Comparison of Different Methods to Retrieve Optical-Equivalent Snow Grain Size in Central Antarctica
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Layering of Surface Snow and Firn at Kohnen Station, Antarctica – Noise Or Seasonal Signal?
View metadata, citation and similar papers at core.ac.uk brought to you by CORE Confidential manuscript submitted to replace this text with name of AGU journalprovided by Electronic Publication Information Center Layering of surface snow and firn at Kohnen Station, Antarctica – noise or seasonal signal? Thomas Laepple1, Maria Hörhold2,3, Thomas Münch1,5, Johannes Freitag4, Anna Wegner4, Sepp Kipfstuhl4 1Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Telegrafenberg A43, 14473 Potsdam, Germany 2Institute of Environmental Physics, University of Bremen, Otto-Hahn-Allee 1, D-28359 Bremen 3now at Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Alten Hafen 26, 27568 Bremerhaven, Germany 4Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Alten Hafen 26, 27568 Bremerhaven, Germany 5Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany Corresponding author: Thomas Laepple ([email protected]) Extensive dataset of vertical and horizontal firn density variations at EDML, Antarctica Even in low accumulation regions, the density in the upper firn exhibits a seasonal cycle Strong stratigraphic noise masks the seasonal cycle when analyzing single firn cores Abstract The density of firn is an important property for monitoring and modeling the ice sheet as well as to model the pore close-off and thus to interpret ice core-based greenhouse gas records. One feature, which is still in debate, is the potential existence of an annual cycle of firn density in low-accumulation regions. Several studies describe or assume seasonally successive density layers, horizontally evenly distributed, as seen in radar data. -
Wastewater Treatment in Antarctica
Wastewater Treatment in Antarctica Sergey Tarasenko Supervisor: Neil Gilbert GCAS 2008/2009 Table of content Acronyms ...........................................................................................................................................3 Introduction .......................................................................................................................................4 1 Basic principles of wastewater treatment for small objects .....................................................5 1.1 Domestic wastewater characteristics....................................................................................5 1.2 Characteristics of main methods of domestic wastewater treatment .............................5 1.3 Designing of treatment facilities for individual sewage disposal systems...................11 2 Wastewater treatment in Antarctica..........................................................................................13 2.1 Problems of transferring treatment technologies to Antarctica .....................................13 2.1.1 Requirements of the Protocol on Environmental Protection to the Antarctic Treaty / Wastewater quality standards ...................................................................................................13 2.1.2 Geographical situation......................................................................................................14 2.1.2.1 Climatic conditions....................................................................................................14 -
Application of a New Polarimetric Filter to Radarsat-2 Data of Deception Island (Antarctic Peninsula Region) for Surface Cover Characterization
APPLICATION OF A NEW POLARIMETRIC FILTER TO RADARSAT-2 DATA OF DECEPTION ISLAND (ANTARCTIC PENINSULA REGION) FOR SURFACE COVER CHARACTERIZATION a b c a S. Guillaso ,∗ T. Schmid , J. Lopez-Mart´ ´ınez , O. D’Hondt a Technische Universitat¨ Berlin, Computer Vision and Remote Sensing, Berlin, Germany - [email protected] b CIEMAT, Madrid, Spain - [email protected] c Universidad Autonoma´ de Madrid, Spain - [email protected] KEY WORDS: SAR, Antarctica, Surface characterization, Geomorphology, Soils, Polarimetry, Speckle Filtering, Image interpretation ABSTRACT: In this paper, we describe a new approach to analyse and quantify land surface covers on Deception Island, a volcanic island located in the Northern Antarctic Peninsula region by means of fully polarimetric RADARSAT-2 (C-Band) SAR image. Data have been filtered by a new polarimetric speckle filter (PolSAR-BLF) that is based on the bilateral filter. This filter is locally adapted to the spatial structure of the image by relying on pixel similarities in both the spatial and the radiometric domains. Thereafter different polarimetric features have been extracted and selected before being geocoded. These polarimetric parameters serve as a basis for a supervised classification using the Support Vector Machine (SVM) classifier. Finally, a map of landform is generated based on the result of the SVM results. 1. INTRODUCTION Ice-free land surfaces of the Northern Antarctica Peninsula region are under the influence of freeze-thaw cycling effects on differ- ent parent materials. This is mainly due to the particular climatic conditions of the so called Maritime Antarctica and because this region is one the the fastest warming areas of the southern hemi- sphere. -
Southern Hemisphere Mid- and High-Latitudinal AOD, CO, NO2, And
Ahn et al. Progress in Earth and Planetary Science (2019) 6:34 Progress in Earth and https://doi.org/10.1186/s40645-019-0277-y Planetary Science RESEARCH ARTICLE Open Access Southern Hemisphere mid- and high- latitudinal AOD, CO, NO2, and HCHO: spatiotemporal patterns revealed by satellite observations Dha Hyun Ahn1, Taejin Choi2, Jhoon Kim1, Sang Seo Park3, Yun Gon Lee4, Seong-Joong Kim2 and Ja-Ho Koo1* Abstract To assess air pollution emitted in Southern Hemisphere mid-latitudes and transported to Antarctica, we investigate the climatological mean and temporal trends in aerosol optical depth (AOD), carbon monoxide (CO), nitrogen dioxide (NO2), and formaldehyde (HCHO) columns using satellite observations. Generally, all these measurements exhibit sharp peaks over and near the three nearby inhabited continents: South America, Africa, and Australia. This pattern indicates the large emission effect of anthropogenic activities and biomass burning processes. High AOD is also found over the Southern Atlantic Ocean, probably because of the sea salt production driven by strong winds. Since the pristine Antarctic atmosphere can be polluted by transport of air pollutants from the mid-latitudes, we analyze the 10-day back trajectories that arrive at Antarctic ground stations in consideration of the spatial distribution of mid-latitudinal AOD, CO, NO2, and HCHO. We find that the influence of mid-latitudinal emission differs across Antarctic regions: western Antarctic regions show relatively more back trajectories from the mid-latitudes, while the eastern Antarctic regions do not show large intrusions of mid-latitudinal air masses. Finally, we estimate the long-term trends in AOD, CO, NO2, and HCHO during the past decade (2005–2016). -
Ice Core Science
PAGES International Project Offi ce Sulgeneckstrasse 38 3007 Bern Switzerland Tel: +41 31 312 31 33 Fax: +41 31 312 31 68 [email protected] Text Editing: Leah Christen News Layout: Christoph Kull Hubertus Fischer, Christoph Kull and Circulation: 4000 Thorsten Kiefer, Editors VOL.14, N°1 – APRIL 2006 Ice Core Science Ice cores provide unique high-resolution records of past climate and atmospheric composition. Naturally, the study area of ice core science is biased towards the polar regions but ice cores can also be retrieved from high .pages-igbp.org altitude glaciers. On the satellite picture are those ice cores covered in this issue of PAGES News (Modifi ed image of “The Blue Marble” (http://earthobservatory.nasa.gov) provided by kk+w - digital cartography, Kiel, Germany; Photos by PNRA/EPICA, H. Oerter, V. Lipenkov, J. Freitag, Y. Fujii, P. Ginot) www Contents 2 Announcements - Editorial: The future of ice core research - Dating of ice cores - Inside PAGES - Coastal ice cores - Antarctica - New on the bookshelf - WAIS Divide ice core - Antarctica - Tales from the fi eld - ITASE project - Antarctica - In memory of Nick Shackleton - New Dome Fuji ice core - Antarctica - Vostok ice drilling project - Antarctica 6 Program News - EPICA ice cores - Antarctica - The IPICS Initiative - 425-year precipitation history from Italy - New sea-fl oor drilling equipment - Sea-level changes: Black and Caspian Seas - Relaunch of the PAGES Databoard - Quaternary climate change in Arabia 12 National Page 40 Workshop Reports - Chile - 2nd Southern Deserts Conference - Chile - Climate change and tree rings - Russia 13 Science Highlights - Global climate during MIS 11 - Greece - NGT and PARCA ice cores - Greenland - NorthGRIP ice core - Greenland 44 Last Page - Reconstructions from Alpine ice cores - Calendar - Tropical ice cores from the Andes - PAGES Guest Scientist Program ISSN 1563–0803 The PAGES International Project Offi ce and its publications are supported by the Swiss and US National Science Foundations and NOAA. -
Advances in Seismic Monitoring at Deception Island Volcano
ANNALS OF GEOPHYSICS, 57, 3, 2014, SS0321; doi:10.4401/ag-6378 Special section: Geophysical monitorings at the Earth’s polar regions Advances in seismic monitoring at Deception Island volcano (Antarctica) since the International Polar Year Enrique Carmona1, Javier Almendros1,2,*, Rosa Martín1, Guillermo Cortés1, Gerardo Alguacil1,2, Javier Moreno1, José Benito Martín1, Antonio Martos1, Inmaculada Serrano1,2, Daniel Stich1,2, Jesús M. Ibáñez1,2 1 Instituto Andaluz de Geofísica, Universidad de Granada, Granada, Spain 2 Departamento de Física Teórica y del Cosmos, Universidad de Granada, Granada, Spain Article history Received June 30, 2013; accepted October 25, 2013. Subject classification: Volcano monitoring, Seismic network, Seismic array, Deception Island volcano, International Polar Year. ABSTRACT of the most visited places in Antarctica both by sci- Deception Island is an active volcano located in the south Shetland Is- entists and tourists, which emphasizes the impor- lands, Antarctica. It constitutes a natural laboratory to test geophysical tance of volcano surveillance and monitoring. instruments in extreme conditions, since they have to endure not only the Antarctic climate but also the volcanic environment. Deception is one of the most visited places in Antarctica, both by scientists and tourists, which emphasize the importance of volcano monitoring. Seismic monitoring has been going on since 1986 during austral summer surveys. The recorded data include volcano-tectonic earthquakes, long-period events and volcanic tremor, among -
Antarctic Treaty
ANTARCTIC TREATY REPORT OF THE NORWEGIAN ANTARCTIC INSPECTION UNDER ARTICLE VII OF THE ANTARCTIC TREATY FEBRUARY 2009 Table of Contents Table of Contents ............................................................................................................................................... 1 1. Introduction ................................................................................................................................................... 2 1.1 Article VII of the Antarctic Treaty .................................................................................................................... 2 1.2 Past inspections under the Antarctic Treaty ................................................................................................... 2 1.3 The 2009 Norwegian Inspection...................................................................................................................... 3 2. Summary of findings ...................................................................................................................................... 6 2.1 General ............................................................................................................................................................ 6 2.2 Operations....................................................................................................................................................... 7 2.3 Scientific research .......................................................................................................................................... -
Frozen Politics on a Thawing Continent
FROZEN POLITICS ON A THAWING CONTINENT A Political Ecology Approach to Understanding Science and its Relationship to Neocolonial and Capitalist Processes in Antarctica MANON KATRINA BURBIDGE LUND UNIVERSITY MSc Human Ecology: Culture, Power and Sustainability (2 years) Supervisor: Alf Hornborg Department of Human Geography 30 ECTS Spring 2019 Abstract Despite possessing a unique relationship between humankind and the environment, and its occupation of a large proportion of the planet’s surface area, Antarctica is markedly absent from literature produced within the disciplines of human and political ecology. With no states or indigenous peoples, Antarctica is instead governed by a conglomeration of states as part of the Antarctic Treaty System, which places high values upon scientific research, peace and conservation. By connecting political ecology with neocolonial, world-systems and politically-situated science perspectives, this research addressed the question of how neocolonialism and the prospects of capital accumulation are legitimised by scientific research in Antarctica, as a result of science’s privileged position in the Treaty. Three methods were applied, namely GIS, critical-political content analysis and semi-structured interviews, which were then triangulated to create an overall case study. These methods explored the intersections between Antarctic power structures, the spatial patterns of the built environment and the discourses of six national scientific programmes, complemented by insights from eight expert interviews. This thesis constitutes an important contribution to the fields of human and political ecology, firstly by intersecting it with critical Antarctic studies, something which has not previously been attempted, but also by expanding the application of a world-systems perspective to a continent very rarely included in this field’s academia. -
Internal Structure of the Ice Sheet Between Kohnen Station and Dome Fuji, Antarctica, Revealed by Airborne Radio-Echo Sounding
Annals of Glaciology 54(64) 2013 doi:10.3189/2013AoG64A113 163 Internal structure of the ice sheet between Kohnen station and Dome Fuji, Antarctica, revealed by airborne radio-echo sounding Daniel STEINHAGE, Sepp KIPFSTUHL, Uwe NIXDORF, Heinz MILLER Alfred-Wegener-Institut Helmholtz-Zentrum fu¨r Polar und Meeresforschung, Bremerhaven, Germany E-mail: [email protected] ABSTRACT. This study aims to demonstrate that deep ice cores can be synchronized using internal horizons in the ice between the drill sites revealed by airborne radio-echo sounding (RES) over a distance of >1000 km, despite significant variations in glaciological parameters, such as accumulation rate between the sites. In 2002/03 a profile between the Kohnen station and Dome Fuji deep ice-core drill sites, Antarctica, was completed using airborne RES. The survey reveals several continuous internal horizons in the RES section over a length of 1217 km. The layers allow direct comparison of the deep ice cores drilled at the two stations. In particular, the counterpart of a visible layer observed in the Kohnen station (EDML) ice core at 1054 m depth has been identified in the Dome Fuji ice core at 575 m depth using internal RES horizons. Thus the two ice cores can be synchronized, i.e. the ice at 1560 m depth (at the bottom of the 2003 EDML drilling) is 49 ka old according to the Dome Fuji age/depth scale, using the traced internal layers presented in this study. INTRODUCTION At sites where the accumulation is high enough, the upper During recent decades several deep ice cores in Antarctica parts of ice cores can be dated by counting annual layers, and Greenland have been drilled in order to study palaeo- revealed by measurements of the electrical or chemical climate. -
Waba Directory 2003
DIAMOND DX CLUB www.ddxc.net WABA DIRECTORY 2003 1 January 2003 DIAMOND DX CLUB WABA DIRECTORY 2003 ARGENTINA LU-01 Alférez de Navió José María Sobral Base (Army)1 Filchner Ice Shelf 81°04 S 40°31 W AN-016 LU-02 Almirante Brown Station (IAA)2 Coughtrey Peninsula, Paradise Harbour, 64°53 S 62°53 W AN-016 Danco Coast, Graham Land (West), Antarctic Peninsula LU-19 Byers Camp (IAA) Byers Peninsula, Livingston Island, South 62°39 S 61°00 W AN-010 Shetland Islands LU-04 Decepción Detachment (Navy)3 Primero de Mayo Bay, Port Foster, 62°59 S 60°43 W AN-010 Deception Island, South Shetland Islands LU-07 Ellsworth Station4 Filchner Ice Shelf 77°38 S 41°08 W AN-016 LU-06 Esperanza Base (Army)5 Seal Point, Hope Bay, Trinity Peninsula 63°24 S 56°59 W AN-016 (Antarctic Peninsula) LU- Francisco de Gurruchaga Refuge (Navy)6 Harmony Cove, Nelson Island, South 62°18 S 59°13 W AN-010 Shetland Islands LU-10 General Manuel Belgrano Base (Army)7 Filchner Ice Shelf 77°46 S 38°11 W AN-016 LU-08 General Manuel Belgrano II Base (Army)8 Bertrab Nunatak, Vahsel Bay, Luitpold 77°52 S 34°37 W AN-016 Coast, Coats Land LU-09 General Manuel Belgrano III Base (Army)9 Berkner Island, Filchner-Ronne Ice 77°34 S 45°59 W AN-014 Shelves LU-11 General San Martín Base (Army)10 Barry Island in Marguerite Bay, along 68°07 S 67°06 W AN-016 Fallières Coast of Graham Land (West), Antarctic Peninsula LU-21 Groussac Refuge (Navy)11 Petermann Island, off Graham Coast of 65°11 S 64°10 W AN-006 Graham Land (West); Antarctic Peninsula LU-05 Melchior Detachment (Navy)12 Isla Observatorio -
The Antarctic Sun, January 20, 2002
www.polar.org/antsun The January 20, 2002 PublishedAntarctic during the austral summer at McMurdo Station, Antarctica, Sun for the United States Antarctic Program New dome in the neighborhood The Ice cools as world warms By Kristan Hutchison Sun staff Despite the recent streak of unusual- ly warm weather around McMurdo Station, the overall trend in Antarctica continues to be cold and colder. While the rest of the world seems to be warming, scientists doing Long- Term Ecological Research (LTER) in the Dry Valleys near McMurdo Sound found at least some parts of the icy con- tinent were still chilling in the “We don’t 1990s. The tem- perature drop sets know why off a chain of reactions in the this part of Photo by Lucia Simion/Special to The Antarctic Sun Dry Valleys, lead- French and Italian workers construct one of two new buildings at Dome C, a new station being ing to the kind of the Antarctic built on the high plateau. It is only the third permanent research station on the polar plateau, mass devastation is cooling.” joining the U.S. Amundsen-Scott South Pole Station and Russia’s Vostok Station. The site was of invertebrate Andrew Fountain, chosen to do research complimentary to that done at the South Pole. Read a full story on the populations that glacialogist new station on page 7. would have ani- mal lovers crying if the microscopic worms were large and fluffy. Heat wave melts ice, floods valleys "This is a fairly rapid response to these changes," said Peter Doran, a By Melanie Conner in the summer, but it doesn't usually stay in LTER hydrometeorologist from the Sun staff the 40s for a long time," said Jim Frodge, University of Illinois, and lead author of Antarctica is too warm this summer. -
K4MZU Record WAP WACA Antarctic Program Award
W.A.P. - W.A.C.A. Sheet (Page 1 of 10) Callsign: K4MZU Ex Call: - Country: U.S.A. Name: Robert Surname: Hines City: McDonough Address: 1978 Snapping Shoals Road Zip Code: GA-30252 Province: GA Award: 146 Send Record Sheet E-mail 23/07/2020 Check QSLs: IK1GPG & IK1QFM Date: 17/05/2012 Total Stations: 490 Tipo Award: Hunter H.R.: YES TOP H.R.: YES Date update: 23/07/2020 Date: - Date Top H.R.: - E-mail: [email protected] Ref. Call worked Date QSO Base Name o Station . ARGENTINA ARG-Ø1 LU1ZAB 15/02/1996 . Teniente Benjamin Matienzo Base (Air Force) ARG-Ø2 LU1ZE 30/01/1996 . Almirante Brown Base (Army) ARG-Ø2 LU5ZE 15/01/1982 . Almirante Brown Base (Army) ARG-Ø4 LU1ZV 17/11/1993 . Esperanza Base (Army) ARG-Ø6 LU1ZG 09/10/1990 . General Manuel Belgrano II Base (Army) ARG-Ø6 LU2ZG 27/12/1981 . General Manuel Belgrano II Base (Army) ARG-Ø8 LU1ZD 19/12/1993 . General San Martin Base (Army) ARG-Ø9 LU2ZD 19/01/1994 . Primavera Base (Army) (aka Capitan Cobett Base) ARG-11 LW7EYK/Z 01/02/1994 . Byers Camp (IAA) ARG-11 LW8EYK/Z 23/12/1994 . Byers Camp (IAA) ARG-12 LU1ZC 28/01/1973 . Destacamento Naval Decepción Base (Navy) ARG-12 LU2ZI 19/08/1967 . Destacamento Naval Decepción Base (Navy) ARG-13 LU1ZB 13/12/1995 . Destacamento Naval Melchior Base (Navy) ARG-15 AY1ZA 31/01/2004 . Destacamento Naval Orcadas del Sur Base (Navy) ARG-15 LU1ZA 19/02/1995 . Destacamento Naval Orcadas del Sur Base (Navy) ARG-15 LU5ZA 02/01/1983 .