Current State and Perspectives of Space Weather Science in Italy

Total Page:16

File Type:pdf, Size:1020Kb

Current State and Perspectives of Space Weather Science in Italy J. Space Weather Space Clim. 2020, 10,6 Ó C. Plainaki et al., Published by EDP Sciences 2020 https://doi.org/10.1051/swsc/2020003 Available online at: www.swsc-journal.org Agora – Strategic or programmatic article OPEN ACCESS Current state and perspectives of Space Weather science in Italy Christina Plainaki1,*, Marco Antonucci2, Alessandro Bemporad3, Francesco Berrilli4, Bruna Bertucci5, Marco Castronuovo1, Paola De Michelis6, Marco Giardino1, Roberto Iuppa7,10, Monica Laurenza8, Federica Marcucci8, Mauro Messerotti9, Livio Narici4, Barbara Negri1, Francesco Nozzoli10, Stefano Orsini8, Vincenzo Romano6, Enrico Cavallini1, Gianluca Polenta1, and Alessandro Ippolito1 1 ASI – Agenzia Spaziale Italiana, Via del Politecnico snc, 00133 Rome, Italy 2 Aeronautica Militare Italiana, Stato Maggiore Aeronautica – 3° Reparto, Viale dell’Università n.4, 00185 Rome, Italy 3 INAF-Osservatorio Astrofisico di Torino, via Osservatorio 20, 10025 Pino Torinese, Torino, Italy 4 Università di Roma Tor Vergata, Dipartimento di Fisica, Via Ricerca Scientifica 1, 00133 Rome, Italy 5 Università di Perugia, Dipartimento di Fisica e Geologia, Via Pascoli s.n.c., 06124 Perugia, Italy 6 Istituto Nazionale di Geofisica e Vulcanologia, Via di Vigna Murata 605, 00143 Rome, Italy 7 Università di Trento, Dipartimento di Fisica, via Sommarive 14, 38123 Trento, Italy 8 INAF-Istituto di Astrofisica e Planetologia Spaziali, Via del Fosso del Cavaliere 100, 00133 Rome, Italy 9 INAF- Osservatorio Astronomico di Trieste, Loc. Basovizza n. 302, 34149 Trieste, Italy 10 INFN-TIFPA, via Sommarive 14, 38123 Trento, Italy Received 25 March 2019 / Accepted 27 December 2019 Abstract – Italian teams have been involved many times in Space Weather observational campaigns from space and from the ground, contributing in the advancing of our knowledge on the properties and evolution of the related phenomena. Numerous Space Weather forecasting and now-casting modeling efforts have resulted in a remarkable add-on to the overall progress in the field, at both national and international level. The Italian Space Agency has participated several times in space missions with science objectives related to Space Weather; indeed, an important field for the Italian scientific and industrial communities interested in Heliophysics and Space Weather, is the development of new instrumentation for future space missions. In this paper, we present a brief state-of-the-art in Space Weather science in Italy and we discuss some ideas on a long-term plan for the support of future scientific research in the related disciplines. In the context of the current roadmap, the Italian Space Agency aims to assess the possibility to develop a national scientific Space Weather data centre to encourage synergies between different science teams with interest in the field and to motivate innovation and new mission concept development. Alongside with the proposed recom- mendations, we also discuss how the Italian expertise could complement international efforts in a wider international Space Weather context. Keywords: heliosphere / instrumentation / missions / strategy / data management 1 Introduction: science case and scope can also influence Space Weather in the Solar System through of this roadmap their interplay with the Heliosphere. Space Weather is mani- fested through a series of phenomena including Solar Energetic Particle (SEP), geomagnetic variability, and Ground Level Circumterrestrial Space Weather (often referred to, simply, “ ” Enhancement (GLE) events, as well as variations of the GCR as Space Weather ) has its main origin at the Sun being driven intensity. Charged particle precipitation in the Earth’spolar by the solar activity (e.g., flares, Coronal Mass Ejections – ’ atmosphere causes auroras, and increases the conductivity of CMEs)andcharacterizedbyitseffectsintheEarths the lower ionosphere in the auroral electrojet. Moreover, the magnetosphere and upper atmosphere. High energy particles energy input in the polar region heats the thermosphere, chang- of non-solar origin, such as the Galactic Cosmic Rays (GCRs), ing the distribution of the atmospheric constituents and hence the ionospheric electron density profile (Denton et al., 2009). *Corresponding author: [email protected] Also the Earth’s troposphere has a role in the Space Weather This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. C. Plainaki et al.: J. Space Weather Space Clim. 2020, 10,6 Fig. 1. Space Weather phenomena resulting from the Sun-Earth connection and/or its interplay with the galactic cosmic radiation. Background figures are from NASA. chain since the convective systems within can generate gravity ionosphere, atmosphere) and its interior, and their cou- waves that transport energy and momentum into the upper pling at long and short timescales; atmosphere; the dissipation of such waves is a significant source the use of scientific research products for the development of heat in the thermosphere (alongside the solar EUV radiation). of reliable systems for Space Weather forecasting origi- A graphical overview of the dominant Space Weather phenom- nating, preferably, from multi-data observations. ena and coupling mechanisms resulting from the Sun-Earth connection is presented in Figure 1. The Space Weather discipline has both scientific and opera- Space Weather can have impacts on space-based and terres- tional aspects which are unavoidably strongly related to one trial technological infrastructures and biological systems. Spo- another. Koskinen et al. (2017) characterized Space Weather as radic events caused by powerful eruptions on the Sun can “science with applications” pointing out that the progress needed disrupt high frequency communications, degrade the precision to improve both short- and long-term forecasting challenges our of the navigation systems, provoke perturbations in the long understanding of the scientific foundations. It is now evident that conductive transmission lines, gas pipelines, railway systems, to address the requirements of future Space Weather services we influence satellite functions and (in extreme cases) cause the need to advance our insights in and understanding of Space loss of the mission. Moreover, Space Weather events can be Weather science. Indeed, there is an ongoing growth of interest hazardous for the health of aircrew members and flight passen- in Space Weather research (see Fig. 2) that goes beyond individ- gers (especially on polar flights), and astronauts. It is therefore ual scientific disciplines or national capabilities: Space Weather important to mitigate the risks of Space Weather impacts on is a global challenge requiring observational resources that cover technology, infrastructure, navigation, health and human activi- the whole world providing, when possible, detailed information ties, based on: on physical parameters characterizing the interplanetary space and its interplay with the Earth’s environment. our knowledge of the physics of the Sun, the interplane- In a 2009 definition agreed among 24 countries (Lilensten & tary space, the Earth’s environment (magnetosphere, Belehaki 2009), it was defined that “Space Weather is the Page 2 of 51 C. Plainaki et al.: J. Space Weather Space Clim. 2020, 10,6 and the long-lived (gradual) events associated with CME shocks – is necessary. This is an important application of funda- mental plasma physics to cosmic plasmas (involving, for instance, the investigation of particle energization in magnetic reconnection diffusion regions and in shocks). Moreover, research should also focus on the detailed understanding of how SEPs propagate through the interplanetary space (consider- ing also the possible perturbation of the particle propagation paths by CMEs and Co-rotating Interaction Regions – CIRs) and get scattered by magnetic irregularities. Testing, develop- ment, and validation of now-casting SEP event strategies and models require knowledge obtained through research in the aforementioned areas. In addition to the radiobiological issue and from a broader Space Weather perspective, the concept should also include the risk of electronic malfunctioning due to radiation, as the crew life is strongly linked to the proper functioning of all the electronic tools and critical control sys- tems in the space vessel. The understanding of the radiation- Fig. 2. Number of publications per year with the term “Space induced interference with spacecraft systems, therefore, is of Weather” included in the abstract in NASA/Astrophysics Data System fundamental importance. (refereed in blue; non refereed in green). Space Weather effects on spacecraft functions are mainly due to solar particle effects on electronics and materials. Solar particle events can cause solar cell degradation, star-tracker physical and phenomenological state of natural space environ- problems, memory device problems, and noise on imaging sys- ments. The associated discipline aims, through observation, tems (Keil, 2007). In addition, the presence of a geomagnetic monitoring, analysis and modeling, at understanding and pre- storm may require spacecraft operations actions to correct orien- dicting the state of the Sun, the interplanetary and planetary tation. The direct consequences of space radiation induced by environments, and the solar and non-solar driven perturbations Space
Recommended publications
  • Wastewater Treatment in Antarctica
    Wastewater Treatment in Antarctica Sergey Tarasenko Supervisor: Neil Gilbert GCAS 2008/2009 Table of content Acronyms ...........................................................................................................................................3 Introduction .......................................................................................................................................4 1 Basic principles of wastewater treatment for small objects .....................................................5 1.1 Domestic wastewater characteristics....................................................................................5 1.2 Characteristics of main methods of domestic wastewater treatment .............................5 1.3 Designing of treatment facilities for individual sewage disposal systems...................11 2 Wastewater treatment in Antarctica..........................................................................................13 2.1 Problems of transferring treatment technologies to Antarctica .....................................13 2.1.1 Requirements of the Protocol on Environmental Protection to the Antarctic Treaty / Wastewater quality standards ...................................................................................................13 2.1.2 Geographical situation......................................................................................................14 2.1.2.1 Climatic conditions....................................................................................................14
    [Show full text]
  • History of Scuba Diving About 500 BC: (Informa on Originally From
    History of Scuba Diving nature", that would have taken advantage of this technique to sink ships and even commit murders. Some drawings, however, showed different kinds of snorkels and an air tank (to be carried on the breast) that presumably should have no external connecons. Other drawings showed a complete immersion kit, with a plunger suit which included a sort of About 500 BC: (Informaon originally from mask with a box for air. The project was so Herodotus): During a naval campaign the detailed that it included a urine collector, too. Greek Scyllis was taken aboard ship as prisoner by the Persian King Xerxes I. When Scyllis learned that Xerxes was to aack a Greek flolla, he seized a knife and jumped overboard. The Persians could not find him in the water and presumed he had drowned. Scyllis surfaced at night and made his way among all the ships in Xerxes's fleet, cung each ship loose from its moorings; he used a hollow reed as snorkel to remain unobserved. Then he swam nine miles (15 kilometers) to rejoin the Greeks off Cape Artemisium. 15th century: Leonardo da Vinci made the first known menon of air tanks in Italy: he 1772: Sieur Freminet tried to build a scuba wrote in his Atlanc Codex (Biblioteca device out of a barrel, but died from lack of Ambrosiana, Milan) that systems were used oxygen aer 20 minutes, as he merely at that me to arficially breathe under recycled the exhaled air untreated. water, but he did not explain them in detail due to what he described as "bad human 1776: David Brushnell invented the Turtle, first submarine to aack another ship.
    [Show full text]
  • Polarforschungsagenda Status Und Perspektiven Der Deutschen
    Polarforschungsagenda 2030 Status und Perspektiven der deutschen Polarforschung DFG-Statusbericht des Deutschen Nationalkomitees SCAR/IASC Polarforschungsagenda 2030 Status und Perspektiven der deutschen Polarforschung DFG-Statusbericht des Deutschen Nationalkomitees für Scientific Committee on Antarctic Research (SCAR) und International Arctic Science Committee (IASC) Deutsches Nationalkomitee SCAR/IASC Prof. G. Heinemann (Vorsitzender) Universität Trier, Fachbereich Raum- und Umweltwissenschaften Postanschrift: Behringstr. 21, 54296 Trier Telefon: +49/651/201-4630 Telefax: +49/651/201-3817 E-Mail: [email protected] www.scar-iasc.de Juli 2017 Das vorliegende Werk wurde sorgfältig erarbeitet. Dennoch übernehmen Autoren, Herausgeber und Verlag für die Richtigkeit von Angaben, Hinweisen und Ratschlägen sowie für eventuelle Druckfehler keine Haftung. Alle Rechte, insbesondere die der Übersetzung in andere Sprachen, vorbehalten. Kein Teil dieser Publikation darf ohne schrift- liche Genehmigung des Verlages in irgendeiner Form – durch Photokopie, Mikroverfilmung oder irgendein anderes Verfahren – reproduziert oder in eine von Maschinen, insbesondere von Datenverarbeitungsmaschinen, verwendbare Sprache übertra- gen oder übersetzt werden. Die Wiedergabe von Warenbezeichnungen, Handelsnamen oder sonstigen Kennzeichen in diesem Buch berechtigt nicht zu der Annahme, dass diese von jedermann frei benutzt werden dürfen. Vielmehr kann es sich auch dann um eingetragene Warenzeichen oder sonstige gesetzlich geschützte Kennzeichen handeln, wenn sie nicht eigens als solche markiert sind. All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.
    [Show full text]
  • Appendix 1: Venus Missions
    Appendix 1: Venus Missions Sputnik 7 (USSR) Launch 02/04/1961 First attempted Venus atmosphere craft; upper stage failed to leave Earth orbit Venera 1 (USSR) Launch 02/12/1961 First attempted flyby; contact lost en route Mariner 1 (US) Launch 07/22/1961 Attempted flyby; launch failure Sputnik 19 (USSR) Launch 08/25/1962 Attempted flyby, stranded in Earth orbit Mariner 2 (US) Launch 08/27/1962 First successful Venus flyby Sputnik 20 (USSR) Launch 09/01/1962 Attempted flyby, upper stage failure Sputnik 21 (USSR) Launch 09/12/1962 Attempted flyby, upper stage failure Cosmos 21 (USSR) Launch 11/11/1963 Possible Venera engineering test flight or attempted flyby Venera 1964A (USSR) Launch 02/19/1964 Attempted flyby, launch failure Venera 1964B (USSR) Launch 03/01/1964 Attempted flyby, launch failure Cosmos 27 (USSR) Launch 03/27/1964 Attempted flyby, upper stage failure Zond 1 (USSR) Launch 04/02/1964 Venus flyby, contact lost May 14; flyby July 14 Venera 2 (USSR) Launch 11/12/1965 Venus flyby, contact lost en route Venera 3 (USSR) Launch 11/16/1965 Venus lander, contact lost en route, first Venus impact March 1, 1966 Cosmos 96 (USSR) Launch 11/23/1965 Possible attempted landing, craft fragmented in Earth orbit Venera 1965A (USSR) Launch 11/23/1965 Flyby attempt (launch failure) Venera 4 (USSR) Launch 06/12/1967 Successful atmospheric probe, arrived at Venus 10/18/1967 Mariner 5 (US) Launch 06/14/1967 Successful flyby 10/19/1967 Cosmos 167 (USSR) Launch 06/17/1967 Attempted atmospheric probe, stranded in Earth orbit Venera 5 (USSR) Launch 01/05/1969 Returned atmospheric data for 53 min on 05/16/1969 M.
    [Show full text]
  • The Van Allen Probes' Contribution to the Space Weather System
    L. J. Zanetti et al. The Van Allen Probes’ Contribution to the Space Weather System Lawrence J. Zanetti, Ramona L. Kessel, Barry H. Mauk, Aleksandr Y. Ukhorskiy, Nicola J. Fox, Robin J. Barnes, Michele Weiss, Thomas S. Sotirelis, and NourEddine Raouafi ABSTRACT The Van Allen Probes mission, formerly the Radiation Belt Storm Probes mission, was renamed soon after launch to honor the late James Van Allen, who discovered Earth’s radiation belts at the beginning of the space age. While most of the science data are telemetered to the ground using a store-and-then-dump schedule, some of the space weather data are broadcast continu- ously when the Probes are not sending down the science data (approximately 90% of the time). This space weather data set is captured by contributed ground stations around the world (pres- ently Korea Astronomy and Space Science Institute and the Institute of Atmospheric Physics, Czech Republic), automatically sent to the ground facility at the Johns Hopkins University Applied Phys- ics Laboratory, converted to scientific units, and published online in the form of digital data and plots—all within less than 15 minutes from the time that the data are accumulated onboard the Probes. The real-time Van Allen Probes space weather information is publicly accessible via the Van Allen Probes Gateway web interface. INTRODUCTION The overarching goal of the study of space weather ing radiation, were the impetus for implementing a space is to understand and address the issues caused by solar weather broadcast capability on NASA’s Van Allen disturbances and the effects of those issues on humans Probes’ twin pair of satellites, which were launched in and technological systems.
    [Show full text]
  • Application of a New Polarimetric Filter to Radarsat-2 Data of Deception Island (Antarctic Peninsula Region) for Surface Cover Characterization
    APPLICATION OF A NEW POLARIMETRIC FILTER TO RADARSAT-2 DATA OF DECEPTION ISLAND (ANTARCTIC PENINSULA REGION) FOR SURFACE COVER CHARACTERIZATION a b c a S. Guillaso ,∗ T. Schmid , J. Lopez-Mart´ ´ınez , O. D’Hondt a Technische Universitat¨ Berlin, Computer Vision and Remote Sensing, Berlin, Germany - [email protected] b CIEMAT, Madrid, Spain - [email protected] c Universidad Autonoma´ de Madrid, Spain - [email protected] KEY WORDS: SAR, Antarctica, Surface characterization, Geomorphology, Soils, Polarimetry, Speckle Filtering, Image interpretation ABSTRACT: In this paper, we describe a new approach to analyse and quantify land surface covers on Deception Island, a volcanic island located in the Northern Antarctic Peninsula region by means of fully polarimetric RADARSAT-2 (C-Band) SAR image. Data have been filtered by a new polarimetric speckle filter (PolSAR-BLF) that is based on the bilateral filter. This filter is locally adapted to the spatial structure of the image by relying on pixel similarities in both the spatial and the radiometric domains. Thereafter different polarimetric features have been extracted and selected before being geocoded. These polarimetric parameters serve as a basis for a supervised classification using the Support Vector Machine (SVM) classifier. Finally, a map of landform is generated based on the result of the SVM results. 1. INTRODUCTION Ice-free land surfaces of the Northern Antarctica Peninsula region are under the influence of freeze-thaw cycling effects on differ- ent parent materials. This is mainly due to the particular climatic conditions of the so called Maritime Antarctica and because this region is one the the fastest warming areas of the southern hemi- sphere.
    [Show full text]
  • Southern Hemisphere Mid- and High-Latitudinal AOD, CO, NO2, And
    Ahn et al. Progress in Earth and Planetary Science (2019) 6:34 Progress in Earth and https://doi.org/10.1186/s40645-019-0277-y Planetary Science RESEARCH ARTICLE Open Access Southern Hemisphere mid- and high- latitudinal AOD, CO, NO2, and HCHO: spatiotemporal patterns revealed by satellite observations Dha Hyun Ahn1, Taejin Choi2, Jhoon Kim1, Sang Seo Park3, Yun Gon Lee4, Seong-Joong Kim2 and Ja-Ho Koo1* Abstract To assess air pollution emitted in Southern Hemisphere mid-latitudes and transported to Antarctica, we investigate the climatological mean and temporal trends in aerosol optical depth (AOD), carbon monoxide (CO), nitrogen dioxide (NO2), and formaldehyde (HCHO) columns using satellite observations. Generally, all these measurements exhibit sharp peaks over and near the three nearby inhabited continents: South America, Africa, and Australia. This pattern indicates the large emission effect of anthropogenic activities and biomass burning processes. High AOD is also found over the Southern Atlantic Ocean, probably because of the sea salt production driven by strong winds. Since the pristine Antarctic atmosphere can be polluted by transport of air pollutants from the mid-latitudes, we analyze the 10-day back trajectories that arrive at Antarctic ground stations in consideration of the spatial distribution of mid-latitudinal AOD, CO, NO2, and HCHO. We find that the influence of mid-latitudinal emission differs across Antarctic regions: western Antarctic regions show relatively more back trajectories from the mid-latitudes, while the eastern Antarctic regions do not show large intrusions of mid-latitudinal air masses. Finally, we estimate the long-term trends in AOD, CO, NO2, and HCHO during the past decade (2005–2016).
    [Show full text]
  • Italian Contribution to Space Weather
    Italian Contribution to Space Weather Vincenzo Romano Istituto Nazionale di Geofisica e Vulcanologia (INGV) [email protected] Thanks to: Mauro Messerotti (INAF), Daniele Biron (ITAF-COMET), Paola De Michelis (INGV), Francesca Zuccarello (Uni CT), Alessandro Bemporad (INAF), Ester Antonucci (INAF), Domenico Di Mauro (INGV). Lili Cafarella (INGV), Marco Pietrella (INGV), Anna Milillo (INAF), Francesco Berilli (UniTOV), Marco Stangalini (INAF), Mirko Piersanti (Uni AQ), Federica Marcucci (INAF), Lucilla Alfonsi (INGV), Enrico Zuccheretti (INGV), Massimo Materassi (ISC-CNR), Loredana Perrone (INGV), Stefania Lepidi (INGV), Yenca Migoya-Orue (ICTP), Fabio Reale (UNIPA), Roberto Piazzesi (INAF) Ionosonde and Pamela autoscaling SuperDarn Solar Orbiter Themis UN COPUOS 54rd Session STSC January-February 2017. Outline • Italian strategic Initiatives • Solar physics • Interplanetary space physics • Solar-Terrestrial physics • Upper atmosphere physics Ionosonde and Pamela autoscaling SuperDarn Solar Orbiter Themis Italian Space Weather strategic initiatives Pamela Ionosonde and autoscaling Solar Orbiter SuperDarn Themis World Meteorological Organization Congress Resolution 38 (Cg-17) ― “Four-year Plan for WMO Coordination of Space Weather Activities”. Since 2012 Italy joined the WMO Space Weather initiative Inter-programme Coordination Team on SW, ITAF – INAF - INGV Space Weather italian initiative for operations SW nowcasting and safety support Space Weather knowledge is not only for safety but also for capacity augmentation, as weather. Solar physics to Space Weather Solar Physics activities in Trieste ESA Space Weather Working Team, Steering Board Member European Space Weather Week Programme Committee, Chair NATO Science for Peace (SfP) Project 984894 on “Ionospheric Monitoring”, Co-Director Solar Orbiter/METIS Co-Investigator, Responsible for the Italian segment data handling Solar Physics Group in Catania Personnel V.
    [Show full text]
  • Science Objectives May Be Summarized As Follows
    MAGNETOSPHERE IMAGING INSTRUMENT (MIMI) 9 ON THE CASSINI MISSION TO SATURN/TITAN 2. Scientific Objectives MIMI science objectives may be summarized as follows: Saturn • Determine the global configuration and dynamics of hot plasma in the magneto- sphere of Saturn through energetic neutral particle imaging of ring current, radia- tion belts, and neutral clouds. • Study the sources of plasmas and energetic ions through in situ measurements of energetic ion composition, spectra, charge state, and angular distributions. • Search for, monitor, and analyze magnetospheric substorm-like activity at Saturn. • Determine through the imaging and composition studies the magnetosphere– satellite interactions at Saturn and understand the formation of clouds of neutral hydrogen, nitrogen, and water products. •Investigate the modification of satellite surfaces and atmospheres through plasma and radiation bombardment. • Study Titan’s cometary interaction with Saturn’s magnetosphere (and the solar wind) via high-resolution imaging and in situ ion and electron measurements. • Measure the high energy (Ee > 1 MeV, Ep > 15 MeV) particle component in the inner (L < 5 RS) magnetosphere to assess cosmic ray albedo neutron decay (CRAND) source characteristics. •Investigate the absorption of energetic ions and electrons by the satellites and rings in order to determine particle losses and diffusion processes within the mag- netosphere. • Study magnetosphere–ionosphere coupling through remote sensing of aurora and in situ measurements of precipitating energetic ions and electrons. Jupiter • Study ring current(s), plasma sheet, and neutral clouds in the magnetosphere and magnetotail of Jupiter during Cassini flyby, using global imaging and in situ mea- surements. S. M. KRIMIGIS ET AL. 10 Interplanetary • Determine elemental and isotopic composition of local interstellar medium through measurements of interstellar pickup ions.
    [Show full text]
  • Proposed Construction and Operation of a Gravel Runway in the Area of Mario Zucchelli Station, Terra Nova Bay, Victoria Land, Antarctica
    ATCM XXXIX, CEP XIX, Santiago 2016 Annex A to the WP presented by Italy Draft Comprehensive Environmental Evaluation Proposed construction and operation of a gravel runway in the area of Mario Zucchelli Station, Terra Nova Bay, Victoria Land, Antarctica January 2016 Rev. 0 (INTENTIONALLY LEFT BLANK) TABLE OF CONTENTS Non-technical summary ...................................................................................................................... i I Introduction ........................................................................................................................ i II Need of Proposed Activities .............................................................................................. ii III Site selection and alternatives .......................................................................................... iii IV Description of the Proposed Activity ............................................................................... iv V Initial Environmental Reference State .............................................................................. v VI Identification and Prediction of Environmental Impact, Mitigation Measures of the Proposed Activities .......................................................................................................... vi VII Environmental Impact Monitoring Plan ........................................................................... ix VIII Gaps in Knowledge and Uncertainties ............................................................................. ix
    [Show full text]
  • Dives of the Bathyscaph Trieste, 1958-1963: Transcriptions of Sixty-One Dictabelt Recordings in the Robert Sinclair Dietz Papers, 1905-1994
    Dives of the Bathyscaph Trieste, 1958-1963: Transcriptions of sixty-one dictabelt recordings in the Robert Sinclair Dietz Papers, 1905-1994 from Manuscript Collection MC28 Archives of the Scripps Institution of Oceanography University of California, San Diego La Jolla, California 92093-0219: September 2000 This transcription was made possible with support from the U.S. Naval Undersea Museum 2 TABLE OF CONTENTS INTRODUCTION ...........................................................................................................................4 CASSETTE TAPE 1 (Dietz Dictabelts #1-5) .................................................................................6 #1-5: The Big Dive to 37,800. Piccard dictating, n.d. CASSETTE TAPE 2 (Dietz Dictabelts #6-10) ..............................................................................21 #6: Comments on the Big Dive by Dr. R. Dietz to complete Piccard's description, n.d. #7: On Big Dive, J.P. #2, 4 Mar., n.d. #8: Dive to 37,000 ft., #1, 14 Jan 60 #9-10: Tape just before Big Dive from NGD first part has pieces from Rex and Drew, Jan. 1960 CASSETTE TAPE 3 (Dietz Dictabelts #11-14) ............................................................................30 #11-14: Dietz, n.d. CASSETTE TAPE 4 (Dietz Dictabelts #15-18) ............................................................................39 #15-16: Dive #61 J. Piccard and Dr. A. Rechnitzer, depth of 18,000 ft., Piccard dictating, n.d. #17-18: Dive #64, 24,000 ft., Piccard, n.d. CASSETTE TAPE 5 (Dietz Dictabelts #19-22) ............................................................................48 #19-20: Dive Log, n.d. #21: Dr. Dietz on the bathysonde, n.d. #22: from J. Piccard, 14 July 1960 CASSETTE TAPE 6 (Dietz Dictabelts #23-25) ............................................................................57 #23-25: Italian Dive, Dietz, Mar 8, n.d. CASSETTE TAPE 7 (Dietz Dictabelts #26-29) ............................................................................64 #26-28: Italian Dive, Dietz, n.d.
    [Show full text]
  • “Phobos Events”—Signatures of Solar Wind Interaction with a Gas Torus?
    Earth Planets Space, 50, 453–462, 1998 “Phobos events”—Signatures of solar wind interaction with a gas torus? K. Baumgärtel1,7, K. Sauer2,7, E. Dubinin2,3,7, V. Tarrasov4,5,7, and M. Dougherty6 1Astrophysikalisches Institut Potsdam, 14482 Potsdam, Germany 2Max-Planck-Institut für Aeronomie, 37191 Katlenburg-Lindau, Germany 3Institute of Space Research, 117810 Moscow, Russia 4Centre d’Etude des Environments Terrestre et Planetaires, 78140 Velizy, France 5Lviv Centre of the Institute of Space Research, 290601 Lviv, Ukraine 6Space and Atmospheric Physics, Imperial College, London SW72AZ, U.K. 7International Space Science Institute (ISSI), 3012 Bern, Switzerland (Received August 28, 1997; Revised January 30, 1998; Accepted February 20, 1998) Following recent simulations of the Phobos dust belt formation (Krivov and Hamilton, 1997), the effective dust- induced charge density as estimated is too small to account for the significant solar wind (sw) plasma and magnetic field perturbations observed by the Phobos-2 spacecraft in 1989 near the crossings of the Phobos orbit. In this paper the sw interaction with the Phobos neutral gas torus is re-investigated in a two-ion plasma model in which the newly created ions are treated as unmagnetized, forming a beam (not a ring beam) in the sw frame. A linear instability analysis based on both a cold fluid and a kinetic approach shows that electromagnetic ion beam waves in the whistler range of frequencies, driven most unstable at oblique propagation and appearing as almost purely growing waves in the beam frame, aquire high growth rates and provide a likely mechanism to cause the observed events.
    [Show full text]