIONAL WORKSHOP ON LEAN SATELLITE KITAKYUSHU, JAN 22-24 2018 GAUSS APPROACH TO THE LEAN-SATELLITE METHODOLOGY 2018 Riccardo Di Roberto - GAUSS Srl GAUSS Srl History q Early 1990: G.A.U.S.S. (Gruppo di Astrodinamica dell’Università degli studi La Sapienza) was established as a Laboratory of the School of Aerospace Engineering in La Sapienza Rome University. The purpose was to involve directly the students in the design and the manufacturing of University Microsatellites. q Up to 2012: Six microsatellites have been developed and launched into orbitwith Dnepr and Vega launch vehicles. q 2012: Starting from the experience and the enthusiasm grown at the School of Aerospace Engineering, some professors, researchers and students decided to continue the tradition of the school in the private sector. The Italian limited liability company G.A.U.S.S. Srl (Group of Astrodynamics for the Use of Space Systems) was founded. q 2013-2014: GAUSS Srl realized the innovated idea of an autonomous micro-platform able to launch nanosatellites as CubeSats. Since then, two micro-platforms, UniSat-5 and UniSat-6, have carried into space 12 nanosatellites. q 2016 onwards: UniSat-7 micro-platform, with several CubeSats onboard, is under development. GAUSS Approach to the Lean-Satellite Methodology– Riccardo Di Roberto, GAUSS Srl GAUSS Srl History Unisat Unisat-2 Unisat-3 Unisat-4 EduSat UniC-GG 26 Sep 20 Dec 29 Jun 26 Jul 17 Aug 13 Feb 2000 2002 2004 2006 2011 2012 GAUSS Approach to the Lean-Satellite Methodology– Riccardo Di Roberto, GAUSS Srl CubeSats
    [Show full text]
  • SPACE RESEARCH in POLAND Report to COMMITTEE
    SPACE RESEARCH IN POLAND Report to COMMITTEE ON SPACE RESEARCH (COSPAR) 2020 Space Research Centre Polish Academy of Sciences and The Committee on Space and Satellite Research PAS Report to COMMITTEE ON SPACE RESEARCH (COSPAR) ISBN 978-83-89439-04-8 First edition © Copyright by Space Research Centre Polish Academy of Sciences and The Committee on Space and Satellite Research PAS Warsaw, 2020 Editor: Iwona Stanisławska, Aneta Popowska Report to COSPAR 2020 1 SATELLITE GEODESY Space Research in Poland 3 1. SATELLITE GEODESY Compiled by Mariusz Figurski, Grzegorz Nykiel, Paweł Wielgosz, and Anna Krypiak-Gregorczyk Introduction This part of the Polish National Report concerns research on Satellite Geodesy performed in Poland from 2018 to 2020. The activity of the Polish institutions in the field of satellite geodesy and navigation are focused on the several main fields: • global and regional GPS and SLR measurements in the frame of International GNSS Service (IGS), International Laser Ranging Service (ILRS), International Earth Rotation and Reference Systems Service (IERS), European Reference Frame Permanent Network (EPN), • Polish geodetic permanent network – ASG-EUPOS, • modeling of ionosphere and troposphere, • practical utilization of satellite methods in local geodetic applications, • geodynamic study, • metrological control of Global Navigation Satellite System (GNSS) equipment, • use of gravimetric satellite missions, • application of GNSS in overland, maritime and air navigation, • multi-GNSS application in geodetic studies. Report
    [Show full text]
  • Satellite Constellations - 2021 Industry Survey and Trends
    [SSC21-XII-10] Satellite Constellations - 2021 Industry Survey and Trends Erik Kulu NewSpace Index, Nanosats Database, Kepler Communications [email protected] ABSTRACT Large satellite constellations are becoming reality. Starlink has launched over 1600 spacecraft in 2 years since the launch of the first batch, Planet has launched over 450, OneWeb more than 200, and counting. Every month new constellation projects are announced, some for novel applications. First part of the paper focuses on the industry survey of 251 commercial satellite constellations. Statistical overview of applications, form factors, statuses, manufacturers, founding years is presented including early stage and cancelled projects. Large number of commercial entities have launched at least one demonstrator satellite, but operational constellations have been much slower to follow. One reason could be that funding is commonly raised in stages and the sustainability of most business models remains to be proven. Second half of the paper examines constellations by selected applications and discusses trends in appli- cations, satellite masses, orbits and manufacturers over the past 5 years. Earliest applications challenged by NewSpace were AIS, Earth Observation, Internet of Things (IoT) and Broadband Internet. Recent years have seen diversification into majority of applications that have been planned or performed by governmental or military satellites, and beyond. INTRODUCTION but they are regarded to be fleets not constellations. There were much fewer Earth Observation com- NewSpace Index has tracked commercial satellite panies in 1990s and 2000s when compared to com- constellations since 2016. There are over 251 entries munications and unclear whether any large constel- as of May 2021, which likely makes it the largest lations were planned.
    [Show full text]
  • GEO and GEOSS……
    GEO - GEOSS Support of the CBD 2010 Targets CBD - SBSTTA Paris, 4 July 2007 Douglas Muchoney, GEO Secretariat © GEO Secretariat The Earth is a complex system of systems © GEO Secretariat Any Single Problem Requires Many Data Sets A Single Data Set Will Serve Many Communities © GEO Secretariat Solar Energy © GEO Secretariat GEOSS Implementation is a Non- binding, Voluntary Process • Relies on the Goodwill of Members and Participating Organizations • Efficient for Contribution of Components • Not a Funding Mechanism • GEO implements GEOSS © GEO Secretariat GEO Goal Improve and Coordinate Observation Systems Provide Easier & More Open Data Access Foster Use (Science, Applications, Capacity Bldg) … to answer Society’s need for informed decision making © GEO Secretariat GEOSS: A Global, Coordinated, Comprehensive and Sustained System of Observing Systems © GEO Secretariat GEOSS will Address Nine Societal Benefit Areas 1. Reduction and Prevention of Disasters 2. Human Health and Epidemiology 3. Energy Management 4. Climate Variability & Change 5. Water Management 6. Weather Forecasting 7. Ecosystems 8. Agriculture 9. Biodiversity © GEO Secretariat GEOSS achievement through 5 Transverse Areas 1. Architecture 2. Data Management 3. User Engagement 4. Capacity Building 5. Outreach © GEO Secretariat Envisat SORCE Aura/Aqua/Terra Sage QuikScat IKONOS CBERS SeaWiFS SPOT 4, 5 SPIN-2 SeaWinds Orbview 2, 3 TRMM DMC ACRIMSAT EROS A1 ERBS Radarsat ALOS Toms-EP QuickBird Grace Landsat 7 Jason UARS Space Observation© GEO Secretariat Systems In Situ Observation Systems © GEO Secretariat GEO Societal Benefit Areas 1. Reduction and Prevention of Disasters 2. Human Health 3. Energy Management 4. Climate Change 5. Water Management 6. Weather Forecasting 7. Ecosystems 8. Agriculture 9.
    [Show full text]
  • Pocketqube Standard Issue 1 7Th of June, 2018
    The PocketQube Standard Issue 1 7th of June, 2018 The PocketQube Standard June 7, 2018 Contributors: Organization Name Authors Reviewers TU Delft S. Radu S. Radu TU Delft M.S. Uludag M.S. Uludag TU Delft S. Speretta S. Speretta TU Delft J. Bouwmeester J. Bouwmeester TU Delft - A. Menicucci TU Delft - A. Cervone Alba Orbital A. Dunn A. Dunn Alba Orbital T. Walkinshaw T. Walkinshaw Gauss Srl P.L. Kaled Da Cas P.L. Kaled Da Cas Gauss Srl C. Cappelletti C. Cappelletti Gauss Srl - F. Graziani Important Note(s): The latest version of the PocketQube Standard shall be the official version. 2 The PocketQube Standard June 7, 2018 Contents 1. Introduction ............................................................................................................................................................... 4 1.1 Purpose .............................................................................................................................................................. 4 2. PocketQube Specification ......................................................................................................................................... 4 1.2 General requirements ....................................................................................................................................... 5 2.2 Mechanical Requirements ................................................................................................................................. 5 2.2.1 Exterior dimensions ..................................................................................................................................
    [Show full text]
  • Foi-R--5077--Se
    Omvärldsanalys Rymd 2020 Fokus på försvar och säkerhet Sandra Lindström (red.), Kristofer Hallgren, Seméli Papadogiannakis, Ola Rasmusson, John Rydqvist och Jonatan Westman FOI-R--5077--SE Januari 2021 Sandra Lindström (red.), Kristofer Hallgren, Seméli Papadogiannakis, Ola Rasmusson, John Rydqvist och Jonatan Westman Omvärldsanalys Rymd 2020 Fokus på försvar och säkerhet FOI-R--5077--SE Titel Omvärldsanalys Rymd 2020 – Fokus på försvar och säkerhet Title Global Space Trends 2020 for Defence and Security Rapportnr/Report no FOI-R--5077--SE Månad/Month Januari Utgivningsår/Year 2021 Antal sidor/Pages 127 ISSN 1650-1942 Kund/Customer Försvarsmakten Forskningsområde Flygsystem och rymdfrågor FoT-område Sensorer och signaturanpassningsteknik Projektnr/Project no E60966 Godkänd av/Approved by Lars Höstbeck Ansvarig avdelning Försvars- och säkerhetssystem Bild/Cover: Tre gröna lasrar från Starfire Optical Range på Kirtland Air Force Base i New Mexico, USA. Anläggningen används bland annat för inmätning av objekt i låga satellitbanor. Den allmänna uppfattningen (men ej officiell) är att lasern även kan användas som ASAT-vapen. Källa: Directed Energy Directorate, US Air Force. Detta verk är skyddat enligt lagen (1960:729) om upphovsrätt till litterära och konstnärliga verk, vilket bl.a. innebär att citering är tillåten i enlighet med vad som anges i 22 § i nämnd lag. För att använda verket på ett sätt som inte medges direkt av svensk lag krävs särskild överenskommelse. This work is protected by the Swedish Act on Copyright in Literary and Artistic Works (1960:729). Citation is permitted in accordance with article 22 in said act. Any form of use that goes beyond what is permitted by Swedish copyright law, requires the written permission of FOI.
    [Show full text]
  • Handheld Microscope Users Guide
    Handheld Microscope Users Guide www.ScopeCurriculum.com ii Handheld Microscope Users Guide Hand-Held Microscope User’s Guide Table of Contents INTRODUCTION ..................................................................................................................................1 What is a Scope-On-A-Rope? .....................................................................................................1 Which model do you have?.........................................................................................................2 Analog vs. Digital .........................................................................................................................3 Where can I buy a SOAR? ...........................................................................................................3 NEW SCOPE-ON-A-ROPE..................................................................................................................4 Parts and Assembly of SOAR .....................................................................................................4 Connections .................................................................................................................................5 Turning It On.................................................................................................................................5 Comparing and Installing Lenses...............................................................................................6 How to Use and Capture Images with the 30X Lens.................................................................7
    [Show full text]
  • KOMMISSION DER EUROPÄISCHEN GEMEINSCHAFTEN Brüssel, Den
    KOMMISSION DER EUROPÄISCHEN GEMEINSCHAFTEN Brüssel, den 26.4.2007 SEK(2007) 504 ARBEITSDOKUMENT DER KOMMISSIONSDIENSTSTELLEN Europäisches Raumfahrtprogramm – Erste Ansätze {KOM(2007) 212 endgültig} {SEK(2007) 505} {SEK(2007) 506} DE DE INHALTSVERZEICHNIS 1. Einleitung: Grundlagen des Europäischen Raumfahrtprogramms............................... 3 2. Vorläufige programmatische Ziele .............................................................................. 4 3. Aktivitäten auf europäischer und nationaler Ebene zur Unterstützung der vorläufigen Ziele des Europäischen Raumfahrtprogramms ............................................................ 8 3.1. Satellitennavigation...................................................................................................... 8 3.2. Erdbeobachtung............................................................................................................ 9 3.3. Satellitenkommunikation ........................................................................................... 10 3.4. Wissenschaft und Technik ......................................................................................... 11 3.4.1. Extraterrestrik............................................................................................................. 11 3.4.2. Geowissenschaft......................................................................................................... 12 3.4.3. Technologie...............................................................................................................
    [Show full text]
  • Highlights in Space 2010
    International Astronautical Federation Committee on Space Research International Institute of Space Law 94 bis, Avenue de Suffren c/o CNES 94 bis, Avenue de Suffren UNITED NATIONS 75015 Paris, France 2 place Maurice Quentin 75015 Paris, France Tel: +33 1 45 67 42 60 Fax: +33 1 42 73 21 20 Tel. + 33 1 44 76 75 10 E-mail: : [email protected] E-mail: [email protected] Fax. + 33 1 44 76 74 37 URL: www.iislweb.com OFFICE FOR OUTER SPACE AFFAIRS URL: www.iafastro.com E-mail: [email protected] URL : http://cosparhq.cnes.fr Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law The United Nations Office for Outer Space Affairs is responsible for promoting international cooperation in the peaceful uses of outer space and assisting developing countries in using space science and technology. United Nations Office for Outer Space Affairs P. O. Box 500, 1400 Vienna, Austria Tel: (+43-1) 26060-4950 Fax: (+43-1) 26060-5830 E-mail: [email protected] URL: www.unoosa.org United Nations publication Printed in Austria USD 15 Sales No. E.11.I.3 ISBN 978-92-1-101236-1 ST/SPACE/57 *1180239* V.11-80239—January 2011—775 UNITED NATIONS OFFICE FOR OUTER SPACE AFFAIRS UNITED NATIONS OFFICE AT VIENNA Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law Progress in space science, technology and applications, international cooperation and space law UNITED NATIONS New York, 2011 UniTEd NationS PUblication Sales no.
    [Show full text]
  • ESTRACK Facilities Manual (EFM) Issue 1 Revision 1 - 19/09/2008 S DOPS-ESTR-OPS-MAN-1001-OPS-ONN 2Page Ii of Ii
    fDOCUMENT document title/ titre du document ESA TRACKING STATIONS (ESTRACK) FACILITIES MANUAL (EFM) prepared by/préparé par Peter Müller reference/réference DOPS-ESTR-OPS-MAN-1001-OPS-ONN issue/édition 1 revision/révision 1 date of issue/date d’édition 19/09/2008 status/état Approved/Applicable Document type/type de document SSM Distribution/distribution see next page a ESOC DOPS-ESTR-OPS-MAN-1001- OPS-ONN EFM Issue 1 Rev 1 European Space Operations Centre - Robert-Bosch-Strasse 5, 64293 Darmstadt - Germany Final 2008-09-19.doc Tel. (49) 615190-0 - Fax (49) 615190 495 www.esa.int ESTRACK Facilities Manual (EFM) issue 1 revision 1 - 19/09/2008 s DOPS-ESTR-OPS-MAN-1001-OPS-ONN 2page ii of ii Distribution/distribution D/EOP D/EUI D/HME D/LAU D/SCI EOP-B EUI-A HME-A LAU-P SCI-A EOP-C EUI-AC HME-AA LAU-PA SCI-AI EOP-E EUI-AH HME-AT LAU-PV SCI-AM EOP-S EUI-C HME-AM LAU-PQ SCI-AP EOP-SC EUI-N HME-AP LAU-PT SCI-AT EOP-SE EUI-NA HME-AS LAU-E SCI-C EOP-SM EUI-NC HME-G LAU-EK SCI-CA EOP-SF EUI-NE HME-GA LAU-ER SCI-CC EOP-SA EUI-NG HME-GP LAU-EY SCI-CI EOP-P EUI-P HME-GO LAU-S SCI-CM EOP-PM EUI-S HME-GS LAU-SF SCI-CS EOP-PI EUI-SI HME-H LAU-SN SCI-M EOP-PE EUI-T HME-HS LAU-SP SCI-MM EOP-PA EUI-TA HME-HF LAU-CO SCI-MR EOP-PC EUI-TC HME-HT SCI-S EOP-PG EUI-TL HME-HP SCI-SA EOP-PL EUI-TM HME-HM SCI-SM EOP-PR EUI-TP HME-M SCI-SD EOP-PS EUI-TS HME-MA SCI-SO EOP-PT EUI-TT HME-MP SCI-P EOP-PW EUI-W HME-ME SCI-PB EOP-PY HME-MC SCI-PD EOP-G HME-MF SCI-PE EOP-GC HME-MS SCI-PJ EOP-GM HME-MH SCI-PL EOP-GS HME-E SCI-PN EOP-GF HME-I SCI-PP EOP-GU HME-CO SCI-PR
    [Show full text]
  • The Microscope Parts And
    The Microscope ­ Parts and Use Name:_______________________ Period:______ Historians credit the invention of the compound microscope to the Dutch spectacle maker, Zacharias Janssen, around the year 1590. The compound microscope uses lenses and light to enlarge the image and is also called an optical or light microscope (vs./ an electron microscope). The simplest optical microscope is the magnifying glass and is good to about ten times (10X) magnification. The compound microscope has two systems of lenses for greater magnification, 1) the ocular, or eyepiece lens that one looks into and 2) the objective lens, or the lens closest to the object. Before purchasing or using a microscope, it is important to know the functions of each part. Eyepiece Lens: the lens at the top that you look through. They are usually 10X or 15X power. Tube: Connects the eyepiece to the objective lenses Arm: Supports the tube and connects it to the base. It is used along with the base to carry the microscope Base: The bottom of the microscope, used for support Illuminator: A steady light source (110 volts) used in place of a mirror. Stage: The flat platform where you place your slides. Stage clips hold the slides in place. Revolving Nosepiece or Turret: This is the part that holds two or more objective lenses and can be rotated to easily change power. Objective Lenses: Usually you will find 3 or 4 objective lenses on a microscope. They almost always consist of 4X, 10X, 40X and 100X powers. When coupled with a 10X (most common) eyepiece lens, we get total magnifications of 40X (4X times 10X), 100X , 400X and 1000X.
    [Show full text]