Issues Paper on Exploring Space Technologies for Sustainable Development and the Benefits of International Research Collaboration in This Context

Total Page:16

File Type:pdf, Size:1020Kb

Issues Paper on Exploring Space Technologies for Sustainable Development and the Benefits of International Research Collaboration in This Context United Nations Commission on Science and Technology for Development Inter-sessional Panel 2019-2020 7-8 November 2019 Geneva, Switzerland Issues Paper on Exploring space technologies for sustainable development and the benefits of international research collaboration in this context Draft Not to be cited Prepared by UNCTAD Secretariat1 18 October 2019 1 Contributions from the Governments of Austria, Belgium, Botswana, Brazil, Canada, Japan, Mexico, South Africa, Turkey, the United Kingdom, United States of America, as well as from the Economic and Social Commission for Asia and the Pacific, the Food and Agriculture Organization, the International Telecommunication Union, the United Nations Office for Disaster Risk Reduction and the World Food Programme are gratefully acknowledged. Contents Table of figures ....................................................................................................................................... 3 Table of boxes ......................................................................................................................................... 3 I. Introduction .................................................................................................................................... 4 II. Space technologies for the Sustainable Development Goals ......................................................... 5 1. Food security and agriculture ..................................................................................................... 5 2. Health applications ..................................................................................................................... 7 3. Access to telecommunications ................................................................................................... 8 4. Disaster risk reduction and humanitarian crises ........................................................................ 8 5. Natural resource and environment management .................................................................... 10 6. Other applications ..................................................................................................................... 12 III. Rapid technological change and bottlenecks in space science and technology ....................... 13 1. Recent technological developments ......................................................................................... 13 Artificial intelligence and cloud computing .................................................................................. 14 Emerging satellite and aerial platforms ........................................................................................ 14 Crowdsourcing .............................................................................................................................. 15 2. Bottlenecks in the use of space technologies ........................................................................... 15 Lack of awareness concerning the benefits of space technologies .............................................. 15 Lack of financial resources ............................................................................................................ 16 Technology and skills gaps ............................................................................................................ 16 Technical challenges: data access, standardization, data quality and user needs ....................... 17 Geographical constraints .............................................................................................................. 17 Regulations and governance of space commons .......................................................................... 17 IV. International scientific research in space for the Sustainable Development Goals ................. 18 1. International Space Station ....................................................................................................... 18 2. Regional cooperation on scientific research for space ............................................................. 19 3. International scientific research for drought monitoring from space ...................................... 20 4. Space-enabled research cooperation for disasters and humanitarian relief ........................... 21 5. International scientific cooperation to enhance access to space ............................................. 22 V. Policies and strategies ................................................................................................................... 23 1. National policies and strategies ................................................................................................ 23 Harness scientific research and technology applications in space to build capabilities, improve infrastructure, and increase public awareness ............................................................................. 23 Collaborate with technical and academic communities and the civil society to drive progress on the SDGs ........................................................................................................................................ 25 2 Continue to share data for development and adapt open data and open science policies and frameworks ................................................................................................................................... 25 2. Regional cooperation ................................................................................................................ 26 Promote regional awareness and consensus building on space for sustainable development ... 26 Encourage regional space activities to support research and development, capacity-building, and data sharing ........................................................................................................................... 27 3. Multi-stakeholder initiatives ..................................................................................................... 28 Encourage multi-stakeholder actors to continue to share EO digital public goods ..................... 28 Build space for SDG-focused global and public-private partnerships........................................... 28 4. International collaboration and cooperation ........................................................................... 29 Invest in multilateral mechanisms and platforms for sharing EO data assets .............................. 29 Strengthen international cooperation on space-related R&D and capacity-building .................. 29 Leverage intergovernmental platforms for space ........................................................................ 31 VI. Key questions for discussion ..................................................................................................... 31 References ............................................................................................................................................ 33 Table of figures Figure 1: How space research and development leads to terrestrial products .................................... 13 Figure 2: Countries by use of satellite services, investment in hardware, expertise and infrastructure .............................................................................................................................................................. 23 Figure 3: Potential motivations for developing countries to invest in space technologies and expertise ............................................................................................................................................... 23 Table of boxes Box 1: Developing maps with drones to build refugee resilience in Uganda ....................................... 10 Box 2: Meeting regional needs with Earth observation services and data........................................... 20 Box 3: South Africa’s Satellite Development Programme .................................................................... 24 Box 4: Selected international space cooperation projects of Mexico .................................................. 27 3 I. Introduction The United Nations has a long history in promoting greater international collaboration in outer space as well as the use of space technologies for sustainable development. The United Nations Office for Outer Space Affairs (UNOOSA) was initially created in 1958, while the international community celebrated last year the 50th anniversary of the first United Nations Conference on the Exploration and Peaceful Uses of Outer Space (UNISPACE). In recent years, there has been an increasing interest from Member States to use space applications for sustainable development, especially to achieve the Sustainable Development Goals (SDGs). In this context, the United Nations Commission on Science and Technology for Development (CSTD) selected the topic of “Exploring space technologies for sustainable development and the benefits of international research collaboration in this context” in May 2019 as one of its priority themes for its twenty-third session. Space science2, technologies, and data have the potential to contribute in direct or indirect ways to all SDGs. Space science incorporates scientific disciplines involved in space exploration and the study of outer space natural phenomena and physical bodies, and often includes disciplines such as astronomy, aerospace engineering, space medicine and astrobiology. Space technologies often refer to satellite Earth observation (EO), satellite communication, as well as satellite positioning. Technologies
Recommended publications
  • SPACE RESEARCH in POLAND Report to COMMITTEE
    SPACE RESEARCH IN POLAND Report to COMMITTEE ON SPACE RESEARCH (COSPAR) 2020 Space Research Centre Polish Academy of Sciences and The Committee on Space and Satellite Research PAS Report to COMMITTEE ON SPACE RESEARCH (COSPAR) ISBN 978-83-89439-04-8 First edition © Copyright by Space Research Centre Polish Academy of Sciences and The Committee on Space and Satellite Research PAS Warsaw, 2020 Editor: Iwona Stanisławska, Aneta Popowska Report to COSPAR 2020 1 SATELLITE GEODESY Space Research in Poland 3 1. SATELLITE GEODESY Compiled by Mariusz Figurski, Grzegorz Nykiel, Paweł Wielgosz, and Anna Krypiak-Gregorczyk Introduction This part of the Polish National Report concerns research on Satellite Geodesy performed in Poland from 2018 to 2020. The activity of the Polish institutions in the field of satellite geodesy and navigation are focused on the several main fields: • global and regional GPS and SLR measurements in the frame of International GNSS Service (IGS), International Laser Ranging Service (ILRS), International Earth Rotation and Reference Systems Service (IERS), European Reference Frame Permanent Network (EPN), • Polish geodetic permanent network – ASG-EUPOS, • modeling of ionosphere and troposphere, • practical utilization of satellite methods in local geodetic applications, • geodynamic study, • metrological control of Global Navigation Satellite System (GNSS) equipment, • use of gravimetric satellite missions, • application of GNSS in overland, maritime and air navigation, • multi-GNSS application in geodetic studies. Report
    [Show full text]
  • INPE) MCTI Çp ' Acordo Operação Técnica COPERNICUS Entre ESA,AEB E INPE (0026237) SEI 01350.001611/2018-03 / Pg
    ORIGINAL N° 1 Copernicus Space Component Technical Operating Arrangement ESA - Brazilian Space Agency and INPE (INPE) MCTI çp ' Acordo Operação Técnica COPERNICUS entre ESA,AEB E INPE (0026237) SEI 01350.001611/2018-03 / pg. 1 Table of Contents 1 INTRODUCTION....................................................................................... 4 1.1 Background....................................................................................................................... 4 1.2 Purpose and objectives ..................................................................................................... 4 1.3 Scope................................................................................................................................. 6 1.4 References......................................................................................................................... 6 2 EUROPEAN ACCESS TO BRAZILIAN EO MISSIONS AND CALIBRATION DATA AND PARTNER IN-SITU DATA ............................................................. 7 3 ARRANGEMENT OF TECHNICAL INTERFACES ....................................... 8 3.1 Technical Arrangement Types.......................................................................................... 8 4 INTERNATIONALARCHIVING AND DISSEMINATION CENTRES, MIRRORSITE ................................................................................................ 9 4.1 Invohred Entities............................................................................................................... 9 4.2 INPE Activity
    [Show full text]
  • Innovation Fair
    ECOSOC 2013 SUBSTANTIVE SESSION Geneva, July 2013 INNOVATION FAIR UNITAR participation This brief is based on the guidelines provided by the Office for ECOSOC Support and Coordination of DESA (in particular the background note on the Ministerial Review segment). Areas selected by UNITAR and suggested activities to be showcased: 1. Promoting food and water security - Show case: UNOSAT water resources mapping using satellite remote sensing; 2. Social media: An innovative tool for advocacy - Show case: the use of crowd sourcing and collaborative mapping in emergency response and disaster reduction. Criteria The initiatives above were selected among the applied technology and innovation work developed at UNITAR with technology partners because they meet the following criteria suggested by DESA: 1. Utilize science, technology and culture to contribute to sustainable development; 2. Demonstrate strong links between STI and Culture and the global development agenda; 3. Encourage sustainability and replicability; 4. Promote women’s inclusion; and 5. Promote partnerships and foster synergetic activities with other stakeholders. Application 1 UNOSAT water resources mapping using satellite remote sensing Description: UNOSAT is implementing in Chad an innovative project combining technology, innovation, satellite mapping and academic knowledge. Since 2012 UNOSAT and the Swiss Development Cooperation are engaged in implementing an innovative water management and capacity development activity in Chad with the ambitious aim of combining technology and learning to strengthen the national capacity in the area of water resources discovery, mapping and management. The project uses extensive radar and optical satellite technology to map water reserves that are not visible on the surface and contributes to mapping the entire water resources of the country for more efficient water management.
    [Show full text]
  • Results Brochure
    Initiated by: #FarmingbySatellite Sponsored by: www.farmingbysatellite.eu Results Brochure Initiated by: Sponsored by: Table of Contents Introduction 03 The participant journey 04 Using European satellite technologies to improve agriculture Meet the start-ups 06 and reduce environmental impact European Prizes The 2020 edition of the Farming by Satellite Prize has GNSS is a key enabler of precision agriculture, allowing officially come to an end. This year, we celebrate the farmers to operate machinery along parallel lines, avoid Graniot – Winner 07 fifth edition and looking back at the numerous ideas overlaps and gaps in field cultivation, and reduce their submitted, we see a thriving entrepreneurial ecosystem fatigue thanks to satellite-enabled autopilot. GNSS also Genuine – 2nd place 08 building around satellite technology enabled solutions helps to reduce agriculture’s ecological footprint. In for sustainable agriculture in both Europe and Africa. particular, the satellite programmes play a crucial role rd Ai4ocean farming – 3 place 09 in the Common Agricultural Policy, delivering significant Innovation is crucial for the growth and sustainability added value for farmers, the institutions involved and Harvesting Prizes – grand finalist 10 of the agricultural sector and enables the response society at large. Leveraging this innovation potential for RVRI – grand finalist 11 to emerging global challenges such as the rise of the society and encouraging this type of strong innovative global population and the impact of climate change. thinking from the next generation are key motivators for The Farming by Satellite Prize is designed to encourage setting up this competition. Special Africa Prize young professionals, farmers, and students in Europe to create new, sustainable, and environmentally friendly The competition is a joint initiative by the European GeoM&E – Winner Special 12 solutions using Copernicus, EGNOS and Galileo.
    [Show full text]
  • PHILIPPINES’ NATIONAL STATEMENT to the UNISPACE+5O HIGH-LEVEL SEGMENT 20-21 JUNE 2018, VIENNA INTERNATIONAL CENTER
    PHILIPPINES’ NATIONAL STATEMENT TO THE UNISPACE+5o HIGH-LEVEL SEGMENT 20-21 JUNE 2018, VIENNA INTERNATIONAL CENTER TO BE DELIVERED BY ATTY. EMMANUEL S. GALVEZ ASSISTANT SECRETARY FOR FINANCE AND LEGAL AFFAIRS, DEPARTMENT OF SCIENCE AND TECHNOLOGY Ms. Simonetta Di Pippo, UNOOSA Director, Ms. Rosa Maria del Refugio Ramirez de Arellano v Haro, COPUOS Chairperson, Excellencies, Ladies and Gentlemen, Good afternoon. On behalf of the Philippine Government, allow me to extend my warmest felicitations and congratulations to UNOOSA Director Ms. Di Pippo, COPUOS Chairperson Ms. Arellano the fiftieth y(5oth)Haro and all Signatory States for the successful milestone commemoration of anniversary of the first United Nations Conference on the Exploration and Peaceful Uses of Outer Space (UNISPACE+5o). The UNISPACE+5o process endeavors to build a foundation that would help define the role of space activities in addressing the overarching long-term development concerns and contributing to global efforts towards achieving the goals and targets of the 2030 Agenda for Sustainable Development. The Philippines strongly supports the Space 2030 Agenda as it endeavors to create a vision for space cooperation by strengthening the mandate of the COPUOS as unique platform for international cooperation in the peaceful uses of outer space. As we take note of the contributions of the three conferences to global space governance, 50 years of space exploration and international cooperation on the peaceful uses of outer space, the Philippines is humbled as it has vet to harness fully the potential of the peaceful uses of outer space and reap the benefits of space innovation. There is a pending legislation with the House of Representatives on the proposed Philippines Space Development and Utilization Policy, and the Creation of the Philippines Space Agency.
    [Show full text]
  • Afghanistan Anam Ahmed | Elizabethtown High School
    Afghanistan Anam Ahmed | Elizabethtown High School Head of State: Ashraf Ghani GDP: 664.76 USD per capita Population: 33,895,000 UN Ambassador: Mahmoud Saikal Joined UN: 1946 Current Member of UNSC: No Past UNSC Membership: No Issue 1: Immigration, Refugees, and Asylum Seekers Afghanistan is the highest refugee producing country with roughly six million refugees. Regarding immigration and refugees, Afghanistan believes that all neighboring countries to those with the highest refugee count, such as Syria and Afghanistan, need to have an open door policy to these individuals. The refugees would need to be approved by the government in order to enter and live in the country; however, if denied access they must not be forced back. Refugee camps with adequate food, water, medical help, and shelter must be provided by the UN and its members in order to reduce refugee suffering. Although many of the countries around the world will disagree with this plan, they fail to realize the severity of this issue. In Afghanistan millions of individuals are left to fend for themselves in a foreign land with literally nothing but the clothes on their back. As a country with over six million refugees, we are able understand the necessity for a change in the current situation. The UN distinguishes between asylum seekers and refugees, however those who are not accepted by others need not be excluded from having a proper life. With the dramatic increase of refugees and immigrants around the world resulting from the dramatic increase of wars of crises, the UN must acknowledge and call all people fleeing from their country refugees and not distinguish between the two.
    [Show full text]
  • Industry at the Edge of Space Other Springer-Praxis Books of Related Interest by Erik Seedhouse
    IndustryIndustry atat thethe EdgeEdge ofof SpaceSpace ERIK SEEDHOUSE S u b o r b i t a l Industry at the Edge of Space Other Springer-Praxis books of related interest by Erik Seedhouse Tourists in Space: A Practical Guide 2008 ISBN: 978-0-387-74643-2 Lunar Outpost: The Challenges of Establishing a Human Settlement on the Moon 2008 ISBN: 978-0-387-09746-6 Martian Outpost: The Challenges of Establishing a Human Settlement on Mars 2009 ISBN: 978-0-387-98190-1 The New Space Race: China vs. the United States 2009 ISBN: 978-1-4419-0879-7 Prepare for Launch: The Astronaut Training Process 2010 ISBN: 978-1-4419-1349-4 Ocean Outpost: The Future of Humans Living Underwater 2010 ISBN: 978-1-4419-6356-7 Trailblazing Medicine: Sustaining Explorers During Interplanetary Missions 2011 ISBN: 978-1-4419-7828-8 Interplanetary Outpost: The Human and Technological Challenges of Exploring the Outer Planets 2012 ISBN: 978-1-4419-9747-0 Astronauts for Hire: The Emergence of a Commercial Astronaut Corps 2012 ISBN: 978-1-4614-0519-1 Pulling G: Human Responses to High and Low Gravity 2013 ISBN: 978-1-4614-3029-2 SpaceX: Making Commercial Spacefl ight a Reality 2013 ISBN: 978-1-4614-5513-4 E r i k S e e d h o u s e Suborbital Industry at the Edge of Space Dr Erik Seedhouse, M.Med.Sc., Ph.D., FBIS Milton Ontario Canada SPRINGER-PRAXIS BOOKS IN SPACE EXPLORATION ISBN 978-3-319-03484-3 ISBN 978-3-319-03485-0 (eBook) DOI 10.1007/978-3-319-03485-0 Springer Cham Heidelberg New York Dordrecht London Library of Congress Control Number: 2013956603 © Springer International Publishing Switzerland 2014 This work is subject to copyright.
    [Show full text]
  • Securing the Copernicus Programme Why EU Earth Observation Matters
    Briefing April 2017 Securing the Copernicus programme Why EU earth observation matters SUMMARY The Copernicus programme is a user-driven programme which provides six free-of- charge operational services (atmosphere monitoring, marine environment monitoring, land monitoring, climate change, emergency management and security) to EU, national, and regional institutions, as well as to the private sector. The programme builds on the initiative on global monitoring for environment and security launched in 2001. It aims at filling the gaps in European earth observation capacities. Data is provided from space infrastructures, particularly the sentinel missions developed under the programme, and in situ infrastructure supported by the Member States. Copernicus services are mainly operated by European Union (EU) agencies. Copernicus requires a high level of continuity in data and service provision. A strong political commitment at EU level is required to provide adequate funding for the development of the operational earth observation missions and services. The EU – under the framework programme for research and operational programmes – and the European Space Agency (ESA) have invested more than €7 billion in Copernicus since 2002. By the end of 2017, four of the six sentinel missions should be fully deployed and the last of the six services should become fully operational. As Copernicus reaches its full operational stage, the focus of the programme is shifting towards the uptake of the services and the development of a downstream sector that would provide additional commercial services to the users. This aspect is a key priority of the space strategy adopted by the European Commission in October 2016. The development of the downstream sector is dependent on the long-term continuity of service, to be ensured by improved governance of the programme and renewed long- term political and financial commitments for the next EU budgetary period.
    [Show full text]
  • The Soviet Space Research Program
    72 THE SOVIET SPACE.RESEARCHPROGRAM . MONOGRAPH III f ORGANEATION; PLANNING, AND CONTROL CIA/SI 3759 27 August 1959 CENTPAL INTELLIGENCE AGENCY ,' OFFICE OF SCIENTIFIC INTELLIGENCE I I CO LO57 7.5 1 J .. .. WARNING T'WJ material contoins information affecting the National Defense o! the Unlted State8 within the meaning of the espionaoe laws, Title 18, USC, Becs. 799 and 794, the trans- mindon or revelatim of which in any manner to an nnauthorlmd person la prahlbrted by law. I . .. I ,.. *,_. ... .. I CO 1,O 5 7 7,5 1 8 Scientific Intelligence Report THE SOVIET SPACE RESEARCH PROGRAM MONOGRAPH 111 ORGANIZATION, PLANNING, AND CONTROL NOTICE._ The conclusions, judgments, and optnionS contained in this finished intelligence report are based on extensive scientipc intelligence research and n?pressnt the final and consid- et& views of the Ome of Scientijk Intelli- pence. * CIA/SI 37-59 27 August 1959 CENTRAL INTELLIGENCE AGENCY OFFICE OF SCIENTIFIC INTELLIGENCE CO 20 57 7.5 1 PREFACE The intelligence information presented in this monograph covers the period from October 1057 to 15 May 1050 and is based on open literature and classified repor@. This study, which is made to determine the organization, planning, and control of the Soviet apace research program and to assess the impact of these factors on future Soviet space research,is one of 12 studies on the Soviet space research program. Monographs XI through XII are designed to support the conclusions found in Monograph I, an overall evaluation of the program, which will be published last. Monographs on the Soviet Space Resesrch Program: IEstimate 1050-74 VII Telemetry, Communica- tiom, and Reconnais- I1 Objectives sance Instrumentation IV Space,Vehicles X Space Biology and As- trobiology V Propulsion Systems XI Astronomical Aspects XII Current Status of Prog- VI Guidance and Control ress CO LO5 7 7.5 1 CONTENTS Page PREFACE.
    [Show full text]
  • Human Adaptation and Safety in Space
    SICSA SPACE ARCHITECTURE SEMINAR LECTURE SERIES PART II : HUMAN ADAPTATION AND SAFETY IN SPACE www.sicsa.uh.edu LARRY BELL, SASAKAWA INTERNATIONAL CENTER FOR SPACE ARCHITECTURE (SICSA) GERALD D.HINES COLLEGE OF ARCHITECTURE, UNIVERSITY OF HOUSTON, HOUSTON, TX The Sasakawa International Center for SICSA routinely presents its publications, Space Architecture (SICSA), an research and design results and other organization attached to the University of information materials on its website Houston’s Gerald D. Hines College of (www.sicsa.uh.edu). This is done as a free Architecture, offers advanced courses service to other interested institutions and that address a broad range of space individuals throughout the world who share our systems research and design topics. In interests. 2003 SICSA and the college initiated Earth’s first MS-Space Architecture This report is offered in a PowerPoint format with degree program, an interdisciplinary 30 the dedicated intent to be useful for academic, credit hour curriculum that is open to corporate and professional organizations who participants from many fields. Some wish to present it in group forums. The document students attend part-time while holding is the second in a series of seminar lectures that professional employment positions at SICSA has prepared as information material for NASA, affiliated aerospace corporations its own academic applications. We hope that and other companies, while others these materials will also be valuable for others complete their coursework more rapidly who share our
    [Show full text]
  • Is It the First Use of the Word Astrobiology ? Author
    Title : Is it the first use of the word Astrobiology ? Author : Danielle Briot Adress : Observatoire de Paris 61 avenue de l’Observatoire 75014 Paris France tel : 33(0)1 40 51 22 39 and 33(0)1 45 07 78 57 [email protected] running title : First use of the word Astrobiology ? 1 Abstract The research of life in Universe is a ancient quest that has taken different forms over the centuries. It has given rise to a new science, which is normally referred as Astrobiology. It is interesting to research when this word was used for the first time and when this science developed to represent the search for life in Universe as is done today. There are records of the usage of the word "Astrobiology" as early as 1935, in an article published in a French popular science magazine. Moreover this article is quite remarkable because its portrayal of the concept of the subject is very similar to that considered today. The author of this paper was Ary J. Sternfeld (1905 - 1980), who was ortherwise known as a poorly respected great pioneer of astronautics. We provide a brief description of his life, which was heavily influenced by the tragic events of the 20th century history, from Poland and France to Russia. He was a prolific scientific writer who wrote a number of very successful scientific books and papers. Keywords : History – Pioneers 2 1. Introduction The question of the life in the Universe, in relation with the question of the multiplicity of worlds, is very ancient and probably dates back to Greek philosophers.
    [Show full text]
  • Corporate Profile
    2013 : Epsilon Launch Vehicle 2009 : International Space Station 1997 : M-V Launch Vehicle 1955 : The First Launched Pencil Rocket Corporate Profile Looking Ahead to Future Progress IHI Aerospace (IA) is carrying out the development, manufacture, and sales of rocket projectiles, and has been contributing in a big way to the indigenous space development in Japan. We started research on rocket projectiles in 1953. Now we have become a leading comprehensive manufacturer carrying out development and manufacture of rocket projectiles in Japan, and are active in a large number of fields such as rockets for scientific observation, rockets for launching practical satellites, and defense-related systems, etc. In the space science field, we cooperate with the Japan Aerospace Exploration Agency (JAXA) to develop and manufacture various types of observational rockets named K (Kappa), L (Lambda), and S (Sounding), and the M (Mu) rockets. With the M rockets, we have contributed to the launch of many scientific satellites. In 2013, efforts resulted in the successful launch of an Epsilon Rocket prototype, a next-generation solid rocket which inherited the 2 technologies of all the aforementioned rockets. In the practical satellite booster rocket field, We cooperates with the JAXA and has responsibilities in the solid propellant field including rocket boosters, upper-stage motors in development of the N, H-I, H-II, and H-IIA H-IIB rockets. We have also achieved excellent results in development of rockets for material experiments and recovery systems, as well as the development of equipment for use in a space environment or experimentation. In the defense field, we have developed and manufactured a variety of rocket systems and rocket motors for guided missiles, playing an important role in Japanese defense.
    [Show full text]